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Abstract

Significance: Photoacoustic imaging (PAI) has been greatly developed in a broad range of diag-
nostic applications. The efficiency of light to sound conversion in PAI is limited by the ubiquitous
noise arising from the tissue background, leading to a low signal-to-noise ratio (SNR), and thus
a poor quality of images. Frame averaging has been widely used to reduce the noise; however,
it compromises the temporal resolution of PAI.

Aim: We propose an approach for photoacoustic (PA) signal denoising based on a combination
of low-pass filtering and sparse coding (LPFSC).

Approach: LPFSC method is based on the fact that PA signal can be modeled as the sum of low
frequency and sparse components, which allows for the reduction of noise levels using a hybrid
alternating direction method of multipliers in an optimization process.

Results: LPFSC method was evaluated using in-silico and experimental phantoms. The results
show a 26% improvement in the peak SNR of PA signal compared to the averaging method for
in-silico data. On average, LPFSC method offers a 63% improvement in the image contrast-to-
noise ratio and a 33% improvement in the structural similarity index compared to the averaging
method for objects located at three different depths, ranging from 10 to 20 mm, in a porcine
tissue phantom.

Conclusions: The proposed method is an effective tool for PA signal denoising, whereas it
ultimately improves the quality of reconstructed images, especially at higher depths, without
limiting the image acquisition speed.
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1 Introduction

In the last two decades, photoacoustic imaging (PAI) as a non-invasive hybrid imaging modality
has been used in a wide range of preclinical and clinical applications, such as functional brain
mapping,1,2 molecular imaging,3,4 cancer diagnosis and staging,5–8 tissue vasculature imaging,9–12

guiding interventional procedures,13,14 and dental health.15,16 PAI detects the optical absorption
contrast in tissue through the conversion of light to heat and thermoelastic effect, leading to the
generation of acoustic waves.17–19 When the tissue is illuminated by short light pulses, the endog-
enous chromophores, such as hemoglobin, generate a photoacoustic (PA) signal due to their opti-
cal absorption.20,21 In this procedure, the light energy is transformed into acoustic waves, and the
efficacy of this conversion is often affected by the presence of noise arising from the surrounding
background.22,23 Therefore, the PA signal is often mixed by background noise, including thermal-
acoustic noise in the medium as well as the transducer and electronic noises.24 White Gaussian
noise is one of the most common models for these types of randomly distributed thermal and
electronic noise.25 However, there is another component of noise arising from the light attenuation
phenomena, caused by scattering characteristics of the tissue.26 Furthermore, other types of noise
disturb the PA signals, such as the fixed-pattern noise caused by electromagnetic interference. The
combination of these different types of noise in the PA signal leads to a low signal-to-noise ratio
(SNR) and results in a poor quality reconstructed PA image.27–30

Several previously reported studies have attempted to improve the image reconstruction algo-
rithms to achieve noise- and artifact-free PA images. However, acquiring high-quality PA images
from noisy signals requires an effective denoising technique,31–36 prior to utilizing reconstruction
algorithms. The most commonly used technique to reduce the noise level and improve the SNR
of the PA signal is frame averaging, where the SNR improvement is proportional to the square
root of the number of averaged frames.37 However, the signal averaging method needs to acquire
multiple frames, which is time-consuming and affects the frame rate of PA imaging.29

Alternatively, the adaptive filtering method without any prior knowledge requirement was pro-
posed for low-energy pulse laser diodes PA signal enhancement.28 They average fewer frames, in
comparison with conventional averaging techniques, which leads to shorter acquisition time.28

Notwithstanding, the requirement of frames averaging in the latter method compromises the
imaging speed.

Linear time-variant filtering techniques have been widely used to improve the SNR of the PA
signal. Generally, these filtering techniques suffer from the inability of low-pass and bandpass
filters when signal and noise share similar frequency spectrum.38 A commonly used PA signal
denoising technique is the wavelet denoising method.39–43 Wavelet-based denoising methods
face some challenges, such as choosing an appropriate basis function, the optimum number
of wavelet decomposition levels, and especially choosing an optimum threshold value.28

While there are solutions for these drawbacks, these solutions are often complicated and com-
putationally expensive.44,45 Furthermore, different denoising methods based on empirical mode
decomposition (EMD)46 were proposed to improve the SNR of the signal. The EMDs decom-
pose the PA signal into several intrinsic mode functions, which should be selected expertly and
used for signal denoising. In this regard, the combination of the EMD method and mutual
information (MI) was proposed to denoise PA signals.29 Although this method outperforms con-
ventional wavelet and bandpass filtering methods in the term of SNR, it works based on an
inaccurate assumption that high-frequency intrinsic mode functions contain considerable noise,
and low-frequency intrinsic mode functions contain the majority of useful signals. Additionally,
it is not an appropriate technique in the process of real-time PAI imaging, considering EMD and
MI consumed time.

