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Abstract

Significance: Sub-diffuse optical properties may serve as useful cancer biomarkers, and wide-
field heatmaps of these properties could aid physicians in identifying cancerous tissue. Sub-
diffuse spatial frequency domain imaging (sd-SFDI) can reveal such wide-field maps, but the
current time cost of experimentally validated methods for rendering these heatmaps precludes
this technology from potential real-time applications.

Aim: Our study renders heatmaps of sub-diffuse optical properties from experimental sd-SFDI
images in real time and reports these properties for cancerous and normal skin tissue subtypes.

Approach: A phase function sampling method was used to simulate sd-SFDI spectra over a
wide range of optical properties. A machine learning model trained on these simulations and
tested on tissue phantoms was used to render sub-diffuse optical property heatmaps from
sd-SFDI images of cancerous and normal skin tissue.

Results: The model accurately rendered heatmaps from experimental sd-SFDI images in real
time. In addition, heatmaps of a small number of tissue samples are presented to inform hypoth-
eses on sub-diffuse optical property differences across skin tissue subtypes.

Conclusion: These results bring the overall process of sd-SFDI a fundamental step closer to real-
time speeds and set a foundation for future real-time medical applications of sd-SFDI such as
image guided surgery.
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1 Introduction

Light transport through biological tissue has been shown to be sensitive to microstructural com-
position, including the orientation of cells, the constituents of the intra- and extracellular matrix,
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and the ratio of cell sizes.1 This behavior can be characterized using optical properties such as the
reduced scattering coefficient (μ 0

s), absorption coefficient (μa), and the phase function backscat-
ter parameter (γ).2 These optical properties have been found to be useful in many medical appli-
cations such as detecting burn wound severity,3 monitoring blood occlusions,4,5 and aiding in
cancer diagnostics.6–9

Methods to measure such optical properties have been developed and improved. In fiber optic
based approaches, photons are injected at one location, and the remitted photons are detected at
short distances away and analyzed to determine the optical properties.10 Although small fiber
optics set-ups are effective, these point-based techniques have limited use in wide-field appli-
cations. To solve this issue, spatial frequency domain imaging (SFDI) has been developed, in
which structured light is projected onto tissue and the light reflected is measured from the entire
surface at once.11 Using sinusoidal light patterns of various spatial frequencies/phases and
demodulating the reflected intensity measured at each frequency, SFDI can produce a demodu-
lated intensity spectrum MðfÞ for each pixel of the imaged tissue. Calibrating these spectra
yields a reflectance spectrum RðfÞ for each pixel. Optical property heatmaps can then be ren-
dered from this grid of reflectance spectra.11–13

Recently, efforts have been made to advance the speed of SFDI up to real time, i.e., one frame
per second,14 which involves increasing the speed of both the measurement of SFDI images
and the rendering of optical property heatmaps from these images. Many methods have been
developed which can significantly reduce the acquisition time needed for capturing wide-field
SFDI images. These include methods which capture images at multiple wavelengths
simultaneously15,16 as well as methods which reduce the number of SFDI snapshots needed to
form an image.14,17 There have likewise been many advancements in increasing the speed of
processing these measurements and rendering optical property heatmaps. These methods include
optimized look-up tables,18 random forest regressors,19 and deep learning networks.4,20–22

These advancements, while impressive, have only been implemented for diffuse scattering
reflectance. As such, they cannot be used to find the phase function backscatter parameter γ,
a parameter which has been shown to be useful in discriminating between cancerous and
non-cancerous breast tissue.2,6 This parameter is defined as γ ¼ ð1 − g1Þ∕ð1 − g2Þ, where g1 and
g2 are the first and second Legendre moments of the phase function, respectively. (g1 is also
known as the anisotropy factor and is often written simply as g.)23 The parameter γ characterizes
the probability that a photon will undergo large-angle scattering during a scattering event.
Physiologically, research has shown that γ is related to the size-scale ratio of the particles in
the tissue, which is the ratio of the tissue’s largest particles to its smallest particles.24

The diffuse photons measured by the aforementioned state-of-the-art SFDI methods are
found in the 0 to 0.2 mm−1 spatial frequency range. These photons have traveled farther from
their source of injection and deeper into the tissue (up to 24 mm deep in the absence of absorp-
tion)25 before reflecting out of the tissue. As such, the individual angles they scatter with as they
traverse through the tissue are averaged out over the large area of tissue through which they
travel. Because of this averaging, reflectance in the diffuse domain is virtually insensitive to
γ.26 In order to capture information about γ, SFDI reflectance spectra must instead be measured
and examined in the sub-diffuse domain, which typically comprises spatial frequencies of
0.5 mm−1 or greater for biological tissues.26 SFDI that is inclusive of the sub-diffuse spatial
frequency range is known as sub-diffuse spatial frequency domain imaging (sd-SFDI).
Reflected photons found in the sub-diffuse range have traveled shallower into the tissue
(<0.4 mm)25 and undergone a smaller number of scattering events, making them more indicative
of their initial scattering events. As such, they are more sensitive to γ and provide more infor-
mation about the tissue at shallower depths. These photons are also sensitive to μ 0

s, but insensitive
to μa.

