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Abstract

Significance: Speckle noise limits the diagnostic capabilities of optical coherence tomography
(OCT) images, causing both a reduction in contrast and a less accurate assessment of the micro-
structural morphology of the tissue.

Aim: We present a speckle-noise reduction method for OCT volumes that exploits the advan-
tages of adaptive-noise wavelet thresholding with a wavelet compounding method applied to
several frames acquired from consecutive positions. The method takes advantage of the wavelet
representation of the speckle statistics, calculated properly from a homogeneous sample or a
region of the noisy volume.

Approach: The proposed method was first compared quantitatively with different state-of-the-
art approaches by being applied to three different clinical dermatological OCT volumes with
three different OCT settings. The method was also applied to a public retinal spectral-domain
OCT dataset to demonstrate its applicability to different imaging modalities.

Results: The results based on four different metrics demonstrate that the proposed method
achieved the best performance among the tested techniques in suppressing noise and preserving
structural information.

Conclusions: The proposed OCT denoising technique has the potential to adapt to different
image OCT settings and noise environments and to improve image quality prior to clinical
diagnosis based on visual assessment.
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1 Introduction

Optical coherence tomography (OCT)1 is an optical imaging technique that allows cross-sectional
views of in vivo tissue in real time with micrometer resolution and at depths of up to two milli-
meters. OCT is widely used in a variety of biomedical and clinical fields, such as ophthalmology
(as a routine noninvasive tool for the diagnosis and monitoring of disease progression)2 and
cardiology (as a catheter-based imaging system during coronary intervention).3 In dermatology,
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OCT has been used to study a variety of dermatological disorders.4,5 The most significant
dermatological applications of OCT are in assessing non-melanoma skin cancers such as basal
cell carcinoma (BCC) and in reducing the need for diagnostic biopsies.6–8

Because it uses spatially coherent illumination, OCT images are affected by the speckle phe-
nomenon, which has a dual role as both a source of noise and a carrier of information.9,10 Speckle
carrying signal information is the result of the back scattering of the incident photons, whereas
speckle noise is caused by the random interference between multiple reflected photons coming
from multiple directions. Speckle noise gives a grainy appearance to the OCT images, which
degrades the signal-to-noise ratio (SNR) and limits the accuracy of its interpretation. The speckle
properties are affected by the scale representation, the optical settings, and the scattering proper-
ties of the biological tissue.11

Speckle denoising is an active and widespread research field developed during recent years.
There are two main approaches: those that modify the image configuration (where the optical
setting or the scanning protocol can be adjusted) and those that are based on postprocessing the
images via digital algorithms. In the first group, there are three main approaches to the com-
pounding techniques: using the frequency,12 using the angle of the incident light source,13 and
using multiple A-lines collected in a controlled way.14 Other studies have proposed methods for
combining image processing and modifications to the optical configuration, with the aim of
increasing the SNR even further.15 To compensate for the effect of possible movement in the
case of in vivo imaging, two strategies for reducing motion artifacts have been proposed: using a
weighted average of individual A-scans16 and using a combination of the average of B-scans
(from a high-speed CMOS line-scan camera) and a cross correlation of different frames with
respect to a fixed reference. One recent report suggests that SNR improvements via pure angular
compounding techniques will be limited by optical aberrations.17 To overcome these limitations,
a recent study proposed the combination of angular compounding with geometric image regis-
tration and digital focusing.18

The main advantage of digital speckle-reduction techniques is that these can be applied to
almost all two-dimensional (2D) and three-dimensional (3D) images acquired by an OCT device
without changing the acquisition setup. However, they usually add to the computation require-
ments and can affect the resolution of the image. These techniques can involve the combined use
of several methods such as local averaging over neighboring A-scans of each tomogram,19 aver-
aging multiple B-scans,16 applying rotation kernel transformations to each tomogram,20 image
regularization,21 complex diffusion filtering,22 curvelet transforms,23 applying sparse represen-
tations or low rank models using patches in the images,24–27 autoencoding based on a neural
network that learns from a figure of merit,28 digital filtering clusters of pixels with similar optical
properties,29 and adaptive nonlinear diffusion filtering.30 State-of-the-art general-purpose
denoising filters such as probability-based non-local-means (PNLM) and block-matching 3D
filtering have also been adapted successfully for the removal of noise from OCT images.31–33

Recently, approaches based on deep learning, such as denoising convolutional neural network
(DNCNN),34 have been proposed for natural image denoising and for speckle noise in OCT,35–39

showing the potential of these techniques in a variety of OCT image types.
Algorithms based on filtering in the wavelet domain40 have shown excellent performance in

speckle noise removal. One approach used in these methods is to filter the detail wavelet coef-
ficients in multiple subbands to minimize the noise. The calculation of an appropriate threshold
and its application can be performed using spatially adaptive soft-thresholding with estimation of
the noise in one subband.41,42 However, a recent study shows that speckle noise can have differ-
ent magnitudes for different wavelet subbands and that estimation of the noise variance at
individual scales can improve the characterization of the threshold and can improve the speckle
noise removal.43 Another successful strategy is the compounding of several frames in combi-
nation with digital filtering,44 more specifically with frames previously filtered using wavelet
denoising.45 The use of volumetric data collected from consecutive B-scans has also been
exploited by other methods23,46,47 as an additional source of information for use in speckle
reduction.

Here, we present a method for speckle reduction of OCT images that effectively combines an
adaptive noise strategy with volumetric wavelet compounding. The method first processes sev-
eral frames acquired at consecutive locations, using a multiscale noise adaptive wavelet filter,
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followed by an appropriately weighted computation for the compounding. Following Zaki
et al.,43 we estimate the noise-variance wavelet representation in a homogeneous scattering sam-
ple and use it to filter the noise in all frames. To take advantage of complementary information
brought from several acquisitions, we used Mayer et al.’s45 compounding approach as a second
step, applying a weighting method to select the detail coefficients of each subband before com-
pounding all of the filtered frames. Our method also benefits from the fact that the wavelet rep-
resentation of the speckle statistics, calculated properly from a homogeneous sample or a region
of the noisy volume previously recorded, can be used to characterize the noise pattern of the
system. These reference statistics are a valuable asset when differentiating information from
speckle noise. In addition, the use of several frames and the wavelet weighted compounding
improves speckle removal and enhances the structural details, resulting in a superior perfor-
mance to that of other state-of-the-art methods.

