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Abstract

Significance: Our study introduces an application of deep learning to virtually generate
fluorescence images to reduce the burdens of cost and time from considerable effort in sample
preparation related to chemical fixation and staining.

Aim: The objective of our work was to determine how successfully deep learning methods per-
form on fluorescence prediction that depends on structural and/or a functional relationship
between input labels and output labels.

Approach: We present a virtual-fluorescence-staining method based on deep neural networks
(VirFluoNet) to transform co-registered images of cells into subcellular compartment-specific
molecular fluorescence labels in the same field-of-view. An algorithm based on conditional gen-
erative adversarial networks was developed and trained on microscopy datasets from breast-
cancer and bone-osteosarcoma cell lines: MDA-MB-231 and U2OS, respectively. Several estab-
lished performance metrics—the mean absolute error (MAE), peak-signal-to-noise ratio
(PSNR), and structural-similarity-index (SSIM)—as well as a novel performance metric, the
tolerance level, were measured and compared for the same algorithm and input data.

Results: For the MDA-MB-231 cells, F-actin signal performed the fluorescent antibody staining
of vinculin prediction better than phase-contrast as an input. For the U2OS cells, satisfactory
metrics of performance were archieved in comparison with ground truth. MAE is <0.005, 0.017,
0.012; PSNR is >40∕34∕33 dB; and SSIM is >0.925∕0.926∕0.925 for 4′,6-diamidino-2-
phenylindole/hoechst, endoplasmic reticulum, and mitochondria prediction, respectively, from
channels of nucleoli and cytoplasmic RNA, Golgi plasma membrane, and F-actin.

Conclusions: These findings contribute to the understanding of the utility and limitations of
deep learning image-regression to predict fluorescence microscopy datasets of biological cells.
We infer that predicted image labels must have either a structural and/or a functional relationship
to input labels. Furthermore, the approach introduced here holds promise for modeling the inter-
nal spatial relationships between organelles and biomolecules within living cells, leading to
detection and quantification of alterations from a standard training dataset.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JBO.25.9.096009]

Keywords: artificial intelligence; microscopy; fluorescence imaging.

Paper 200126RR received Apr. 30, 2020; accepted for publication Sep. 9, 2020; published online
Sep. 29, 2020.

1 Introduction

Microscopy techniques, particularly the family of epifluorescence modalities, are workhorses of
modern cell and molecular biology that enable microscale spatial insight. Intensity- and/or
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phase-based microscopy techniques such as brightfield, phase contrast, differential interference
contrast, digital holography, Fourier ptychography, and optical diffraction tomography,1–7

among other modalities, have the potential to visualize the subcellular structure. However, these
methods depend largely on light scattering that is defined by the internal structure-based index of
refraction, which lacks biomolecular specificity. Fluorescence-based techniques, on the other
hand, excite fluorophores, which act as labels to spatially localize biological molecules and
structures within cells. These imaging techniques, especially fluorescence approaches, involve
time-consuming preparation steps and costly reagents, introduce the possibility of signal bias
due to photobleaching, and in time-lapse vital imaging, allow for possible misinterpretation of
cell behavior due to gradual accumulation of sublethal damage from intense ultraviolet and other
wavelengths used to excite molecular labels.8 Thus microscopy of cells is challenging due to the
inherent trade-offs in sample preservation, image quality, and data acquisition time and the vari-
ability between labeling experiments.

Deep convolutional neural networks (DCNNs) capture nonlinear relationships between images
globally and locally, resulting in significantly improved performance for image processing tasks
compared with the traditional machine learning methods. In many studies of cells requiring sub-
cellular details, fluorescence labels specific to selected biomolecules or organelles are imaged
simultaneously or in rapid sequence in separate fluorescent signal channels to assign subcellular
localization of biomolecules to certain organelles. Alternatively, co-registered phase contrast or
other brightfield modality images are acquired to relate biomolecular localization to cell morphol-
ogy and structural features. In several recent studies, applications of DCNNs to fluorescence
microscopy of cells investigated the performance of these algorithms in super-resolution,9–12 image
restoration,13 image analysis,14 and virtual histological staining.15 The major goal of these studies
was to reveal additional image information content based on the statistical model of the specific
DCNN linking the training dataset to ground truth images to be predicted from test data. Recently,
DCNNs have been employed to create digital staining images by training a pair of images to trans-
form transmitted light microscopic images into fluorescence images16,17 and quantitative phase
images into equivalent bright-field microscopy images that are histologically stained.18

Based on these results, we formulated two questions leading to null and alternative hypoth-
eses. First, does model prediction performance depend on the image modality and subcellular
labels selected for training and prediction? Second, do errors in predicted images contribute to
the likelihood of misinterpreting biology based on the image predictions? To address these ques-
tions, we developed a DCNN-based computational microscopy technique employing a custom-
ized conditional generative adversarial network (cGAN) that models the relationships between
optical signals acquired using any imaging modality or fluorescence channel, assuming the sig-
nals are co-registered. This technique was employed to fulfill two objectives addressing the
hypotheses. First, we determined image prediction performance using several fluorescence chan-
nels and phase contrast images for training and compared prediction performance between sets
of input and output optical signals and fluorescence labels for two independent datasets using
different cell lines. Second, we compared predicted images with ground truth to identify signal
error, evaluating the error fractions important and unimportant to biological interpretation
through a novel quantitative prediction performance parameter. To further demonstrate the adapt-
ability of the cGAN algorithm to different image prediction tasks, out-of-focus fluorescence
images of cells were digitally refocused after application of a trained, end-to-end ranged auto-
focusing (AF) algorithm.