Since the size of the light absorber defines the spectrum content of the PA signals, these
signals are usually broadband and cannot be considered as signals with specific frequency
bands.47 On the other hand, the PA signal could be considered as a sparse signal with a sparse
derivative. Therefore, one can model the PA signal as a sum of two components of low frequency
and sparse.

In this study, for the first time, we proposed an approach for PA signals denoising based on a
combination of low-pass filtering and total variation (TV) denoising, allowing for using a hybrid
alternating direction method of multipliers (ADMM) in the optimization processes. Since the
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proposed method can be defined as a combination of low-pass filtering and sparse coding,
we call it LPFSC.

The rest of this paper is organized as follows. Section 2 discusses the theory of TV denoising
and ADMM methods, which are used in this paper. Section 3 describes the proposed denoising
method, validation studies, and evaluation criteria. The experiments conducted to evaluate the
performance of the proposed approach are described in Sec. 3, and the results are discussed in
Sec. 4, followed by conclusions in Sec. 5.

2 Theoretical Background

2.1 Principles of Total Variation Denoising

Recently, the TV approach that promotes the sparsity of signals in the gradient domain has
attracted significant attention in signal denoising applications.48 The goal of TV denoising tech-
nique is to efficiently estimate and recover the desired N-point signal S ¼ fsðnÞgNn¼1 with the
sparse or sparse-derivative representation from the measured noisy signal x, which is defined as

EQ-TARGET;temp:intralink-;e001;116;539xðnÞ ¼ sðnÞ þ wðnÞ; (1)

where wðnÞ is considered as additive Gaussian noise with the variance of σ2. TV denoising could
be defined as the constrained minimization problem of a non-differentiable cost function in terms
of the l1 norm as below:

EQ-TARGET;temp:intralink-;e002;116;471

arg min
s

kDsk1;
subject to; kx − sk22 ≤ Nσ2; (2)

where D as the first-order difference matrix is of size N × ðN − 1Þ and Ds is the first-order
difference of an N-point signal sðnÞ.49 With proper regularization parameter selection, Eq. (2)
could be converted to the unconstraint problem as

EQ-TARGET;temp:intralink-;e003;116;386Tvdðx; λÞ ¼ arg min
s

�
1

2
kx − sk22 þ λkDsk1

�
: (3)

In this optimization problem, the regularization parameter λ plays a significant role and con-
trols the degree of smoothing, so that when the λ ¼ 0, there is no smoothing and the result is the
same as minimizing the sum of squares. On the other hand, increasing λ assigns a higher weight
to the second term of Tvdðx; λÞ, which measures the oscillation of the desired signal sðnÞ and
makes the solution sðnÞ piecewise. Although there are different algorithms to solve the TV
denoising problem, majorization–minimization (MM) is found suitable to solve the optimization
problem, which is hard to solve directly.50

2.2 Alternating Direction Method of Multipliers

ADMM is a simple but powerful algorithm to solve a convex optimization problem by breaking
it into smaller subproblems.51,52 The ADMM algorithm is designed to solve the separable convex
problems of the form:

EQ-TARGET;temp:intralink-;e004;116;190 min fðxÞ þ gðyÞ; subject to Axþ By ¼ c; (4)

where x ∈ Rn, y ∈ Rm, A ∈ Rp×n, and B ∈ Rp×m. The augmentation Lagrangian in Eq. (4) can
be written as

EQ-TARGET;temp:intralink-;e005;116;140Lρðx; y; λÞ ¼ fðxÞ þ gðyÞ þ λTðAxþ By − cÞ þ
�
ρ