The rest of the paper is structured in several sections. In Sec. 2, we describe in detail the
proposed method, the OCT imaging systems used, the datasets, the performance metrics, and
the quantitative evaluation process used in the assessment. In Sec. 3, we report the results and
discussion of the parameter assessment and the quantitative evaluation of the algorithm.
Finally, Sec. 4 contains the conclusions of the study.

2 Materials and Methods

2.1 Wavelet-Compounding Adaptive Noise Filter

Figure 1 shows a complete overview of the proposed wavelet-compounding adaptive noise filter
(WCAN) method. The processing steps are wavelet transform, variance computation of the input
and reference frames, adaptive variance compounding, weight computation, wavelet coefficient

Fig. 1 Flow diagram of the wavelet-compounding adaptive noise algorithm. The acquired OCT
input frames IF1; IF2; : : : IFN represent the N input noisy images for the algorithm. All images and
theM reference OCT frames RF1;RF2; : : :RFM are wavelet decomposed in L subbands. The vari-
ance of all subbands in the wavelet decomposition of the reference stack is computed. Using the
subband variances, the weights of the detail coefficients for each subband are calculated based
on the compounding of the previous variance computation and applied to each original detail
coefficient. All denoised coefficients are then averaged in the wavelet domain before the inverse
wavelet transform is calculated to obtain the final denoised OCT image, DOCT.
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weighting, averaging, and inverse wavelet transform. The input to the algorithm is a set of N
OCT frames (IF1; IF2; : : : IFN) and a set of M reference OCT frames (RF1;RF2; : : :RFM), with
both sets acquired at consecutive positions. The reference frames could come from a homo-
geneous scattering sample independent of the input frames or from a homogeneous region
of the set of input frames. This reference set should be collected as a prior step to the application
of the method. The output of the algorithm is a single OCT denoised image. The terms “frame”
and “image” from one side and the terms “method,” “filter,” and “algorithm” are used inter-
changeably in this paper. In the following paragraphs, we explain in detail each step of the
method.

2.1.1 OCT image noise

The speckle noise is usually modeled as multiplicative due to the multiple backscattering
effects.48 In addition to the speckle noise, OCT systems are also affected by noise coming from
different sources such as inherent laser intensity noise, photonics shot noise, or thermal noise
from electronics. These other types can be assumed to be white Gaussian additive noise.49

We define an OCT image I� as

EQ-TARGET;temp:intralink-;e001;116;526I� ¼ Ns · I þ Nw; (1)

where I is the noise-free image and Ns and Nw are the speckle noise and the Gaussian white
noise, respectively. We can neglect the additive white noise because it is significantly small
compared with the multiplicative noise.50 Thus, we model the OCT image as

EQ-TARGET;temp:intralink-;e002;116;459I� ≈ Ns · I: (2)

To convert the multiplicative noise into additive noise, we consider that all of the OCT
images are logarithmic transformed following the approach in similar studies.50–54 This operation
allows us to assume a near additive noise model after the logarithmic transformation. We assume
also that speckle noise present in frames recorded at different consecutive positions is
uncorrelated.45

2.1.2 Wavelet transform

All of the input images are decomposed by a wavelet transformation with a maximum decom-
position level of L. The result of the transformation is a set of approximation coefficients Al

i and
detail coefficients Cl

i;O, where i is the frame number, l is the decomposition level, and O is the
orientation or direction of the detail coefficient (horizontal, vertical, or diagonal). The wavelet
transformation is computed using the 2D discrete stationary wavelet transform.40 Figure 2 shows
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C1
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C3
Vertical (x) C3

Diagonal (x)

C2
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Diagonal (x)
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Fig. 2 Representation of a 2D wavelet decomposition of an image using three levels.
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a representation of a 2D wavelet decomposition of an image with three levels, where A contains
the approximation coefficients and CHorizontal, CVertical, and CDiagonal are the detail coefficients of
each subband for the horizontal, vertical, and diagonal orientation, respectively.

2.1.3 Variance computation

The next step is the calculation of the variance of the detail coefficients of all of the subbands of
the input and reference frames. For the computation of the variance of the detail coefficients of
each subband σl 2O , we use the following expressions:

EQ-TARGET;temp:intralink-;e003;116;624σl 2O ¼ 1

X − 1

XX
x¼1

jCl
OðxÞ − μlOj2; (3)

EQ-TARGET;temp:intralink-;e004;116;563μlO ¼ 1

X

XX
k¼1

Cl
OðxÞ; (4)

where l is the subband level (between 1 and L), O is the orientation (horizontal, vertical, or
diagonal) of the detail coefficient C, and x is an index ranging from 1 to X (total number of
coefficients with orientation O for the subband l). Equation (3) uses μlO, the mean of all detail
coefficients for the orientation O and subband l, calculated using Eq. (4). In the case of the
reference frames, we calculate the variance, σlO;R

2, considering all M frames, and therefore,
X ranging in this case, from 1 to the number of coefficients by subband and by orientation plus
the number of frames M.

2.1.4 Adaptive variance compounding

Then, we calculate the adaptive compounding terms Gl
O;i, which consider an average of the ratio

of the variance terms of the initial frames and the reference frames, including also the detail
coefficients for the variance of the frame i, using the following expressions:

EQ-TARGET;temp:intralink-;e005;116;372Gl
O;iðxÞ ¼

1

N

 
jCl

O;iðxÞj
σlO;i

2

σlO;R
2
þ

XN−1

j¼1∧j≠i

σlO;i
2

σlO;R
2

!
; (5)

where l is the subband, i is the frame number ranging from 1 to N (total number of input frames,
see Fig. 1) andO is the orientation of the detail coefficient (horizontal, vertical, or diagonal). The
term Cl

O;i is the detail coefficient of the subband l, orientation O, and frame i. The terms σlO;i
2

and σlO;R
2 are the variance of the detail coefficients from the frame i and from the reference

frames respectively, calculated using Eq. (3).