The results of this work support prediction of fluorescent labeling of cells from other image
data. These predictions have the potential, in one application, to significantly reduce the cost and
the effort in preparation of cell imaging experiments to end-users by replacing or supplementing
actual labeling experiments. This first application requires a high degree of fidelity of predicted
images to ground truth, within a tolerance of error that allows for accurate biological conclusions
to be drawn. Here we introduce a tolerance level to quantify the fidelity of predicted images. A
second application lies in removing artifacts and aberrations from existing image datasets. Here
we demonstrate an AF method that improves blurred regions by reference-free metrics. Other
applications are discussed, including transfer learning to ascertain the effects of a treatment on
cells by direct comparison of actual fluorescence labels versus predictions from controls. Thus
the described new method supports cell studies based on mixed virtual cell imaging. Because the
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VirFluoNet method is digital, it significantly reduces the possibility for cell damage from photo-
toxicity and signal degradation from photobleaching. This work also extended cGAN capabil-
ities to the prediction of fluorescent images. We envision that the approaches of this study will be
useful for prescreening large fluorescence microscopy datasets, identifying and correcting out-
of-focus regions, and potentially saving time in multilabel fluorescence experiments by predict-
ing some fluorescence label features from other labels signals. Due to the rapid development of
hardware/platform (in terms of higher speed, lower cost, and smaller size) supporting machine
learning applications, the algorithms of this study should become useful in an expanding number
of applications. A future application of the approach may be the study of complex protein struc-
tures and modeling protein–protein or protein–organelle relationships.16,17

2 Method

The order of methods and results, below, follows the order of the first and second objectives
described above. However, the ancillary goal of demonstrating refocusing of out-of-focus image
data using a cGAN model is presented first, as this was an image preprocessing step contributing
to high-quality training data for fluorescent image transforms, which would be described later.

2.1 Summary of Approach

To achieve AF as a preprocessing step for training data, we trained and tested the customized
cGANs on a dataset of U2OS cells with labeled F-actin (U2OS-AF) and used the refocused
images to enhance the input images before training models of Fluo-Fluo 2, 3, 4, defined below.

For the first objective, we trained two cGAN models (PhC-Fluo 1, 2) to generate 4′,6-
diamidino-2-phenylindole (DAPI) and vinculin from phase contrast images, respectively, and
four cGAN models (Fluo-Fluo 1, 2, 3, 4) for fluorescence prediction from another fluorescence
image (see Fig. 1). The training and testing data for these models were co-registered with phase

Fig. 1 Virtual fluorescence imaging pipeline for cell microscopy with all models implemented in our
study. MDA-MB-231 cells (on the left) were imaged to collect co-registered phase contrast, DAPI,
F-actin, and vinculin. The PhC-Fluo models were trained to predict fluorescence images from
phase contrast (either DAPI or vinculin). The Fluo-Fluo models using MDA-MB-231 in Fluo-
Fluo model 1 and U2OS-CPS in Fluo-Fluo models 2, 3, 4 (on the right) predicted florescence
images from a co-registered fluorescence channel, from the same cells. Although each model
performs different goals in our study, out-of-focus images were fed to the AF model (at center)
as a preprocessing step to refocus the cell images (U2OS-AF) before reuse in training and testing
of the Fluo-Fluo models. (1) Phase contrast, (2) DAPI, (3) vinculin, (4) F-actin, (5) out-of-focus
F-actin, (6) in-focus predicted Factin, (7) Golgi apparatus plasma membrane F-actin, (8) nucleoli
and cytoplasmic RNA, (9) endoplasmic reticulum, (10) mitochondria, and (11) DAPI/Hoechst.
(a) Regular fluorescence imaging for MDA-MB-231 cells collection and (b) automated cellular
imaging system for U2OS-CPS/AF data collection. Details of sample preparation are described
in Sec. 2.2.
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contrast and fluorescence images of human breast cancer cells from the MDA-MB-231 cell
line and multiple fluorescence channels corresponding to specific organelle labels of human
osteosarcoma cells from the U2OS cell line labeled with a standard Cell Painting protocol
(U2OS-CPS).

For the second objective, training datasets of the PhC-Fluo 2 and Fluo-Fluo 1 models were
evaluated for absolute image error (ground truth minus predicted image, always positive).
The ground truth and prediction channels were vinculin immunostaining, paired with either
co-registered phase contrast or F-actin fluorescence label channels. Not all parts of the absolute
image error contribute equally to image misinterpretation. The absolute image error was split
into two components, spatial/area error and pixelwise intensity error, by summing segmented
pixel area and intensity differences from a thresholded absolute error map. The threshold was
scanned through the full map bit depth. A global minimum total weighted error was determined
from the weighted sum of the two individual error terms.

2.2 Data Preparation

2.2.1 MDA-MB-231 breast cancer cell

The human breast cancer cell line MDA-MB-231 provided by Dr. Zaver Bhujwalla (Johns
Hopkins School of Medicine, Baltimore, MD) was cultured on tissue culture-treated polystyrene
dishes, in standard tissue culture conditions of 37°C with 5% CO2 and 100% humidity
(HERAcell 150i, Thermo Fisher Scientific, Waltham, MA). Cells were fed with Dulbecco’s
Modified Eagle Medium supplemented with 10% Fetalgrow (Rocky Mountain Biologicals,
Missoula, Montana) and 1% penicillin–streptomycin (Corning Inc., Corning, New York,
NY). Cells were fed every two days and passaged using trypsin (Mediatach, Inc. Manassas,
VA) once they reached confluence. MDA-MB-231 WT after passaging were seeded on 35-mm
tissue culture treated dishes (CELLTREAT Scientific Products, Pepperell, MA), following the
culture procedure provided above. After 24 h of culture, cells were washed with 1× phosphate
buffered saline (PBS) (Sigma-Aldrich, St. Louis, MO) to remove cell debris and fixed with 3.7%
formaldehyde diluted from 16% Paraformaldehyde (Electron Microscopy Sciences, Hatfield,
PA) for 15 min, permeabilized with 0.1%Triton-X in PBS for 5 min, and blocked by horse serum
for 1 h. Vinculin monoclonal (VLN01) antibody (Thermo Fisher Scientific, Rockford, IL) and
integrin beta-1 (P5D2) antibody (Iowa University Department of Biology, Iowa, IA) were diluted
in 1× PBS containing 1% bovine serum albumin to reach 2 μg∕ml concentration. After 1 h, cells
were washed and incubated for a further 1 h with antimouse secondary antibody conjugated to a
fluorophore. Then cells were co-stained with a solution containing 1:1000 dilution of a 2-μg∕ml