26 Recent work has explored capturing sd-SFDI images and analyzing the data to find γ and
μ 0
s,
2,6,26 known as sub-diffuse optical properties. However, the great advancements that have been

made to bring SFDI to real-time speeds in the diffuse domain have not been translated over to
measuring and analyzing these spectra in the sub-diffuse domain.

Improving the speed of sd-SFDI could open up a new opportunity in cancer treatment.
Currently, there are two main methods by which surgeons excise cancerous tissue from a patient.
The first is wide excision [Fig. 1(a)], a procedure in which the surgeon removes, in addition to
the tumor, a defined margin of normal tissue around the tumor to ensure that all cancerous tissue
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is captured. At the end of this procedure, the removed tissue undergoes histological analysis to
confirm negative margins.27 The other method is tissue-conserving surgery [Fig. 1(b)], e.g.,
Mohs micrographic surgery. During this process, a small amount of tissue is removed, and the
topmost surface of this resected tissue is analyzed histologically for negative margins. If cancer is
present at the evaluated margins, the process is repeated until all of the cancerous tissue is
removed and a negative margin is confirmed. Because of the repeated histological assessments
required, this procedure is time and labor intensive.28,29 The advent of wide-field sd-SFDI that
identifies quantitative cancer biomarkers could allow for an improved method: image guided
surgery [Fig. 1(c)]. Image guidance could allow the surgeon to remove minimal amounts of
tissue without the need for repeated histological analysis, combining the speed of wide excision
with the mitigated normal tissue loss of tissue-conserving surgery.

In image guided surgery, resected tissue could be diagnosed with imaging tools in place of
histology. Alternatively, the excision site itself can be examined if the analysis method does not
require removal of the tissue. In both cases, the target area of examination would be the topmost
layer of tissue. The sub-mm penetration depth of sd-SFDI makes this imaging modality an attrac-
tive option for this scenario. Additionally, sd-SFDI is high resolution (<1 mm), it has a wide field
of view (>1 cm), and it is a slide-free, stain free method.30

Image-guided surgery with sd-SFDI would require real-time measurements. More specifi-
cally, sd-SFDI images would have to be acquired in real-time and optical property heatmaps
would have to be rendered from the sd-SFDI images in real time.21 This paper focuses on the
latter challenge. Previous experiments have demonstrated rendering tissue optical property heat-
maps from sd-SFDI images using least-squares minimization on a semi-empirical equation. 2,6,26

The challenges to using this method are two-fold. Primarily, the method requires 15 min for a
300 × 300 pixel image.26 Even for scenarios that do not require real-time imaging, such a long
rendering time could serve as a significant bottleneck for advancing the knowledge of sub-
diffuse optical properties in biological tissue, since such studies in the diffuse domain typically
entail large datasets and images much larger than 300 × 300 pixels.20,21 Secondarily, the semi-
empirical equation was developed using data simulated with the modified-Henyey Greenstein
phase function approximation,26 whose domain31 does not fully encompass the range of optical
properties seen in biological tissue.2,21,26,32–35

Fig. 1 Flow diagram of existing and potential methods for removing cancerous tissue. All methods
end in a final histological analysis to confirm all cancerous tissue has been removed. (a) In wide
excision, a defined margin of normal tissue is removed along with the tumor in order to capture all
cancerous tissue in one step. (b) In tissue-conserving surgery (e.g., Mohs micrographic surgery),
small amounts of tissue are removed and then examined with histology repeatedly until all cancer
is removed. (c) A potential method could use image guided surgery as a combined removal and
examination step, resulting in a process that both captures all cancerous tissue in one step and
mitigates normal tissue loss.
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Recent work by Naglič et al. demonstrated a deep learning method for rendering sub-diffuse
optical property heatmaps from sd-SFDI images that is capable of real-time speeds.36,37

However, while this method was shown to be successful for simulated data, this method has
never been calibrated for and applied to physical experimental data. Moreover, Naglič et al.’s
model was trained on data simulated using the Gegenbauer kernel (GK) phase function approxi-
mation, whose domain38 also does not cover the full range of optical properties seen in biological
tissue.2,21,26,32–35