2.1.5 Weight computation

The weights provide estimates of the noise contribution of each subband to every frame in
relation to the reference noise and to the remaining frames. The goal is to reduce the detail
coefficients in each subband with higher variance compared with the reference values and the
remaining frames, assuming that noise will be the main cause of this higher contribution. The
term in Eq. 6 is an adaptive variance threshold defined in a similar way to standard wavelet
thresholding, but considering the variance of the reference frames in each subband.

EQ-TARGET;temp:intralink-;e006;116;147Tl
O;i ¼

σlO;R
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jσlO;i
2 − σlO;R

2j
q ; (6)
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EQ-TARGET;temp:intralink-;e007;116;735Wl
O;iðxÞ ¼

�
1; jCl

O;iðxÞj > k · Tl
O;i

1 − Gl
O;iðxÞ; otherwise

(7)

Equation (7) produces the final weights Wl
O;i for each subband l, frame i, and orientation O,

comparing the value of the detail coefficients Cl
O;i with the previous threshold value Tl

O;i. The
parameter k will then be used to balance the final amount of noise reduction (in Sec. 3.1, we
present more detail of the influence and utility of this parameter). The ratio Gl

O;i from Eq. (5) is

used to reduce the weight of the detail coefficients lower than the threshold Tl
O;i.

2.1.6 Wavelet coefficient weighting, averaging, and inverse wavelet transform

The new detail coefficients ~Cl
O;i of each subband l, orientation O, and initial frame i are com-

puted using the previous weights for all positions x, via the following expression:

EQ-TARGET;temp:intralink-;e008;116;568C̃l
O;iðxÞ ¼ Cl

O;iðxÞ · Wl
O;iðxÞ: (8)

The detail Cl
O and the approximation Al coefficients of the denoised image (see Fig. 2) for

each subband l are calculated by averaging the coefficients of the N initial frames considered
during the process:

EQ-TARGET;temp:intralink-;e009;116;496Cl
OðxÞ ¼

1

N

XN
i¼1

C̃l
O;iðxÞ; (9)

EQ-TARGET;temp:intralink-;e010;116;434AlðxÞ ¼ 1

N

XN
i¼1

Al
iðxÞ: (10)

Finally, the denoised image is computed by applying the inverse wavelet transform over the
averaged coefficients. The algorithm was implemented in Matlab 2018b (MathWorks, Inc.,
Natick, Massachusetts) on a personal computer (Intel 3.3 GHz CPU, 32 GB memory).

2.1.7 Data and OCT imaging systems

For the quantitative evaluation of the method, we used datasets representing four different envi-
ronments, as specified in Table 1. Datasets Medical University of Vienna (MUW)-1, MUW-2,
and MUW-3 each comprised 18 skin OCT volumes and were acquired via three different OCT

Table 1 Technical specifications of the OCT imaging systems used in the acquisition of the vol-
umes in this study.

Parameter MUW-155,56 MUW-257 MUW-3 (VivoSight)
A2ASDOCT
(Bioptigen)58

System type Swept-source
frequency domain
OCT

Spectral
domain OCT

Multi-beam swept-source
frequency domain OCT

Spectral domain OCT

Laser system 1340 nm 1320 nm 1305 nm Class 1 840 nm

A-line rate 200 kHz 47 kHz 10 kHz 17 kHz

Optical resolution 19.5 μm (air) lateral
4.6 μm (air) axial

15 μm (lateral)
7 μm (axial)

<7.5 μm (tissue) lateral
<5 μm (tissue) axial

10 μm (tissue) lateral
4.5 μm (tissue) axial

Field of view 10 × 10 mm 7 × 3.5 mm 6 × 6 mm 6.7 × 6.7 mm

Imaging depth 1.2 mm 2 mm Between 1.2 and 2 mm,
tissue dependent

2 mm
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image systems. MUW-1 and MUW-2 were custom designs from the Center for Medical Physics
and Biomedical Engineering at the MUW. To assess the applicability of the method to a
commercial device, the MUW-3 image dataset was acquired via a VivoSight OCT scanner
(Michelson Diagnostics, Kent). The A2ASDOCT dataset is a public dataset comprising 17 reti-
nal volumes from the A2ASDOCT study.59 It was produced using a Bioptigen Inc (Research
Triangle Park, North Carolina) spectral domain OCT imaging system24 and involved 17 eyes
from 17 subjects with and without nonneovascular age-related macular degeneration (AMD).
Each set of images in this dataset comprises five frames of 900 × 450 pixels from consecutive
positions, each of which includes the fovea region. The main technical specifications of the
imaging systems are summarized in Table 1. Table 2 gives additional details about the derma-
tological datasets (MUW-1, MUW-2, and MUW-3) and the retinal dataset (A2ASDOCT).

The method requires the use of a reference set (RF1;RF2; : : :RFM in Fig. 1). The role of this
reference is to characterize the speckle noise assuming, as stated by Zaki et al.,43 that the varia-
tion in these uniform areas is determined by random noise. The calculation of the noise variance
is based on Eq. 3 over a region of interest (ROI) selected from the reference frames. We used two
strategies to calculate this variance. First, we used a homogeneous scattering phantom made of
synthetic clay (Blu-Tak®; Bostik, Wauwatosa, Wisconsin). This approach was tested with the
MUW-1 OCT image system and the MUW-3 VivoSight device. Using the MUW-1 system,

Table 2 Description of the datasets. The volumes of the three dermatological datasets were
acquired and evaluated by experts from the Department of Dermatology at the MUW. The iden-
tified sample area (if available) is given in the fourth column. The results of the clinical assess-
ments are given in the fifth column.

Dataset
Size (pixels)/number

of B-scans Volume ID Sample area Clinical evaluation

MUW-1 1100 × 512∕256 1.1 Hand Nevus araneus

1.2 Back Postsurgical scar

1.3 Thigh Normal skin

1.4 Head BCC

1.5 Arm BCC

MUW-2 1000 × 680∕256 2.1 Palm Normal skin

2.2 — Pityriasis

2.3 Forearm Normal skin

2.4 Head BCC

2.5 Arm Nevus

MUW-3 1558 × 460∕50 3.1 Nose BCC

3.2 Chest BCC

3.3 Chest BCC

3.4 Palm Normal skin

1298 × 460∕50 3.5 Fingertip Normal skin

1038 × 460∕50 3.6 Back Nevus

3.7 Abdomen Angioma

3.8 Cheek Folliculitis

A2ASDOCT 900 × 450∕5 4.1–4.17 Fovea 10 from normal subjects
and 7 from AMD subjects
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we acquired 512 -scans with dimensions of 512 × 219 pixels from consecutive positions. Using
the VivoSight device, we acquired 120 B-scans with dimensions of 1038 × 460 pixels from con-
secutive positions.