DAPI (Life Technologies, Carlsbad, CA) and 1:1000 dilution of AlexaFluor-labeled phalloidin
(Life Technologies Corporation, Eugene, OR) for one more hour before being washed with
1× PBS again. Cells were stored in 1× PBS at 4°C until the imaging session. Fluorescence
images were acquired using an Olympus BX60 microscope (Olympus, Tokyo, Japan), with 60×,
NA 1.25 oil immersion Plan Apo objective, and a Photometrics CoolSNAP HQ2 high-resolution
camera (1392 × 1040 pixels, 6.45 × 6.45 μmpixels) with Meta-Morph software. The MDA-
MB-231 dataset (before augmentation) contained 74 images (1392 × 1040 pixels, 8-bit) for
training + validation and 6 images (1392 × 1040 pixels) for testing.

2.2.2 Human osteosarcoma U2OS cell, autofocusing (U2OS-AF)

High-content screening datasets of U2OS cells used in this study were previously made publicly
available.19 The data were acquired from 384-well microplates on an ImageXpress Micro-
automated cellular imaging system with Hoechst 33342 dye and Alexa Fluor 594-labeled
phalloidin at 20× magnification, 2× binning and 2 sites per well. Thirty-two image sets were
provided corresponding to 32 z-stacks with 2 μm between slices. Each image is 696 ×
520 pixels in a 16-bit TIF format, LZW compression. For each site, the optimal focus was found
using laser autofocusing to find the well bottom. The automated microscope was then pro-
grammed to collect a z-stack of 32 image sets covering from −32 μm to 30 μm of out-of-focus
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range. In total, 1536 images in 9 folders of human osteosarcoma U2OS cells with augmentation
were used in this study.

2.2.3 Human osteosarcoma U2OS cell, cell painting staining protocol
(U2OS-CPS)

U2OS cell (#HTB-96, ATCC) raw images used here can be found in Ref. 20. Cells were cultured
at 200 cells per well in a 384-wellplate. Eight different cell organelles were labeled by different
stains: nucleus (Hoechst 33342), endoplasmic reticulum (concanavalin A/AlexaFluor488
conjugate), nucleoli and cytoplasmic RNA (SYTO14 green fluorescent nucleic acid stain),
Golgi apparatus and plasma membrane (wheat germ agglutinin/AlexaFluor594 conjugate),
F-actin (phalloidin/AlexaFluor594 conjugate), and mitochondria (MitoTracker Deep Red).
Five fluorescent channels were imaged at 20× magnification using an epifluorescence micro-
scope with illumination and excitation central wavelengths as follows: DAPI (387∕447 nm),
GFP (472∕520 nm), Cy3 (531∕593 nm), Texas Red (562∕642 nm), and Cy5 (628∕692 nm).
The dataset contains 3456 × 9 (folders) of each fluorescent channel (1024 × 1374 pixels).
Eight folders across all channels were used for training and validation. The last (ninth) folders
were used for testing purposes. In total, 3456 images in 9 folders and 5 channels each of human
osteosarcoma U2OS cells with augmentation were used in this study.

2.3 Training and Testing Data Preparation

Patch images (256 × 256 or 128 × 128) were randomly cropped from full fields-of-view to form
input–output pairs for training. During training with the MDA-MB-231 breast cancer cell data-
set, images were augmented with rotation and flipping to generate more features. Histogram
equalization techniques were applied to enhance the image contrast (only for the MDA-MB-
231 dataset). All images in the datasets were preprocessed with ½−1;1� normalization only.
Overlapping regions of input on phase contrast or fluorescence channels were cropped randomly
in horizontal and vertical directions in the training process. The predicted/tested images were
divided into subregions with some overlap between adjacent regions to be stitched into a larger
FOV based on an alpha blending algorithm. Finally, the stitched predicted images were inversely
normalized to the original image range. Model training required 12 h. The best models were
saved based on performance using validation data (20% of training data).

2.4 Conditional Generative Adversarial Network Implementation

The proposed DCNN-based cGAN takes one or a set of intensity images I as the network
input and outputs a single fluorescence image representing a single targeted protein or subcel-
lular compartment. The intensity images I are captured under phase contrast or fluorescence
microscopy. The cGAN consists of two subnetworks (see Fig. 2), the generator G and the
discriminator D. The generator G is trained to predict the proteins ΦG ¼ GðIÞ from the given
input I. During the training process, the generator G 0s parameters (θG—weights and biases of
the generator) were optimized to minimize a loss function l through N input–output training
pairs:

EQ-TARGET;temp:intralink-;e001;116;204θ̂G ¼ arg minθG

XN

n¼1

1

N
l½GθGðIn;ΦnÞ�: (1)

The generatorG is a customized model based on the original U-Net model,21 which can adapt
to efficient learning based on pixel-to-pixel transformation. A series of operations are performed,
including batch-normalization (BN), nonlinear activation using ReLU/LeakyReLU (LReLU)
functions, convolution (Conv2), and convolution transpose (Conv2T) layers with filters with
a kernel size of k ¼ 3. This model contains an initial convolution layer with a stride of 2
(S2), encoded-blocks (LReLU-Conv2S2-BN) and decoded-blocks (ReLU-Conv2TS2-BN), and
the Tanh activation function at the end.
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The discriminator networkD (contains weights and biases θD) aims to distinguish the quality
of prediction of the generator G. Discriminator D is initialized with a convolution layer stride 2,
following a BN, 3 convolutional blocks (Conv2S2-BN-LReLU), one fully connected layer
and sigmoid activation; filters with a kernel size of k ¼ 5 are used in the discriminator D.
More details about the adversarial networks can be found in Refs. 22 and 23. The following
adversarial min–max problem in terms of expectation was solved to enhance the generator G 0s
performance:

EQ-TARGET;temp:intralink-;e002;116;325minθG maxθDEI;Φ ½log DθDðI;ΦÞ� þ EIðlogf1 −DθD ½I; GðIÞ�gÞ: (2)

The motivation of using discriminator D is to preserve the high-frequency content of the
predicted images. Using the conventional loss functions such as the mean absolute error
(MAE), peak-signal-to-noise ratio (PSNR), and structural similarity index (SSIM), the minimi-
zation of these pixel-wise loss functions will lead to solutions that have less perceptual quality.
By training the generatorG along with the discriminatorD, the generatorG can learn to generate
realistic images of protein prediction in case the input–output image pairs are not strongly corre-
lated. For that purpose, the proposed perceptual loss function l is defined as a weighted sum of
separate loss functions:

EQ-TARGET;temp:intralink-;e003;116;196l ¼ λ1lMAE þ λ2lG þ λ3lθG ; (3)

where

EQ-TARGET;temp:intralink-;e004;116;152lMAE ¼ 1

W ×H
kjΦj − jGθGðIÞjk; (4)

EQ-TARGET;temp:intralink-;e005;116;99lG ¼ − log DθD ½I; GðIÞ�; (5)

EQ-TARGET;temp:intralink-;e006;116;76lθG ¼ kθGk; (6)

Fig. 2 cGAN for fluorescence image prediction. This figure only shows one of the models.
Golgi + F-actin fluorescence channels are the inputs to predict endoplasmic reticulum as the fluo-
rescence images targeted for prediction. Generator network G contains an initial convolution layer
with stride of 2 (S2), encoded-blocks (LReLU-Conv2S2-BN), and decoded-blocks (ReLU-
Conv2TS2-BN), ending with Tanh activation and using skip connections. A generator network
transforms the input images and results in predicting fluorescence images. A discriminator net-
work D is initialized with a convolution layer stride 2, following a BN, 3 convolutional blocks
(Conv2S2-BN-LReLU), one fully connected layer, and sigmoid activation. The discriminator D out-
puts a score of how likely the input of a group of images is good or bad. The input of discriminatorD
was formed as a conditional input by concatenating the predicted image or ground truth with gen-
erator G 0s input.
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where k:k denotes the L1-norm; ðλ1; λ2; λ3Þ are the hyper parameters that control the relative
weights of each loss components and were choose as (λ1 ¼ 0.99, λ2 ¼ 0.01, and λ3 ¼ 0.001;
andW ×H is the input image size. The adaptive momentum optimizer was used to optimize the
loss function with a learning rate of 2 × 10−4 for both the generator and the discriminator models.
These models were implemented using a Tensorflow framework on GPU RTX 2070 16 GB
RAM Intel Core i7 and GPU Titan Xp 8 GB RAM Intel Core i7, and the models were selected
based on the best performance on the validation dataset.

2.5 Quantitative Index of Predicted Image Error

For evaluating vinculin signal prediction using PhC-Fluo 2 and Fluo-Fluo 1, a quantitative index
of predicted image error versus ground truth was defined as the weighted sum of normalized
pixel-wise intensity and spatial errors, computed over a range of tolerances of the 8-bit absolute
difference error (8-bit range in the MDA-MB-231 dataset). The rationale for this index was that
epifluorescence images of cell labels are qualitative in pixel intensity, to a certain tolerance, due
to photobleaching and differences in experimental preparation, microscope instrument param-
eters, and camera settings. Therefore, small differences between pixel intensity values of pre-
dicted images and ground truth (intensity errors) are less likely to produce misinterpretations
than a predicted signal where there is no true signal or the lack of a predicted signal where
there is a true signal (spatial errors). Segmentation of absolute difference error maps so that
error pixels above a certain tolerance are bright green highlights both errors. The sum of these
two error terms, weighting each equally here for illustrative purposes, is minimized at a single
error tolerance level:

EQ-TARGET;temp:intralink-;e007;116;458TL ¼ min½β1 × IEðO;G; iÞ þ β2 × SEðO;G; iÞ�; (7)

where TL is the tolerance level; O, G are the input/predicted image and ground truth, respec-
tively; i is the bit-depth threshold percentage crossing from 0% to 99% of the bit-depth range of
the image; β1, β2 are weights (set as equal in this study); and IE is the intensity error function that
measures the MAE of two images below the threshold level and is normalized by the maximum
bit depth. SE is the binary segmented error function that measures the area fraction of error
outside of tolerance at a given threshold level. This second error function quantifies the area
of ground truth signal that is much brighter than in the predicted image at the same pixel, and
vice versa.

3 Results

In this section, we describe the results from all implementations in three categories: (1) AF:
refocusing out-of-focus images; fluorescence prediction from (2) phase contrast images and
(3) fluorescence images, and (4) error quantification. We combined (2) and (3) into one section
for comparative purposes. Although (1) was the preprocessing objective, (2) + (3) address the
first objective, and (4) addresses the second objective.