2

�
kAxþ By − ck22; (5)

where ρ is the penalty parameter, which is considered positive, and λ is the Lagrangian multiplier.
Equation (5) is solved using three steps: x-minimization and y-minimization, which are split into
N separate problems, and an updating step for multiplier λ as follows:
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EQ-TARGET;temp:intralink-;e006;116;735

xkþ1 ≔ arg min
x

Lρðx; yk; λkÞ;
ykþ1 ≔ arg min

y
Lρðxkþ1; y; λkÞ;

λkþ1 ≔ λk þ ρðAxkþ1 þ Bykþ1 − cÞ: (6)

3 Method and Materials

3.1 Low-Pass Filtering and Sparse Coding

To solve the problem of PA signal denoising, the PA signal is modeled as the measured noisy
signal xðnÞ, which is defined as

EQ-TARGET;temp:intralink-;e007;116;589xðnÞ ¼ slowfrqðnÞ þ ssparseðnÞ þ wðnÞ; (7)

where the desired signal sðnÞ includes two main components, a low-frequency component and a
sparse or a sparse-derivative component. Here, slowfrqðnÞ represents the low-frequency compo-
nent of the desired signal, ssparseðnÞ represents the sparse or the sparse-derivative components of
the desired signal, and wðnÞ is considered as additive Gaussian noise with the variance of σ2.
Since we are looking for efficient estimation of ssparseðnÞ and slowfrqðnÞ, considering Eq. (7),
in the following of ssparseðnÞ estimation, one can estimate slowfrqðnÞ as follows:

EQ-TARGET;temp:intralink-;e008;116;481slowfrqðnÞ ≈ lowpass½xðnÞ − ŝsparseðnÞ�; (8)

By replacing slowfrqðnÞ based on Eq. (7), Eq. (8) could be written as

EQ-TARGET;temp:intralink-;e009;116;435xðnÞ − wðnÞ − ssparseðnÞ ≈ lowpass½xðnÞ − ŝsparseðnÞ�; (9)

where ssparseðnÞ and ŝsparseðnÞ are approximately equal. Therefore, Eq. (8) could be modified to

EQ-TARGET;temp:intralink-;e010;116;390½xðnÞ − ŝsparseðnÞ� − lowpass½xðnÞ − ŝsparseðnÞ� ≈ wðnÞ; (10)

Considering the assumption that the frequency response of the low-pass filter is approxi-
mately zero-phase, we can conclude that

EQ-TARGET;temp:intralink-;e011;116;333highpass½xðnÞ − ŝsparseðnÞ� ≈ wðnÞ; (11)

where high pass refers to the high-pass filter. To achieve a computationally efficient approach, a
zero-phase non-causal recursive high-pass filter which is proposed in Ref. 49 was deployed in
our method. Since the PA signal is sparse and has a sparse derivative, the cost function of the
optimization problem contains a linear combination of two regularization parameters, which
promote piecewise smooth and sparse solutions. Therefore, the denoising problem, shown in
Eq. (3), can be expressed as the unconstraint minimization problem of a non-differentiable cost
function in terms of l1 norm as below:

EQ-TARGET;temp:intralink-;e012;116;217 arg min
s;ssparse

�
1

2
khighpassðx − ssparseÞk22 þ λ0ksk1 þ λ1kDsk1

�
: (12)

There are many solutions, such as MM and ADMM, to solve Eq. (12). Since the denoising
process and image reconstruction speed are vital to achieve real-time PA imaging, we proposed
to use the hybrid consensus ADMM method53 to achieve a linear convergence and accelerating
the conventional ADMM.

Najafzadeh et al.: Photoacoustic image improvement based on a combination of sparse coding. . .

Journal of Biomedical Optics 106001-4 October 2020 • Vol. 25(10)



3.2 Validation Studies

3.2.1 In-silico study

A simulation study generated by the k-wave toolbox in MATLAB® (Mathworks,
Massachusetts) was performed to evaluate the performance of LPFSC in PA signal
denoising.54 The initial pressure distribution is given by a 512 × 512 pixel image representa-
tive of a vascular structure. A 10-mm square grid was created, and the circular array detectors
with 9-mm diameter and 60 elements, evenly spaced, were located around the region of interest
(ROI) to receive the propagated PA wave from the object. We considered the center of each
sensor as a point source. The sound speed was considered to be 1500 m∕s. The corresponding
time array has 1019 data points that are 9.259 ns apart from each other (108-MHz sampling
frequency). The input size of the PA signal was assigned 1019 × 60, and the reconstructed
images have 128 × 128 pixels.