In our second strategy, we selected a ROI in the same location (top or bottom) of the frames
from both systems and computed the variances of the coefficients of four wavelet detail sub-
bands. This involved selecting a homogeneous noisy ROI and computing the corresponding
variance of the detail coefficients, considering all frames in the dataset. We selected the location
of the ROI (top or bottom) to have enough data in the all frames of the volume. We used this
strategy as an alternative approach for the MUW-2 and A2ASDOCT datasets, partly because a
phantom was unavailable and partly to test an alternative approach to noise estimation. Figure 3
shows examples of the acquisition of the phantom and the selection of the ROIs for both strat-
egies, and Table 3 summarizes the reference sets used for each OCT imaging system. We applied
the same reference set to all volumes of each dataset (MUW-1, MUW-2, MUW-3, and
A2ASDOCT).

2.2 Quantitative evaluation

We evaluated the efficacy of the algorithm, using common speckle-reduction performance
metrics41,43,44 via a comparison with different state-of-the-art methods. These quantitative met-
rics were the SNR, the contrast-to-noise ratio (CNR), and the equivalent number of looks (ENL),
as expressed below.

Fig. 3 Examples of frames and ROIs (white rectangles) used to compute the noise variance
required by theWCANmethod. (a) First frame with size 512 × 219 pixels for the phantom acquired
via the MUW-1 image system. (b) First frame with size 1000 × 680 pixels for Volume 2.1 (palm
normal skin, see Table 2) acquired via the MUW-2 image system. (c) First frame with size 1038 ×
460 pixels for the phantom acquired via the VivoSight device. (d) First frame with size
900 × 450 pixels for the first set in the A2ASDOCT dataset.

Table 3 Summary of the reference sets used in the application of the method WCAN for all of the
datasets. M indicates the maximum number of frames in the reference set (RF1;RF2: : :RFM ).
The ROI Dimensions column refers to the size of the white rectangles shown in Fig. 3.

Dataset Volume ID Strategy M ROI dimensions Figure

MUW-1 R.1 ROI phantom 512 63 × 478 Fig. 3a

MUW-2 R.2 ROI Vol 2.1 256 112 × 993 Fig. 3b

MUW-3 R.3 ROI phantom 120 120 × 1009 Fig. 3c

A2ASDOCT R.4 ROI all frames 85 153 × 885 Fig. 3d
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EQ-TARGET;temp:intralink-;e011;116;735SNR ¼ 10 log10

�
μ2I
σ2I

�
; (11)

EQ-TARGET;temp:intralink-;e012;116;687CNR ¼ 1

R

XR
r¼1

μr − μbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2r þ σ2b

p ; (12)

EQ-TARGET;temp:intralink-;e013;116;646ENL ¼ 1

H

XH
h¼1

μ2h
σ2h

: (13)

SNR is defined in Eq. (11), where μI indicates the mean of the OCT image and σ2I refers to the
noise variance. In the definition of CNR [Eq. (12)], μb and σ2b are the mean and variance for a
background noise region, respectively, with μr and σ2r being the mean and variance for all ROIs,
respectively, including homogeneous and heterogeneous regions. ENL is a measure of the
smoothness of a homogeneous ROI. In Eq (13), μh and σ2h are the mean and variance of all
H homogeneous ROIs, respectively. Except for the SNR calculations, the remaining parameters
were computed from the logarithmic OCT images.

To assess the overall influence of the quantitative metrics, we include two additional figure-
of-merits (FOMs):44

EQ-TARGET;temp:intralink-;e014;116;505FOMSUM ¼ SNRNorm þ CNRNorm þ ENLNorm; (14)

EQ-TARGET;temp:intralink-;e015;116;462FOMMIN ¼ MinðSNRNorm; CNRNorm; ENLNormÞ; (15)

where Norm refers to the normalization of the metric, that is, the method that performed the best
in, for example, the SNR criteria, would have an SNRNorm equal to one. Therefore, an FOMSUM

of three would indicate that the method performed the best in all image-quality metrics (SNR,
CNR, and ENL). The metric FOMMIN is used to assess the robustness of the methods and to
detect unbalanced combinations of SNR, CNR, and ENL.

We compared the performance of the WCAN algorithm with respect to other state-of-the-art
methods via two different approaches. First, we used 2D filters that have previously demon-
strated excellent performance in OCT speckle reduction such as PNLM,32 complex wavelet
based K-SVD (KSVD),46 and noise adaptive wavelet thresholding (NAWT)43 or in general image
denoising (DNCNN).34 Next, we used two 3D filters: i.e., the wavelet multiframe algorithm
(WVMF)45 and TNODE.47 Table 4 gives sources for implementations of these methods.
Figure 4 shows the process of evaluation for the various methods. All steps were performed
over all frames in every dataset. The denoised OCT frames generated as outputs were compared
using the SNR, CNR, and ENL performance metrics.

Table 4 State-of-the-art denoising software used in the assessment of the proposed method.

Year Denoising method Official website

2012 WVMF45 Image denoising algorithms archive.

2015 KSVD46 State-of-the-art method for OCT denoising.

2016 PNLM32 PNLM: a probability-based non-local means filter for speckle
noise suppression in optical coherence tomography images.

2017 DNCNN34 Beyond gaussian denoiser: residual learning of deep CNN for
image denoising.

2017 NAWT43 Implemented following the authors’ manuscript.

2018 TNODE47 Volumetric non-local-means based speckle reduction for optical
coherence tomography.
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3 Results and Discussion

3.1 Parameter Assessment

Before applying the method to all datasets and comparing it with the state-of-the-art filters, we
evaluated the impact of the two main parameters of the algorithm, i.e., k [the threshold parameter
in Eq. (3)] and N (the number of frames to consider in the compounding process). We used
Volume 2.1 (see Table 2) and the reference frames from Volume R.2 (Table 3) for this purpose
in the two experiments outlined in Fig. 5.