3.1 Autofocusing

We trained a DCNN model, named “AF model”, to predict focused images from blurred out-of-
focus images. The model was trained and tested on the F-actin channel of a U2OS-AF dataset
before applying the DCNN on out-of-focus images used in the Fluo-Fluo 2, 3, 4 model’s training
and testing (see Fig. 1). The model took a single out-of-focus and a focused image as a pair of
input–output samples for training. Images in the U2OS-AF dataset were acquired from one 384-
well microplate containing U2OS cells stained with phalloidin at 20×magnification, 2× binning,
and 2 sites per well. To support the Fluo-Fluo models with the U2OS-CPs dataset, we chose only
a fixed out-of-focus range ½−10 μm; 10 μm� in the U2OS-AF dataset that covers the whole range
of out-of-focus levels in the U2OS-CPS dataset. We do not use images located inside the
½−2 μm; 2 μm� range from the focus plane since they appeared nearly as focused as the ground
truth (z ¼ 0). In fact, it was hard to distinguish where the focus planes are for the data in the
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range ½−2 μm; 2 μm�. Notice that the focused image was repeated in many input–output pairs for
different out-of-focus images at different axial planes. Figure 3 shows predicted results on testing
data of U2OS-AF with different out-of-focus distances with several zoom-in regions of the most
out-of-focus distances. U2OS datasets were described in Sec. 2.2.

The AF model’s performance was evaluated by the MAE, PSNR, and SSIM24 on 64 pre-
dicted image groups (contains 8 different depth images) with corresponding ground truth fluo-
rescence images (at focus plane) of each group in U2OS-AF (Fig. S1 in the Supplementary
Material). The lower MAE, higher PSNR, and closer to one SSIM values are expected to relate
to better performance. In order, average scores were 0.01/0.012, 37.56/35.639, and 0.924/0.9 for
MAE, PSNR, and SSIM, respectively. Scores in bold, which indicates “good” performance,
demonstrate the feature enhancement from the AF model, compared with the scores on the right
using input data that was not autofocused. The U2OS-AF model generated images that resemble
the ground truth more closely than the input. Next, the AF model was used to perform the pre-
diction on out-of-focus subset data chosen manually from the U2OS-CPS dataset to preserve the
number of data samples. There is no ground truth for the focused images in the U2OS-CPS
dataset, but we qualitatively evaluated the success of the network from observations of the level
of focus versus depth frames and then used these images for training and analysis. Typical results
are shown in Fig. 4. Moreover, for comparison purposes, we used two well-known blind (since
we do not know the ground truth in the unseen dataset) spatial quality evaluators to evaluate the
performance of our DL-based defocusing technique, namely, the Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) that uses a support vector regression25,26 and the
Blind Image Quality Evaluation (PIQE) that uses perception-based features.27,28 Both of these
techniques were applied to some of the raw and predicted images by the DL algorithm and
showed ∼40% and ∼65% improvement in PIQE and BRISQUE scores, respectively, validating
the qualitative evaluation.

Fig. 3 Deep-learning-based fluorescence channel AF. AF model is tested on U2OS-AF dataset.
(a) The full FOV of a test image at different z depths, (b) the zoom-in areas as the inputs, (c) the
zoom-in area prediction, and (d)–(g) the different zoom-in areas (marked by colored boundaries) of
input and prediction, respectively. The ground truth column is put on the right with corresponding
views of input and prediction for comparison.

Nguyen et al.: Virtual organelle self-coding for fluorescence imaging. . .

Journal of Biomedical Optics 096009-8 September 2020 • Vol. 25(9)

https://doi.org/10.1117/1.JBO.25.9.096009.s01
https://doi.org/10.1117/1.JBO.25.9.096009.s01


3.2 Phase Contrast/Fluorescence to Fluorescence

Following the training phase, the trained PhC-Fluo and Fluo-Fluo networks were evaluated in a
blinded fashion using testing data separated from training data. Figure 5 shows results from the
breast cancer MDA-MB-231 cell line corresponding to the PhC-Fluo 1, 2 and Fluo-Fluo 1 mod-
els. With the same amount of data and training, predicted results were similar to the ground truth
in the case of the DAPI/Hoechst signal predicted from PhC (PhC-Fluo 1, first row in Fig. 5).
Predicted vinculin label signals from phase contrast images were not similar to the ground truth
(PhC-Fluo 2, second row in Fig. 5). Meanwhile, vinculin’s punctate pattern and location at the

Fig. 5 Deep-learning-based fluorescence signal prediction from the MDA-MB-231 dataset on test-
ing data. The first two rows are representative predictions of DAPI/Hoechst (PhC-Fluo 1), vinculin
(PhC-Fluo 2), respectively, from phase contrast image inputs. The third row is prediction of vinculin
from F-actin (Fluo-Fluo 1).

Fig. 4 Deep-learning-based AF fluorescent prediction on unseen dataset. AF model was trained
on the U2OS-AF dataset and predicted directly on out-of-focus (blur) Golgi apparatus + F-actin in
the U2OS-CPS dataset, which is not seen by the AF model. Result image shows much sharper
features compared with input. This is the preprocessing step that we performed on the Golgi appa-
ratus + F-actin channel of all blur images on U2OS-CPS before training the Fluo-Fluo 2, 3, 4
models.
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end of actin stress fibers were determined with more accuracy from F-actin (Fluo-Fluo 1, third
row in Fig. 5) than phase contrast. The predicted fluorescence results of these four deep learning
models presented in Fig. 5 show nonrobustness in using the cGAN-based framework to predict
complex fluorescence structures such as F-actin and vinculin from phase contrast. However,
better performance was achieved in predicting vinculin from F-actin. Figure 6 shows vinculin
predictions from the PhC-Fluo 2 and Fluo-Fluo 1 models, with absolute pixel-wise error between
ground truth and predicted vinculin determined as the sum of area error and intensity error.
The green area is a binary mask of the absolute error map after thresholding at a bit level
of 50 (23% of 255 bit depth), indicating that F-actin helps predict the location of vinculin signal
slightly better than phase contrast images as training inputs. Interestingly, the sum of equally
weighted area and intensity errors produces a global minimum error at a certain threshold level/
tolerance. To evaluate vinculin signal prediction, we used a customized matrix of performance
(see Sec. 2.5). Predicted vinculin fluorescence images were closer to ground truth, assessed by
the minimum tolerance level of Eq. (7), using F-actin fluorescence images as inputs (TL ¼
0.25� 0.3) than using phase contrast images as inputs (TL ¼ 0.27� 0.4) (Student’s paired
t-test, p < 0.01).