3.2.2 Experimental PA data acquisition setup

To further evaluation of the proposed PA signal denoising method and its effects on the quality
of reconstructed PA images, phantom experiments were performed. The designed phantoms
and the imaging setups are shown in Fig. 1. The first phantom contains two light-absorbing
filaments with a diameter of 150 μm that were placed 1 mm apart from each other inside a
water tank [Fig. 2(b)]. An Nd: YAG/OPO nanosecond pulsed laser (Phocus core system,
OPOTEK Inc., Carlsbad, California) with the pulse repetition rate of 10 Hz at wavelengths
of 680 nm was used to illuminate the phantom. An ultrasound scanner (US) (Vantage 128TM,

Fig. 1 Schematic of (a) the experimental setup used for the PA imaging of (b) two light-absorbing
filaments that were placed inside a water tank and (c) cross-section view of blood-filled tubes
embedded in a porcine tissue phantom.
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Verasonics Inc., Kirkland, Washington) with a 128 elements linear array transducer (L114v,
Verasonics, Inc., Kirkland, Washington) was used to receive the propagated PA RF data
[Fig. 1(a)].

The second phantom contains three polytetrafluoroethylene tubes (1-mm diameter), filled
with human blood and embedded within a 30-mm-thick porcine tissue background. Blood-
filled tubes were placed inside the porcine tissue background at different depths from about
10 to 20 mm with 5-mm increments. PA acquisition was performed with the laser energy of
3 mJ∕pulse at the wavelength of 680 nm. A fiber bundle with a diameter of 20 mm used for
guiding the laser light to the tissue. A 64-element phased-array US endoscopic transducer, with
an active aperture of 9-mm long, was coupled to the phantom to acquire acoustic signals and
provide high-resolution sector images [Fig. 1(c)].

Fig. 2 The denoising results of simulated PA signal in four different levels of noise. Noisy signals
are shown in red and denoised signals are depicted in blue. (a) The original simulated PA signal
detected on a detector #50, (b) SNR: 10 dB (c) SNR: 5 dB, (d) SNR: −5 dB, and (e) SNR: −10 dB.
The horizontal and vertical axes indicate the time coordinate and amplitude of the recovered signal
in different noise levels, respectively.
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3.3 PA Signal Evaluation and Analysis

To evaluate the proposed approach, evaluation criteria such as peak signal-to-noise (PSNR) for
signals, structural similarity index (SSIM), and contrast-to-noise ratio (CNR) for estimated
images were used.

The PSNR as a common criterion to measure the quality of signal denoising based on the
maximum possible value in the signal and mean square differences between denoised and refer-
ence signals is expressed in term of the logarithmic decibel scale (dB) as below:

EQ-TARGET;temp:intralink-;sec3.3;116;644PSNR ¼ 20 log10

�
Smaxffiffiffiffiffiffiffiffiffiffi
MSE

p
�
; MSE ¼ 1

M

XM−1

m¼0

½Soriginalðm; 1Þ − Sdenoisedðm; 1Þ�2;

where MSE is defined as a mean-square-error, Soriginal and Sdenoised are original and denoised
signals in size of M × 1, respectively, and Smax is maximum possible value in signals.

We created PA images that represent an optical absorption distribution map of the targets via
the conventional delay-and-sum (DAS) approach as the most commonly used reconstruction
method in the PAI area.55 For reconstructed images, the SSIM (in a scale of 0 to 1) as one
of the most common criteria for image quality assessment and for evaluating the similarity
of images (i.e., reference image and reconstructed images) is defined56 as

EQ-TARGET;temp:intralink-;sec3.3;116;510SSIM ¼ ð2μOriginalμestimated þ c1Þð2σoriginal;estimated þ c2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2original þ μ2estimated þ c1Þðσ2original þ σ2estimated þ c2Þ

q ;

where μoriginal and μestimated are the mean of the original and estimated images, respectively, and
also σ2original and σ

2
estimated are the variances of the original and estimated images, respectively. It is

worth to mention that σoriginal;estimated is the covariance between the original and estimated image.
The values of c1 and c2 are considered as constant values to avoid instability when the sum
square of means or variances are very close to zero.