Another issue with sd-SFDI is that information on sub-diffuse optical properties is limited,
and its use in cancer diagnostics has only been studied for breast tissue.2,6 One avenue where
sd-SFDI guided surgery could be particularly useful is in the field of skin cancer, where tissue-
conserving surgery is often performed using Mohs micrographic surgery.28 Moreover, with
extremely rare exceptions, skin cancer does not spread any other way but contiguously.39

Because of this, if 100% of the excision surface is analyzed histopathologically, such as is done
in Mohs surgery,29 and no signs of cancer are found, no additional or deeper tissue analysis is
needed to declare a negative margin.28,29 This is in contrast to wide excision for skin cancer,
which requires 4 to 6 mm of additional tissue to be removed and examined in order to declare
a negative margin.40 Not only does this advantage allow Mohs surgery to conserve more tissue,
it also makes Mohs a prime candidate for use with sub-diffuse SFDI, as it makes Mohs amenable
to the limited penetration depth of sd-SFDI. Previous research has shown that diffuse SFDI could
be useful for discriminating between cancerous and normal skin tissue,41–44 but little is known
about the sub-diffuse optical properties of these tissue types.

This project is the first demonstration of real-time rendering of sub-diffuse optical property
heatmaps from experimentally acquired sd-SFDI data. Moreover, we report preliminary data on
the sub-diffuse optical properties of skin tissue subtypes. This work lays the foundation for
implementing real-time applications of sd-SFDI, such as image-guided surgery.

2 Materials and Methods

In order to demonstrate real-time rendering of sub-diffuse optical property maps from sd-SFDI
images, we acquired sd-SFDI images of two types of samples: tissue-simulating phantoms
and human skin tissue samples. We imaged these samples across three wavelengths using
a custom-built SFDI system. For each sample and wavelength, we collected 2050 ×
2048 pixel demodulated reflectance images at 26 separate spatial frequencies, resulting in
a [2050 × 2048 pixels × 26 spatial frequencies] image cube per sample per wavelength.
We then developed a Monte Carlo model with novel phase function sampling and used
it to generate a training and validation dataset of simulated [1 × 26 spatial frequencies]
sd-SFDI reflectance spectra (RðfÞ). This can be thought of as simulating individual pixels
of sd-SFDI image cubes and collecting them into datasets. We also simulated a reference
phantom spectrum for calibration RrefðfÞ for each wavelength. We used the training dataset
to iteratively train an artificial neural network (ANN) to predict sub-diffuse optical properties
from sd-SFDI measurements. The validation dataset was used to validate that the model’s
accuracy was improving during training iterations as to avoid overfitting the model to the
training dataset.

We also fit a semi-empirical equation, developed by Kanick et al.,26 for benchmark compar-
isons. We tested the accuracy and speed of our ANN using the phantom measurements and
compared the ANN’s performance to that of Kanick’s least-squared-minimization technique.26

We then applied the model to cancerous skin tissue samples and visualized the differences in
optical properties between cancerous skin tissue and other skin tissue subtypes.

2.1 Sd-SFDI Process

An overview of the sd-SFDI process can be seen in Fig. 2(a). To image the samples, we used
a custom built SFDI system, diagramed in Fig. 2(b). A DLP Lightcrafter Evaluation Module
digital micromirror device with built-in LEDs (Texas Instruments, Dallas, TX) was used to
project sinusoidal light patterns of varying spatial frequencies and phases onto a sample.
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Based on experimental testing, a minimum of 12 pixels on the DMD was necessary to recreate
accurate grayscale sinusoidal patterns. Due to the limited resolution of the DMD, a plano-convex
singlet lens (f ¼ 15 cm) was placed in front of the DMD’s stock projection lens to decrease the
size of the projected pixels, enabling the system to achieve spatial frequencies exceeding
1.3 mm−1. The system would otherwise be limited to only ∼0.4 mm−1 based on the minimum
projection distance using the included projection optics. The sinusoidal patterns were projected
onto the sample at an angle orthogonal to the patterns’ direction, and all samples were flat or
flattened when imaged. This setup helped reduce specular reflections45 and made measurements
less sensitive to variations in the samples’ height.46 By mitigating changes in the projected
patterns’ spatial frequency as a function of distance from the projection axis, this orthogonal
setup also made measurements less sensitive to the incidence angle and variations thereof over
the length and width of the sample.46