Similarly, the Fluo-Fluo 2, 3, 4 models were implemented with the same cGAN framework.
The difference between these models and Fluo-Fluo 1 is in the use of inputs that contain two
fluorescently labeled subcellular compartments to predict the targeted protein. We trained and
tested these models on the human U2OS-CPS cell dataset. These models can be used or edited as
pretrained models with or without transfer learning on completely new types of data, thus mak-
ing the proposed technique generalizable. Transforming one fluorescence channel into another
can be based on one channel input-to-one channel output pairs. However, the success of model

Fig. 6 Comparison of representative input and predicted images between PhC-Fluo 2 and Fluo-
Fluo 1 to predict vinculin label based on (a) phase contrast and (b) F-actin label inputs. The full
field-of-view (leftmost columns) and zoom-in regions (middle and rightmost columns) of (a1) phase
contrast image as the model’s input, (a2) vinculin prediction using the PhC-Fluo 2 model, and (a3)
segmented error (green signal) between ground truth and predicted vinculin, used an error inten-
sity-based threshold set at 23% of 255 bit depth; and (b1) F-actin images as the model’s input, (b2)
vinculin prediction using the Fluo-Fluo 1 model, and (b3) segmented error (green signal) between
ground truth and predicted vinculin, using the same error intensity threshold of 23% of 255 bit
depth. (c) The corresponding ground truth of vinculin signal. The minimum tolerance level mea-
sured from these images can be read directly from the graph in Fig. S2 in the Supplementary
Material, column 6, with calculation described in Sec. 2.5.
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training depends on the correlation of the selected pairs, i.e., strongly correlated pairs of input–
output data allow the model to learn a pixel-to-pixel transformation that is governed by the regu-
larization of the network. This data-driven cross-modality transformation framework is effective
because the input and output distributions share a high degree of mutual pixel-level information
content, with an output probability distribution that is conditional upon the input data
distribution.10 Experiments to compare the model performance based on the choices of different
input–output pairs or combined inputs of phase contrast and fluorescence images would be an
interesting future research topic.

In previous studies,16,17 predicting fluorescent proteins from transmitted microscopy signals
was carried out successfully. Based on our models’ prediction performance, we propose that this
occurs when the predicted protein localization is highly correlated to well-defined scattering
interfaces. These findings strengthen DCNN as a state-of-art-the method in image transformation
but also set limitations for protein signal prediction from nonlabeled image modalities. In the
proposed work, we predicted individual fluorescence channels by inputting two-channel fluo-
rescent labels into the DCNN models, e.g., Golgi apparatus (channel 1), membrane + nucleoli/
cytoplasmic RNA (channel 2) to predict mitochondria, nucleus, and endoplasmic reticulum (see
Fig. 7). All organelles were acquired from a microscopy assay imaging system using Cell
Painting staining protocol,20 with six stains imaged across five channels, revealing eight cellular
components/structures. Due to the huge amount of data collected, some of the images are out-of-
focus and cannot be readily used in any data-driven analysis, especially in Golgi apparatus
plasma and membrane F-actin. Hence, a necessary AF DCNN model (described in Sec. 3.1)
was developed to predict focused images to be used for training the Fluo-Fluo 2, 3, 4 models
to perform any data-driven analysis.

To measure the performance of the proposed models, we computed MAE, PSNR, and SSIM
on 96 predicted mitochondria, nucleus (DAPI/Hoechst), and endoplasmic reticulum images and
their corresponding ground truth fluorescence images in the testing dataset of U2OS-CPS

Fig. 7 Deep-learning-based fluorescence signal prediction of U2OS-CPS cells on testing data:
(a), (b) nucleoli + cytoplasmic RNA and Golgi apparatus + F-actin are used as the input of the
cGAN model. (c1), (d1), and (e1) The targeted fluorescent images corresponding to [DAPI/
Hoechst, mitochondria, and endoplasmic reticulum, respectively, as ground truth and their
cGAN corresponding prediction (c2), (d2), and (e2), respectively]. (f1), (f2) Merged-channel images
[from (a), (b), (c1), (d1), (e1)] and [(a), (b), (c2), (d2), (e2)] for ground truth and prediction, respec-
tively. Scale bar is 25 μm.
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(Fig. S3 in the Supplementary Material). The average scores are: MAE [0.0023, 0.0106, 0.0068],
PSNR [48.1931, 37.7700, 41.3456], and SSIM [0.9772, 0.9564, 0.9731], for DAPI/Hoechst,
Endoplasmic reticulum, and Mitochondria label prediction, respectively. These results are com-
parable to those found in Ref. 24. Following the feature measurement method provided
previously19,23 that calculated the biological relations into feature scores among five fluorescence
channels, we repeated this method with a modified pipeline for a set of five-channel images
(96 images from U2OS-CPS testing dataset) and calculated the feature scores for each sample
(one five-channel image) as reference. On the other hand, from the same testing dataset, the
extracted two-channel images (as inputs) and their predicted three-channel images (as outputs)
from the Fluo-Fluo 2, 3, 4 models form new five-channel images. Feature scores from these new
images were calculated with the same pipeline as mentioned above and were compared with
reference scores using the Pearson product-moment correlation coefficient (PMC) (Fig. S4
in the Supplementary Material). Each PMC was calculated across 96 samples for a single feature
measurement. One sample is a region of cell to be taken from five fluorescent channels. Figure 8
and Fig. S5 in the Supplementary Material show the PMC coefficient of each feature measure-
ment, distributed in cell, nuclei, and cytoplasm property groups, across 96 images from the
U2OS-CPS testing dataset between the original five channels and hybrid-virtual two + three
channels and their histograms, respectively. Ignoring the prefect correlation of 1 (self-correlation
from inputs [Golgi apparatus (plasma), membrane (F-actin) + nucleoli/cytoplasmic RNA] only),
the histograms show high correlation in feature measurement between the original channels and
the hybrid-virtual channels, which demonstrates the reliability of using virtual channels for bio-
logical analysis. Extracted feature measurements including correlation, granularity, intensity,
radius distribution, size and shape, and texture are shown in Method Section (Sec. 2) and
Figs. S5 and S6 in the Supplementary Material.