Finally, the CNR is a common criterion to determine image quality, especially in denoising
processes with below definition:

EQ-TARGET;temp:intralink-;sec3.3;116;368CNR ¼ 20 log

�jSi − SOj
σO

�
;

where Si and SO are the average intensity inside and outside of the objects, respectively. The σO
represents the standard deviation of the background. The background was defined as the pixels
located inside the green dashed rectangular region selected in each set of PA images. For phan-
tom studies, we considered the average of all frames as a ground truth (reference image) in each
experiment.

4 Results and Discussion

To assess the proposed PA signal denoising method, we validated our method on numerical
vessel phantom and experimental data of phantoms. The simulated PA signal, which was gen-
erated by the k-wave is shown in Fig. 2(a). Four different levels of additive Gaussian white noise
with SNR levels 10, 5,−5, and−10 dBwere added to the original simulated clean PA signal, and
results of the proposed denoising method for the simulated noisy signals are shown in Figs. 2(b)–
2(e). When the noise level was increased (for example, in SNR level −10), the PA signal peak
was almost buried in added noise. As we have shown in Fig. 2, the LPFSC could suppress the
noise and reconstruct the peak of the original signal, indicating the ability of the TVapproach to
recover the sparse or sparse-derivative signals. In the worst case (SNR level −10 dB), the differ-
ence between the original signal peak and the denoised signal peak is about 4%. This variance
considering increasing the peak of noisy signal about 90% in comparison with the original signal
is negligible. TV-based denoising is the most appropriate method for piecewise constant signals
and preserves sharp edges in the underlying signal without requiring any step-size parameter as
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the amount of peak for the denoised signal.57 It is worth mentioning that the proposed method
could recover denoised signal until the SNR decreased to −15 dB.

For further evaluation, the LPFSC signal denoising method was compared with two well-
known and widely used approaches of averaging and wavelet-based denoising methods. As
shown in Fig. 3, the PSNR of the LPFSC method was compared to the frame averaging (using
20 frames) and wavelet-based denoising methods, at different noise levels. For PA signal denois-
ing by wavelet method, a commonly used Symlet 6 wavelet with six-level of decomposition and
Stein’s Unbiased Risk Estimation threshold (SURE threshold) were selected.29

The quantitative results obtained with the simulations show that the LPFSC compensates the
low SNR of PA signal and outperforms the competing wavelet and averaging denoising methods
in terms of PSNR by 24% and 26%, respectively, across all simulated noise levels.

The reconstructed images of denoised simulated PA signals with considering SNR of−10 dB

for three methods of averaging, wavelet-based denoising, and LPFSC are shown in Fig. 4. The
wavelet method has not been successful in recovering the small size vessels, which are corrupted
by the noise. In addition, the averaging method using 20 frames cannot fully clean the signal due
to presences of the coherent noise; however, our method using one frame could fully recover the
original image and its details.

For the quantitative evaluation of the reconstructed images of denoised simulated PA signals,
two SSIM and CNR criteria were used. Comparison between the results of three different meth-
ods, including wavelet-based signal denoising, averaging, and LPFSC in terms of SSIM and
CNR with different levels of noise are shown in Table 1. On average (for different noise levels),
the proposed denoising approach offers better CNR up to about 28% and 30%, and higher SSIM
of about 23% and 24% in comparison with averaging and wavelet denoising methods, respec-
tively. With increasing SNR levels from 5 to 20 dB and the reduction of noise level, the per-
formance of all methods are improved. Although, for the lower SNR such as 5 dB, LPFSC
outperforms wavelet and averaging denoising method by improvement about 58% and in terms
of SSIM.

During experimental studies, we evaluated our method in a set of phantom studies in which
two small-sized absorbers were placed inside a water tank, illuminated from the side and images
from the top using a US transducer operating at frequencies between 4 and 11 MHz. The PA
signal denoising results for the acquired signals of different detectors from the 20th frames of
phantom data are shown in Fig. 5. The experimental results of PA signal denoising show sig-
nificant improvement for the PSNR of PA signal of wires phantom about 35% by recovering
peaks of original signal and reduction of noise.