First, we varied the parameter k from 0.3 to 1.5 in steps of 0.1, with N set to 3. In the second
experiment, we varied the parameter N from 2 to 6, with k set to 1.0. After applying the WCAN
method in both cases, we calculated the quantitative metrics (SNR, CNR, and ENL) and the result-
ing FOMSUM (only FOM for the rest of this section). We then computed the difference in the FOM

(a)

(b)

Fig. 4 (a) Process used for the evaluation of all methods with all datasets. Each volume in the
study was divided into blocks of N frames. For each block, all filters were applied and the evalu-
ation metrics were computed. Finally, all blocks were combined and the improved version of each
volume and each filter was created. (b) Details of the process for each block. The compounding of
each block with N initial frames (IF1; : : : IFN ) was performed using WCAN, WVMF, TNODE, and
MEAN. The output of the MEAN was applied to the methods KSVD, NAWT, PNLM, and DNCNN.
The output frames from each method (OFWCAN, OFWVMF, OFTNODE, OFKSVD, OFNAWT, OFPNLM, and
OFDNCNN), as applied to all frames, were used in the quantitative assessment. The normalized
value of the metrics (SNR Norm, CNR Norm, ENL Norm, and FOM) were calculated with respect
to the maximum value of each metric from the output frames. We used these normalized values for
all volumes in comparing the quantitative assessments for all filters.
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values for each enhanced frame for two consecutive values of k (such as k ¼ 0.4 and 0.3) and N
(such as N ¼ 3 and N ¼ 2). This process generated a set of FOM-value differences ΔFOMK for
each pair of consecutive k values and a set of ΔFOMN for each pair of consecutive N values.

Figure 6 gives the main results and some examples of the application of the WCAN method
to Volume 2.1. We observe that the improvement in the quantitative metrics reaches a maximum
between k ¼ 0.8 and 0.9, with a mean improvement in FOM of 0.213, and any further increase in
k decreases the incremental improvement. Note that this does not imply that k ¼ 0.9 is the opti-
mal value to use but that k ¼ 0.9 is the value for which we have the greatest improvement with
respect to the previous value of k. Although increasing the value of k always produces a quan-
titative improvement in the image, there are diminishing returns from increasing k beyond
k ¼ 0.9. We can observe the same trend for the parameter N, the maximum mean improvement
of FOM, i.e., ΔFOMN ¼ 0.229, occurs between N ¼ 4 and N ¼ 3. The image examples in
Fig. 6 show how increases in N and k produce better noise reduction in the resultant image.
One of the main advantages of the proposed method is that it is easily adaptable to very different
OCT settings by simply adjusting these two parameters.

To find appropriate values of k and N for the quantitative assessment, we used the first vol-
ume in each dataset (Volume IDs 1.1, 2.1, 3.1, and 4.1 for the MUW-1, MUW-2, MUW-3, and
A2ASDOCT datasets, respectively, in Table 2 and the references frames with Volumes IDs R.1,
R.2, R3, and R.4 I in Table 3). Table 5 gives the final values chosen for each dataset, having been
determined empirically as a suitable balance between performance metric improvement, quali-
tative visual quality, and execution time.

We also evaluated the influence of the wavelet family in the calculation of 2D discrete sta-
tionary wavelet transform. We tested the wavelets families Haar, Daubechies (db1-db10),
Symlets (sym2-sym8), Coiflets (coif1-coif5), and BiorSplines (bior1.1, bior1.3, bior1.5, bior2.2,
bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior 5.5, and bior6.8)
using the Volume ID 2.1 and the reference set R.2 of Table 3. The Table 6 presents the results of
the wavelet with the best performance in each family. As we can observe, the Haar wavelet shows
the best performance and was the wavelet selected for the rest of the experiments.

3.2 Quantitative Evaluation

We now present the results of our quantitative evaluation of the application of the compared
methods to the complete stack of frames for all four datasets in this study. In the evaluation,
we used the same ROIs for all frames in the same volume to maintain a consistent reference
(Fig. 7 shows one frame with the ROIs used for Volume 1.1). The detailed values of the metrics

(a)

(b)

Fig. 5 Process followed for the assessment of the parameters k and N using Volume 2.1 from the
MUW-2 dataset and the reference frames from Volume R.2. (a) Evaluation of the parameter k with
N ¼ 3 for values of k from 0.3 to 1.4 in steps of 0.1. We divided the volume into blocks of three
frames and applied WCAN for each k value. After calculating the quantitative metrics, we com-
pared the resulting FOMs of the enhanced frames for consecutives values of k . (b) Evaluation of
the parameter N with k ¼ 1 for values of N from 2 to 6. For each N value, we divided the volume
into blocks of N frames and applied WCAN with k set to 1. After calculating the quantitative met-
rics, we compared the resulting FOM of the enhanced frames for consecutives values of N .
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(a) (b)

(c)

(e)

(d)

Fig. 6 Results of the evaluation of the parameters k and N for the WCAN method, using the
Volume 2.1 from the MUW-2 dataset and the reference frames from Volume R.2. (a) FOM for
consecutive k values from 0.3 to 1.5. (b) Improvement in the FOMmetric for consecutive k values
from 0.3 to 1.5. The horizontal axis represents consecutive pairs of values for k . The vertical axis
represents the FOM differences over all frames in the volume for consecutive pairs of values for k .
(c) FOM for consecutive N values from 2 to 6. (d) Improvement in FOM metric for consecutive N
values from N ¼ 2 to N ¼ 6. The horizontal axis represents consecutive pairs of values for N. The
vertical axis represents the FOM differences over all frames in the volume for consecutives pairs of
values for N . (e) Examples of the application of the WCAN method for different combinations of
k and N in the ROI marked as a white box in the top-left raw noisy OCT image.

Table 5 Parameters used in the assessment of the WCAN method for each dataset. N is the
number of frames considered at consecutive positions in the compounding process. k is the
adjustment parameter for the thresholding process. The number of decomposition levels, L, was
set to four for all datasets.

Parameter MUW-1 dataset MUW-2 dataset MUW-3 dataset A2ASDOCT dataset

N 3 3 2 4

k 1 1 1.1 1.6
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for all datasets are included in Tables S2–S7 in the Supplementary Material. In Tables 7–10 and
Fig. 8, we present the aggregate results. Tables 7–10 show the mean ± standard deviation of the
improvement with respect to the initial metrics presented in Table S1 in the Supplementary
Material (raw images). The values corresponding to the best performance for the individual met-
rics and for the FOMs are shown in bold.