The majority of correlations between features from the original channels and three prediction
channels (cell, nuclei, and cytoplasm compartments) plus two original channels as inputs were
strong, as seen in both the Pearson’s product-moment correlation coefficient matrices (Fig. S5 in
the Supplementary Material) and its histogram (Fig. 8). Both show a significant number of fea-
tures with high correlation, indicating good prediction. This also suggests that fluorescence data
from multiple channels, instead of just a single channel, provide additional performance to fluo-
rescence signal prediction tasks using DL algorithms. Further, fluorescence labeling experiments
with five labels are difficult to achieve due to channel crosstalk, nonspecific binding of labels/
background, and other artifacts during specimen preparation, processing, and image acquisition.
Use of two to three labels simultaneously is more feasible. Prediction of the remaining
three channels in a Cell Painting-type of multilabel experiment20 is one potential use case of

Fig. 8 Histogram of PMC across 96 images of each feature measurement group (correlation,
granularity, intensity, neighbors, radial distribution, and texture) distributed across three compart-
ments: cell, nuclei, and cytoplasm.29,30
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cGAN image regression that may be more feasible than one-input-to-one-output channel
prediction.

4 Discussions

Three potential applications of the algorithms developed in this work are (1) deblurring of fluo-
rescence images, (2) prediction of fluorescence signals related to an input fluorescence signal,
and (3) transfer learning in which predicted and ground truth signal differences are attributable to
an altered condition of the cells in the test dataset versus the training dataset. Unlike imaging
techniques capable of focusing through a large depth-of-field such as holography, fluorescence
microscopy lacks the capability for image propagation, which is necessary for digitally obtaining
images at different axial planes. Traditional image focusing techniques such as deconvolution
methods can be employed for fluorescence microscopy with varied success.31 Other related
methods such as multifocal microscopy could also be used to acquire the focal plane
image.32,33 These techniques are complex themselves and/or require special instrumentation.
Wu et al.34 showed that DCNN can be used to propagate images from a single plane to other
planes that results in the possibility of acquiring a virtually focused 3D volume. Previous studies
have recently developed DCNN-based methods for autofocusing resulting in quantitative out-of-
focus levels.35–37 In previous work, our proof-of-concept used image regression-based
autofocusing.38 Recently, Guo, et al.39 accelerated the iterative deconvolution process for defo-
cusing biomedical images via deep learning. In the present work, we fully developed a DCNN-
based method that can inherently learn the optical properties governing intensity-based fluores-
cence signal wave propagation for a large out-of-focus range of ½−10 μm; 10 μm� to obtain a
virtual fluorescence image at the focus plane. With the advantage of not using mechanically
translating hardware or extra refocusing algorithms, this proposed end-to-end technique can
improve the robustness of automated microscopy and imaging systems such as integrated micro-
plate microscopy or digital slide scanning to acquire large-scale data. This also avoids photo-
toxicity and photobleaching from extended imaging during manual focus adjustments that are a
major concern during fluorescence microscopy experiment imaging cells. The AF algorithm
(Figs. 3 and 4) is currently applicable, for example, to large digitally scanned fluorescence
images in which some parts are in focus (serving as the training dataset) and other portions are
out-of-focus due to errors in optics, registration, specimen alignment on the stage, or specimen
mounting. Accurate prediction of fluorescence signals with cGAN remains difficult, but this
work points toward conditions for better prediction performance: use of multiple fluorescence
channels as training data and tight interactions between labeled molecules/compartments in the
input and prediction channels (such as F-actin and vinculin). Furthermore, the tolerance level
[Eq. (7), Fig. 6, and Fig. S2 in the Supplementary Material] tracks serious errors, such as spu-
rious objects in prediction images, balanced by less important errors, such as differences in back-
ground levels. An example of transfer learning as a future application of the algorithms of this
study would be to predict vinculin from F-actin signals using cells attached to glass as a training
dataset and then applying the trained algorithm to cells attached to a different substrate, such as a
natural biomaterial. The differences between prediction and ground truth in this case may be
instructive.

Using the trained AF model, we have predicted the focused images of the testing U2OS-AF
dataset, which only contains F-actin. To check the generalizability of the trained model, we
applied it directly on a completely new dataset combining blurred signal from labels of
Golgi apparatus + F-actin in the U2OS-CPS dataset without using transfer learning (Fig. 4 shows
a typical result). In fact, both types of images have some similar characteristics, so the model can
detect a similar set of features when using the same kernel filter. However, the proposed AF
model performs less successfully on other channels in the U2OS-CPS dataset. AF other label
channels in the U2OS-CPS dataset using the U2OS-AF algorithm pretrained on F-actin likely
gives less accurate results because other channels contain different spatial features than F-actin
labels that reduce the prediction accuracy of the model. Thus transfer learning should be
used if the ground truth of these corresponding channels exists. If not, unsupervised domain
adaptation40 would be a potential solution. In this study, we only performed autofocusing as
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a preprocessing step for images with blurred Golgi apparatus + F-actin signals in the U2OS-
CPS dataset before training the Fluo-Fluo 2, 3, 4 models.