Additionally, reconstructed images of denoised PA signals through three different methods
are shown in Fig. 5 and are compared in Table 2, in terms of SSIM, CNR, axial and lateral full
width half maximum (FWHM) for experimental phantom data. The selection of FWHM is to
demonstrate the geometrical accuracy of reconstructed PA images. The experimental results of
PA signal denoising prove that the LPFSC beats the performance of averaging denoising method

Fig. 3 Comparison of three different denoising methods: wavelet-based signal denoising, the
averaging method using 20 frames, and LPFSC in terms of PSNR improvements at five different
noise levels. The results clearly demonstrate the superior performance of LPFSC compared to
wavelet and averaging.
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(using all 20 frames) as the reference in the term of SSIM and CNR criteria by the 17% and 38%.
The LPFSC method provides a closer to real size reconstructed PA image with a mean of axial
FWHM of 0.77� 0.12 mm and lateral FWHM of 1.05� 0.04 mm, for two objects in exper-
imental data. In comparison with the reconstructed image of one frame without any signal
denoising with axial FWHM of 0.85� 0.18 and lateral FWHM of 1.08� 0.05 mm, our method
could preserve lateral FWHM and improve axial FWHM about 10%. Whereas the wavelet
denoising method did not improve the lateral and axial FWHM, and the averaging method was
not effective for axial FWHM. It is worth to mention that both of these methods improve CNR of
the reconstructed image in comparison with the reconstructed image of one frame with CNR

Fig. 4 (a) Illustration of the phantom used for in-silico studies. Reconstructed images of: (b) simu-
lated PA phantom, (c) noisy image when SNR is considered −10 dB, (d) PA image using the
LPFSC denoising, (e) PA image using the wavelet denoised, and (f) PA image using the averaging
of 20 frames for noise reduction.
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19.32 dB. Therefore, one of the main improvements gained by the proposed LPFSC method is
having reduced geometrical distortion as well as a high contrast at the same time. More impor-
tantly, the LPFSC method offers using one frame in comparison with the averaging method,
which requires 20 frames. Using the hybrid ADMM, which stands out as efficient and easily
implementable, leads to fast convergence of our method.

Finally, we evaluated the performance of the proposed denoising method with data acquired
by an endoscopic probe and from the porcine tissue phantom. Since there was no significant

Table 1 Performance of three different signal denoising methods: wavelet-based, averaging
method, and LPFSC across different levels of noise.

Level of
SNR (dB)

Wavelet Averaging LPFSC

SSIM CNR (dB) SSIM CNR (dB) SSIM CNR (dB)

5 0.59 65.01 0.58 67.23 0.93 87.61

10 0.78 72.53 0.79 72.98 0.95 94.53

15 0.86 75.15 0.87 76.23 0.98 96.70

20 0.86 76.66 0.91 77.12 0.99 98.21

Mean� std 0.77� 0.13 72.33� 5.17 0.78� 0.14 73.39� 4.47 0.96� 0.03 94.26� 4.68

Fig. 5 (a) The PA signal denoising of experimental phantom via LPFSC and (b) the original recon-
structed image of one frame. The reconstructed images of phantom via three different signal
denoising methods: (c) the LPFSC method (one frame), (d) the wavelet denoising method (one
frame), and (e) the averaging all 20 frames. The background was defined as the pixels located
inside the green dashed rectangular region.
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difference between the results of frame averaging and wavelet method in in-silico study, the
reconstructed PA images of denoised signal with frame averaging and LPFSC methods are com-
pared in Fig. 6. The images form by averaging of 10 frames were used as a ground truth or the
reference image. All constructed images from denoised signal using LPFSC and traditional
frame averaging with the same number of frames (n ¼ 1 to 7) were compared to the
ground-truth reference to calculate the SSIM. The number of averaged frames varied between
one and seven. First and second rows related to the results of the averaging method and our
proposed method, respectively. The walls of blood-filled tubes are generating strong PA signals
that are visually presented as two parallel bright lines in PA images. To calculate CNR, an ROI
located within the tube [as shown in Fig. 6(e)] was used to measure the signal from the target. To
further quantify the image enhancements, CNR and SSIM of frame averaging and LPFSC using
five frames are compared in Fig. 6(h). The use of five frames averaging in conjunction with
LPFSC markedly reduced the background noise, which improved the mean of CNR and
SSIM by 32% and 31%, respectively.

Table 2 Comparison of three methods of wavelet, averaging, and LPFSC method in terms of
SSIM, CNR, and lateral and axial FWHM for the reconstructed image of the denoised signal.