Fig. 7 OCT raw image and ROIs used for the calculation of the quality metrics. The white rec-
tangular region was used for the noise estimation; the red rectangles represent the homogeneous
regions (H ¼ 3) used to calculate ENL, and the green rectangles represent the nonhomogeneous
regions. The sum of both individual metrics is used to calculate the CNR (R ¼ 6).

Table 6 Quantitative evaluation of the wavelet families Haar, Daubenchies, Symlets, Coiflets and
BiorSplines, considering the Volume ID 2.1 and the reference set R.2 from Table 3. The results
show the mean ± standard deviation of the improvement with respect to the initial metrics pre-
sented in Table S1 in the Supplementary Material (raw images).

Wavelet SNR CNR ENL

haar 12.30 ± 2.44 2.02 ± 0.36 622.80 ± 101.53

db2 11.78 ± 2.25 1.86 ± 0.31 537.78 ± 82.06

sym3 11.07 ± 2.03 1.85 ± 0.32 571.68 ± 79.25

coef1 11.74 ± 2.23 1.85 ± 0.31 533.41 ± 81.91

bior3.3 11.71 ± 2.21 1.82 ± 0.30 521.72 ± 81.37

Table 7 Quantitative evaluation for the MUW-1 dataset, considering the results of the application
of all filters to Volumes 1.1–1.5 (see Table 2) and the reference frames R.1 (see Table 3). The
compounding was performed using three B-scans per position.

Filter SNR Norm CNR Norm ENL Norm FOMSUM FOMMIN

WCAN 0.99 ± 0.026 0.97 ± 0.065 0.91 ± 0.117 2.87 ± 0.192 0.91 ± 0.117

TNODE 0.88 ± 0.044 0.93 ± 0.057 0.95 ± 0.101 2.77 ± 0.148 0.86 ± 0.075

PNLM 0.75 ± 0.102 0.80 ± 0.067 0.61 ± 0.168 2.16 ± 0.271 0.61 ± 0.165

NAWT 0.87 ± 0.093 0.89 ±0.083 0.82 ±0.126 2.58 ± 0.262 0.80 ± 0.119

WVMF 0.82 ± 0.051 0.78 ± 0.064 0.68 ± 0.101 2.28 ± 0.166 0.68 ± 0.101

KSVD 0.80 ± 0.085 0.73 ± 0.064 0.64 ± 0.105 2.18 ± 0.169 0.64 ± 0.101

DNCNN 0.50 ± 0.051 0.54 ± 0.059 0.44 ± 0.077 1.48 ± 0.137 0.42 ± 0.066
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Table 9 Quantitative evaluation for the MUW-3 dataset, considering the results of the application
of all filters to Volumes 3.1–3.8 (see Table 2) and the reference frames R.3 (see Table 3). The
compounding was performed using two B-scans per position.

Filter SNR Norm CNR Norm ENL Norm FOMSUM FOMMIN

WCAN 0.85 ± 0.102 1.00 ± 0.027 0.99 ± 0.040 2.84 ± 0.112 0.84 ± 0.097

TNODE 0.80 ± 0.063 0.90 ± 0.070 0.87 ± 0.103 2.56 ± 0.144 0.77 ± 0.045

PNLM 0.87 ± 0.055 0.84 ± 0.071 0.74 ± 0.104 2.46 ± 0.150 0.31 ± 0.052

NAWT 0.58 ± 0.116 0.72 ± 0.095 0.64 ± 0.128 1.95 ± 0.267 0.55 ± 0.092

WVMF 0.61 ± 0.066 0.75 ± 0.139 0.68 ± 0.194 2.05 ± 0.313 0.51 ± 0.068

KSVD 0.98 ± 0.049 0.81 ± 0.112 0.69 ± 0.156 2.48 ± 0.302 0.45 ± 0.077

DNCNN 0.25 ± 0.040 0.44 ± 0.115 0.37 ± 0.138 1.07 ± 0.254 0.18 ± 0.041

Table 10 Quantitative evaluation for the A2ASDOCT dataset, considering the results of the appli-
cation of all filters to the 17 retinal sets (see Table 2) and the reference frame R.4 (see Table 3).
The compounding was performed using four B-scans per position.

Filter SNR Norm CNR Norm ENL Norm FOMSUM FOMMIN

WCAN 0.93 ± 0.040 1.00 ± 0.009 0.96 ± 0.065 2.89 ± 0.073 0.91 ± 0.057

TNODE 0.99 ± 0.028 0.93 ± 0.024 0.90 ± 0.067 2.82 ± 0.098 0.89 ± 0.061

PNLM 0.99 ± 0.009 0.97 ± 0.026 0.90 ± 0.091 2.86 ± 0.112 0.89 ± 0.083

NAWT 0.60 ± 0.074 0.55 ± 0.060 0.35 ± 0.107 1.50 ± 0.171 0.35 ± 0.099

WVMF 0.81 ± 0.055 0.88 ± 0.027 0.70 ± 0.139 2.39 ± 0.155 0.67 ± 0.122

KSVD 0.67 ± 0.046 0.60 ± 0.037 0.38 ± 0.096 1.65 ± 0.135 0.38 ± 0.096

DNCNN 0.43 ± 0.044 0.38 ± 0.026 0.18 ± 0.058 1.00 ± 0.082 0.18 ± 0.059

Table 8 Quantitative evaluation for the MUW-2 dataset, considering the results of the application
of all filters to Volumes 2.1–2.5 (see Table 2) and the reference frames R.2 (see Table 3). The
compounding was performed using three B-scans per position.