Recent research efforts have been developed to predict fluorescence images from unlabeled
images using deep neural network, such as from bright field or phase contrast images.16,17 In our
work, we sought to determine whether a network could generate a more complicated labeling of,
for example, F-actin and vinculin from phase contrast images, as shown in Fig. 5. Phase contrast
is a common bright-field microscopy technique used to detect details of semitransparent living
cells having a wide variation of refractive index due to subcellular organelles. For example,
phase contrast image features from the nucleus region are high contrast due to sharp interfaces
and density fluctuations, attributable to the nuclear envelope and objects in the nucleus itself
(such as nucleoli) as well as perinuclear objects in the cytoplasm. This information was useful
for predicting fluorescence labels of DNA, which was largely restricted to the nucleus. In gen-
eral, phase contrast microscopy using a high numerical aperture objective will provide great
contrast and detail of membrane-bound organelles and is expected to accurately predict fluo-
rescence labels of such organelles.41,42 On the other hand, nanoscale structures such as cytos-
keletal proteins (e.g., F-actin) and adhesion proteins (e.g., vinculin) share similar contrast as the
cytoplasm background, making them poor predicted signals from phase contrast microscopy
inputs to the cGAN model. However, cytoskeleton structures like F-actin are more effective
inputs to the cGAN model to predict the vinculin signal, likely because F-actin and vinculin
share spatial connectedness in the cell, related to their coordinated mechanobiological function
in linking focal adhesions to contractile apparatus of the cell.43 Vinculins are membrane-adjacent
cytoskeleton proteins that cap and bind actin filaments to either provide or prevent connections to
other F-actin binding proteins, promoting cell–cell or cell–extracellular matrix contacts.44

Furthermore, a computational model based on vinculin–actin binding lifetime in lamellipodia
was recently proposed. The bonds between F-actin and vinculin can be formed directionally and
asymmetrically, suggesting high correlation in terms of the two proteins’ spatial distributions.43

Hence, we suggest that the high performance of the Fluo-Fluo 2, 3, 4 models with specified

Table 1 Summary of implemented models’ performances. Models (*) were implemented for fea-
ture prestudying.

Models Trained on [inputs]–[ground truth]

Fluorescence channel predictions

MDA-MB-231 U2OS-AF U2OS-CPS

D/H Vin Fa Fa D/H Mito ER NCR GP-Fa

PhC-Fluo 1 [PhC]–[D/H(231)] H

PhC-Fluo (*) [PhC]–[Fa] L

PhC-Fluo 2 [PhC]–[Vin] L-A

Flou-Fluo 1 [Fa]–[Vin] A-H

AF [Fa]–[Fa(AF) or all channels CPS] H L-A L-A L-A L-A H

Flou-Fluo 2 [Gp-Fa+NCR]–[DP/H(CPS)] H

Flou-Fluo 3 [Gp-Fa+NCR]–[Mito] H

Flou-Fluo 4 [Gp-Fa+NCR]–[ER] H

Flou-Fluo (*) [Mito]–[D/H(CPS) or ER or GP-Fa] A-H A L

Flou-Fluo (*) [GP-Fa]–[D/H(CPS)] L-A

Flou-Fluo (*) [NCR]–[D/H(CPS)] or [Mito] A A

H, high; A, average; L, low performance; PhC, phase constrast; D/H, DAPI/Hoechst; Vin, vinculin; Fa, F-actin;
Mito, mitochondria; ER, endoplasmic reticulum; NCR, nucleoli and cytoplasmic RNA; and GP-Fa, Golgi appa-
ratus plasma membrane and F-actin.
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inputs to predict the fluorescence label channels in the U2OS-CPS dataset are based on high
spatial correlation between the underlying labeled molecules’ distributions (see Table 1).

The index of normalized, summed predicted image spatial and intensity error (the tolerance
level) is an image-centric and interpretation-focused way to standardize comparisons of algo-
rithm performance for deep learning image regression across multiple developers. For example,
two other recent works predict fluorescence image outputs from ground truth brightfield images
serving as input to deep learning algorithms.16,17 The image-wise Pearson correlation coefficient,
while simple, does not highlight specific subregions in the image where the algorithm performs
well or poorly. Further, difference images (predicted minus ground truth) are qualitative and
difficult to assess, even with well-chosen colormaps. The index proposed in this study measures
two competing errors with intuitive visual interpretations: pixel intensity mismatch and area
mismatch. As the tolerance for intensity mismatch normalized to the mean signal intensity
of ground truth becomes larger, the area mismatch normalized to the signal image area fraction
tends to become smaller. Not only would this sum of normalized errors standardize reporting
across laboratories and algorithm developers, the index is also adaptable to specific uses by
choosing the relative weights of intensity and spatial error. This error metric could be used
as a target to minimize during training the algorithm on new data.

5 Conclusions

The presented methodology of image regression has a great potential to reduce time and cost of
microscopy studies of cells. One of the advantages of using computational microscopy through
DCNNs is to allow for a single well-tuned training process to transform fluorescence images
of a certain fluorescence channel into their other fluorescence images. Training the dataset is a
required step, but it is performed only once with less preprocessing. Recent related research has
demonstrated that overall cell morphology and that of many organelles can be predicted from
transmitted light imaging. In this work, we have extended the use of deep neural networks to
predict subcellular localization of proteins from other proteins from co-registered images.
Finally, the proposed DCNN will be a cost-effective tool for many biological studies involving
protein–protein and organelle–protein relationships and will help researchers visualize the
coordination of subcellular features under a variety of conditions aiding in understanding of
fundamental cell behaviors.

In future work, the algorithms developed here could be used to perform real-time virtual
organelle self-coding for live-cell and intravital video microscopy governed by an inferencing
device integrated to the microscope.
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