Criteria Wavelet Averaging LPFSC

SSIM 0.79 0.81 0.95

CNR (dB) 23.72 25.36 35.17

Lateral FWHM (mm) (mean + std) 1.20� 0.06 1.11� 0.09 1.05� 0.04

Axial FWHM (mm) (mean + std) 1.12� 0.16 0.98� 0.06 0.77� 0.12

Fig. 6 Reconstructed PA images of denoised signals of a porcine/blood inclusion phantom.
(a)–(c) Frame averaging with 1, 5, and 7 averaged frames, respectively. (d)–(f) LPFSC with 1,
5, and 7 averaged frames, respectively. (g) Averaging 10 frames used as a reference. (h) The
comparison of CNR and SSIM of two methods using five frames for inclusions located at different
depths. The black arrows indicate objects located at depths 1, 2, and 3. Depths 1, 2, and 3 are
about 20, 15, and 10 mm, respectively. The background was defined as the pixels located inside
the green dashed rectangular region. The ROI for the target (object) is indicated with black dashed
rectangular boxes in (e).
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Evaluation of CNR and SSIM for different numbers of averaged frames and at different im-
aging depths are shown in Fig. 7. As anticipated, CNR and SSIM parameters are improved with
increasing the number of averaged frames. However, the proposed denoising method provides
higher CNR and SSIM using the same number of averaged frames for objects placed at different
depths. The mean of CNR using LPFSC with one frame was improved 63% in comparison with
averaging for the objects evaluated at three different depths. A closer look at the results reveal
that the mean CNR using the proposed denoising method using three averaged frames is higher
than averaging only and using seven averaged frames. This comparison clearly shows the poten-
tial of using the proposed method to enhance the quality of PA images with a smaller number of
averaged frames, which can lead to a preserving image quality at higher imaging speed. Our
results indicated the LPFSC with three frames averaging is capable of detecting the objects
located at depth 3 with SSIM of 0.91, which shows 90% improvement compared to the standard
averaging method. The average measured SSIM for objects located at three different depths was
calculated as 0.88� 0.15 when LPFSC is utilized. This result indicates 33% improvement com-
pared to averaging alone.

In this study, a range of cutoff frequencies was experimentally tested on data sets. The
accepted range of cutoff frequencies was concluded to be between 0 and 0.3 cycles

sample
for different

data sets, experimentally. For in-silico and first experimental phantom studies, the optimal value
of cutoff frequency was selected 0.1 cycles

sample
and for porcine tissue data, it was selected 0.15 cycles

sample
.

Also, we consider equal weight for the TV and LPF; therefore, the lambda value was selected
equal to be 1, experimentally. Changing lambda within the range of 0.8 to 1.2 showed acceptable

Fig. 7 Porcine tissue results: comparison between the LPFSCwith averaging using different num-
ber of averaged frames ranging from 1 to 7 in terms of CNR and SSIM: (a) depth 1, (b) depth 2, and
(c) depth 3. CNR and SSIM parameters are evaluated and the results indicate the superior per-
formance of LPFSC compared to averaging only.
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results for PA signal denoising. For lambda smaller than 0.8, the amplitude of denoised signal is
decreased compared to the original signal. The lambda bigger than 1.2 downgraded the perfor-
mance of LPFSC. The performance of LPFSC could also be affected by the adjustment of
low-pass filter cutoff frequency. However, small deviations from the ideal cutoff frequency
up to 20% could be compensated by the sparse denoising part of the proposed algorithm.

5 Conclusion

The efficiency of PA imaging is routinely limited by the presence of background noise and suf-
fering from low SNR, which resulted in the poor quality of the reconstructed images. Since the
PA signals can be modeled as a sum of two low frequency and sparse components, we proposed a
denoising approach that simultaneously estimates a low-pass and a sparse signal from an
acquired noisy signal based on TV optimization approach, and using hybrid ADMM. Both
in-silico and experimental work on tissue mimics were used to evaluate the performance of the
proposed technique. The results demonstrated that the LPFSC method possess a superior per-
formance to compensate the low SNR PA signals and offered a better CNR and SSIM for the
reconstructed images compared to the frame averaging method. This comparison clearly shows
the potential of using our proposed method to enhance the quality of PA images while main-
taining high-speed imaging which is an essential need in many applications of PA imaging. In
other words, the frame rate of PA images, which is always a challenge in real-time PA imaging
can be significantly improved.
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