Filter SNR Norm CNR Norm ENL Norm FOMSUM FOMMIN

WCAN 0.97 ± 0.064 0.98 ± 0.055 0.96 ± 0.075 2.91 ± 0.187 0.95 ± 0.076

TNODE 0.98 ± 0.026 0.92 ± 0.055 0.85 ± 0.100 2.75 ± 0.165 0.85 ± 0.099

PNLM 0.78 ± 0.075 0.87 ± 0.055 0.31 ± 0.062 1.96 ± 0.142 0.31 ± 0.062

NAWT 0.68 ± 0.076 0.74 ± 0.116 0.69 ± 0.178 2.11 ± 0.335 0.62 ± 0.114

WVMF 0.72 ± 0.053 0.66 ± 0.057 0.52 ± 0.086 1.89 ± 0.153 0.52 ± 0.086

KSVD 0.78 ± 0.083 0.64 ± 0.080 0.45 ± 0.085 1.87 ± 0.213 0.45 ± 0.085

DNCNN 0.32 ± 0.048 0.29 ± 0.048 0.18 ± 0.052 0.79 ± 0.121 0.18 ± 0.052
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To facilitate comparison between metrics, we used the normalized value of each metric, cal-
culated from the maximum values for all filtered images in each group of frames [see Fig. 4(b)].
We can then refer to metric values corresponding to the best filtered output for each group of
frames to make fair comparisons across the volume. We should first note that the best results
across all datasets were accomplished by WCAN, with the highest values for FOMSUM and
standard deviations between the smallest (MUW-3) and the second smallest (MUW-1,
MUW-2, and A2ASDOCT). We have the same situation with the metric FOMMIN , where
WCAN presents the highest values. The TNODE algorithm had the second-best performance

(a) (b)

(c) (d)

(e)

(f)

Fig. 8 Value distribution for the different metrics of the quantitative evaluation of all datasets used
in the study (see Table 2). The proposed WCAN method is shown in the rightmost column within
the red box. (a) FOMSUM calculated using Eq. (14). (b) FOMMIN calculated using Eq. (15).
(c) SNR Norm calculated using Eq. (11) and normalized with respect to the maximum value of
the metric for each denoised frame. (d) CNR Norm calculated using Eq. (12) and normalized with
respect to the maximum value of the metric for each denoised frame. (e) ENL Norm calculated
using Eq. (13) and normalized with respect to the maximum value of the metric for each denoised
frame. (f) Order of the datasets for each method.
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across all datasets. WCAN was also the best option, in most cases, when considering each metric
separately. It returned the best CNR and ENL results for all datasets (except for MUW-1, where it
had the second highest ENL). WCAN had the best SNR score for MUW-1, was second for
MUW-2, and third for MUW-3 and A2ASDOCT.

Another notable aspect of the WCAN results is its consistent performance with very differ-
ent OCT image settings, image samples, and locations on the skin (see Table 2) and retina. As
is clear from Figs. 8(a) and 8(b), other filters such as PNLM and KSVD perform very differ-
ently for the retina dataset (A2ASDOCT) than for the skin datasets (MUW-1, MUW-2, and
MUW-3).

Fig. 9 Comparison of the application of speckle reduction methods in a frame with 1100 ×
512 pixels from Volume 1.1 using three B-scans at consecutive positions and the reference
frames R.1. (a) Raw OCT image with a detailed ROI. The remainder of the image is the filtered
OCT image after applying the method. (b) Proposed WCAN method. (c) TNODE method.
(d) PNLM method. (e) NAWT method. (f) WVMF method. (g) KSVD method. (h) DNCNN method.
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Figure 9 shows the significant differences in the OCT images generated by applying the state-
of-the-art methods to Volume 1.1 and the reference frames R.1. Videos S1–S4 (see Figs. 13–16
in the Appendix) show the results of the application of the method over frames of the datasets
MUW-1, MUW-2, MUW-3, and A2SDOCT.

Simple averaging was also evaluated. We used three volumes from datasets MUW-1, MUW-
2, and MUW-3, where we have enough frames to perform the experiment in each volume. In
particular, we considered Volumes ID 1.1, 2.1, 3.1 (Table 2) and the reference sets R.1, R.2, and
R.3 of Table 3, respectively. We applied the WCANmethod to each volume using the parameters
previously identified in Table 5. In particular, we applied the WCAN to the three first frames of
Volume ID 1.1 and 2.1 with k ¼ 1 and to the first two frames of Volume ID 3.1 with k ¼ 1.1.
Then, we performed the average of N frames iteratively until the metric FOMSUM of averaging
frames improved the metric of WCAN previously calculated. The results showed that to improve
WCAN we needed to average 12, 27, and 13 frames for the Volumes ID 1.1, 2.1, and 3.1,
respectively.

Figure 10 shows an analysis of some examples of the WCAN algorithm’s performance with
skin images corresponding to frames of the MUW-2 and MUW-3 datasets. The first sample
(Volume 2.4) provides information about a superficial BCC on the head. In Figs. 10(a) and
10(b), speckle reduction using WCAN [Fig. 10(b)] enables a stronger identification of the skin
layers (marked with digits 1–3) than does the raw image [Fig. 10(a)]. In addition, the stratum
corneum layer and the epidermis–dermis interface are more clearly distinguished. The bounda-
ries and contrast are also enhanced, shown by comparing the area enclosed by the blue ellipse
and the red arrows in the zoom-in boxes in the raw image [Fig. 10(a)] and after filtering
[Fig. 10(b)]. The second example (Volume 3.8) shows a cheek with folliculitis. Figures 10(c)
and 10(d) show a sharper difference between the regions indicated by the blue line and the red
arrows and the structure indicated by the green arrow in the zoom-in boxes.

Fig. 10 Comparison of the application of theWCANmethod to frames from the MUW-2 andMUW-
3 datasets. (a) Raw OCT skin image from a 1000 × 680 pixel sample of a head affected by BCC
(Volume 2.4). Two detail ROIs are identified by white rectangular boxes. The digits 1, 2, and 3 in
the image identify the stratum corneum, epidermis, and dermis layer, respectively. The blue ellipse
and red arrows indicate regions that show the contrast enhancement obtained by filtering the raw
image. (b) WCAN image processed using three consecutive frames from Volume 2.4, starting from
the a frame. (c) Raw OCT skin image from a 1038 × 460 pixel sample of a cheek with folliculitis
(Volume 3.8). Two zoom-in ROIs are identified by white rectangular boxes. The blue line and the
red and green arrows identify different areas affected by speckle reduction after application of the
proposed method. (d) WCAN image processed using two consecutive frames from Volume 3.8
starting from the c frame.
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Figure 11 enables qualitative comparisons for a retinal image from the A2ASDOCT database
after applying each of the denoising methods in the study. Figure 11 shows that the WCAN
algorithm gives significant noise suppression, which enables clear identification of the bounda-
ries between retinal layers.

Finally, to assess the computation time for the various algorithms we applied all methods of
the study to 20 scaled versions of the first two frames of Volume ID 1.1. For the WCAN method
we used k ¼ 1 and the reference frames R.1 from Table 3. The original size of the volume was
two frames with 1100 × 512 pixels. We used scales from 0.1 to 4 in steps of 0.2 (20 scales in
total) to resize the frames. For each scale we applied all of the methods and calculated the exe-
cution time using the method timeit of Matlab. In Fig. 12 we present the results. As shown in
Fig. 12(a) the application of the WCAN method requires less execution time than the other pure
compounding alternatives such as TNODE and WVMF. The PNLM and NAWT methods pre-
sented the best performance among all of the algorithms tested [Fig. 12(b)]. Finally, to estimate
the computational complexity of the algorithm, we applied a basic fitting of the performance
metrics of WCAN, resulting a linear polynomial function of the type y ¼ p1 � xþ p2 with
p1 ¼ 0.0087, p2 ¼ 0.0086, and the norm of residuals equaling 0.699. So we can estimate

Fig. 11 Comparison of the application of speckle reduction methods in a 900 × 450-pixel frame
from Volume 4.1 using four B-scans at consecutive positions. (a) RawOCT image and a detail ROI
used for the qualitative comparison of all methods. (b) Proposed WCAN method. (c) TNODE
method. (d) PNLM method. (e) KSVD method. (f) WVMF method.
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that the time complexity of the method is linear. The tests were executed in Matlab 2018b
(MathWorks, Inc.) on a personal computer (Intel 3.3 GHz CPU, 32 GB memory).

4 Conclusion

This paper has described a speckle reduction method for OCT volumes. The method is based on
a multiscale adaptive noise-wavelet-compounding strategy. The method requires the estimation
of the noise variance in the wavelet domain of the OCT setting. In this study, we used previously
acquired images of homogeneous scattering examples. The noise variance is used to compute the
weights for the detail coefficients of each subband of each frame in the volume before com-
pounding all of the filtered frames.

One of the major highlights of our method, and a novel contribution in the field of wavelet
denoising, is the introduction of a new compounding scheme that integrates the noise variance
influence of the input frames in relation to the variance of a set of reference frames. With this new
approach, a visual inspection of the denoised frames presented shows the potential of the pro-
posed algorithm to reduce the speckle noise efficiently without generating relevant denoising
artifacts or producing a degradation of the structures present in the image. The simplicity, the
ability of the method to adapt to different environments (OCT settings and noise levels), the
robustness above all metrics considered, and its reduced computational time are its most sig-
nificant advantages. Another potential benefit is the capacity of the method to adjust the amount
of noise reduction by the modification of the parameter k, which may facilitate the adaptation to
different clinical needs. The main weaknesses of the method is the need for a prior acquisition of
a homogeneous sample to determine the noise variance used in the adaptive compounding of the
detail coefficients in the wavelet decomposition. Nevertheless, as described in the estimation of
the noise in datasets MUW-2 and A2ASDOCT, this drawback can be avoided through the use of
a homogeneous ROI of the input frames. The other line of improvement is the automatic assess-
ment of the parameters of the method (k and the number of frames of the input and reference
frames). However, this assessment is needed only once when fine tuning the algorithm in a par-
ticular OCT setting.

A thorough evaluation was performed by applying the method to four different OCT settings,
i.e., around 18 skin volumes in three datasets and 17 retinal volumes in a fourth dataset. We
compared our method’s results with those from six state-of-the-art algorithms. The results of
a quantitative evaluation based on five different metrics demonstrated that the proposed method
achieved the best performance among the tested techniques in suppressing noise. A qualitative
visual comparison of images confirmed the relative performance of the proposed method and
suggests the potential application of the proposed OCT denoising technique to improving image

(a) (b)

Fig. 12 Comparison of the computation time in seconds of all methods of the study (WCAN,
TNODE, WVMF, PNLM, NAWT, KSVD, and DNCNN). The parameter N� represents the total
number of the pixels considered in each test (1100 × 512 × 2 × scale) normalized with respect
to the smallest one (1100 × 512 × 2 × 0.1). (a) Computation time comparison of WCAN with
respect to the compounding methods TNODE and WVMF. (b) Computation time comparison
of WCAN with respect to PNLM, NAWT, KSVD, and DNCNN methods.
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quality prior to clinical diagnosis based on visual assessment. Future work will involve an auto-
matic process for the assessment of the parameters of the method (k and the number of frames of
the input and reference frames) through the training of a machine learning model based on
quantitative metrics. Furthermore, a formal qualitative evaluation will be performed by clinical
experts tackling the specific needs in their clinical routine, such as the capacity of the method to
preserve or enhance the identification of tissue layers and their borders and the ability to visu-
alize structures or to identify vasculatures.

5 Appendix

Videos S1–S4 (see Figs. 13–16) show the results of the application of the method over frames
of the datasets MUW-1, MUW-2, MUW-3, and A2SDOCT.

Fig. 14 Results of the application of the WCAN method over frames from dataset MUW-2,
Volumes 2.1–2.5 (see Table 2), using three B-scans at consecutive positions. (a) OCT raw image
Volume 2.5 (b) WCAN image. (Video S2, MP4, 10.6 MB [URL: https://doi.org/10.1117/1.JBO.26.6
.065001.2]).

Fig. 13 Results of the application of the WCAN method over frames from dataset MUW-1.
Volumes 1.1–1.5 (see Table 2). using three B-scans at consecutive positions. (a) OCT raw image
Volume 1.2 (b) WCAN image.(Video S1, MP4, 8.3MB [URL: https://doi.org/10.1117/1.JBO.26.6
.065001.1]).

Fig. 15 Results of the application of the WCAN method over frames from dataset MUW-3,
Volumes 3.1–3.5 (see Table2), using two B-scans at consecutive positions. (a) OCT raw image
Volume 3.3 (b) WCAN image. (Video S3, MP4, 1.8 MB [URL: https://doi.org/10.1117/1.JBO.26.6
.065001.3]).
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