A 5-megapixel monochrome CCD camera (piA2400-17gm Basler, Ahrensburg, Germany)
was used to collect images of the light reflected from the sample.47 We employed the standard
three-phase measurement method, by which measurements were acquired at three phases for
each spatial frequency. These measurements were then demodulated.11 This process was
repeated for 26 spatial frequencies (0.01, 0.025 mm−1, and 24 spatial frequencies evenly spaced
between 0.05 and 1.25 mm−1) and 3 different wavelengths (450, 530, and 620 nm), resulting in

Fig. 2 Sub-diffuse spatial frequency domain imaging method. (a) The full flow diagram for imaging
a tissue sample and rendering a heatmap of its optical properties. This example uses four spatial
frequencies. The tissue is imaged with the three-phase measurement method at various frequen-
cies; the images are demodulated and calibrated for each frequency; and the resulting calibrated
image cube is input into a machine learning model which calculates the optical properties. (b) To
image the tissue, sinusoidal light patterns of varying spatial frequencies are projected onto the
tissue, and the reflected light is measured with a camera. The axis of projection is orthogonal to
the direction of the sine waves to decrease specular reflections and sensitivity to sample height
variations. (c) A neural network similar to the example shown here is used to transform the reflec-
tance spectra of each pixel into an optical property measurement. Each node’s inputs are aggre-
gated in a weighted sum and passed through an activation function to yield the node’s output.
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an uncalibrated [2050 × 2048 pixels × 26 spatial frequencies] image cube per wavelength,
each pixel of each image cube containing a unique demodulated intensity spectrum, MðfÞ.
A calibration phantom was measured with this same method to findMrefðfÞ per pixel per wave-
length. Each pixel of each uncalibrated image cube was then calibrated using the equation
RðfÞ ¼ MðfÞ∕MrefðfÞ � RrefðfÞ,11 resulting in a calibrated image cube for each wavelength.

The spatial frequencies used in this study include 6 frequencies in the diffuse domain
(f ≤ 0.2 mm−1), 5 frequencies in the intermediate domain (0.2 mm−1 < f < 0.5 mm−1), and
15 spatial frequencies in the sub-diffuse domain (f ≥ 0.5 mm−1). The spatial frequencies in
the diffuse domain were included as they improved estimation of μ 0

s (Supplement 1 in the
Supplementary Material), which affects RðfÞ in both the sub-diffuse and diffuse domain.2

This also meant that optical property estimation had to account for possible variations in μa,
which affects RðfÞ in the diffuse domain.11 The upper bound of 1.25 mm−1 was chosen because
higher frequencies showed a poor signal-to-noise ratio due to limitations in the dynamic range
and sensitivity of the camera.48 Optionally, additional demodulation processing11 can be applied
to the images to include the DC frequency, f ¼ 0 mm−1, but validation tests showed no increase
in prediction quality when including the DC frequency (data not shown), likely due to the
frequencies very close to 0 mm−1 which are already included. As such, we did not include
images at f ¼ 0 mm−1 in our procedure.

An ANN similar to that developed by Naglič et al. was developed to predict optical properties
from sd-SFDI reflectance spectra [Fig. 2(c)]. The model was a multi-layer perceptron with two
hidden layers and an output layer,37 implemented with Keras and configured to work on
OpenCL.36 The model, which has several weights that must be trained by fitting to observed
data, ultimately behaves as an empirically trained analytical equation which maps the RðfÞ and
g1 of a pixel to an optical property value. As such, it computes very quickly. Two instantiations of
this model were created and trained for μ 0

s and γ, respectively, allowing each model to more
finely tune to its respective optical property (memory was not a considerable limitation).
While one model with two outputs may have worked instead, using one model constrains the
trained weights of the intermediate layers to have values that lead to accurate results for two
outputs simultaneously, and only the final layer would be able to contain weights unique to
each property. Using two distinct models rids us of this constraint. These models were used
to render μ 0

s and γ heatmaps at all three wavelengths.

2.2 Generating Simulated Dataset and Training the Model

A simulated dataset was generated to train the ANN and the benchmark method’s semi-empirical
equation. A diffuse Monte Carlo program developed by Hennessy et al.49 and Alerstam et al.50

was modified to include the parameter γ. This was achieved by developing a novel phase func-
tion sampling method. In this method, the phase function’s inverse CDF equation used for
inverse transform sampling is replaced with an inverse CDF look-up table using methods similar
to those introduced by Naglič et al.32 In order to allow for simulation across a wide range of the
phase function parameters γ and g1, our look-up table is generated with the modified Henyey-
Greenstein23 (MHG) function when γ and g1 fall within MHG’s valid range (γ ≤ 1þ g1

31) and is
otherwise generated with the GK.51 We approximated GK’s valid range to be γ > 1þ 0.6g1 and
γ < 3g1 38 (Supplement 1 in the Supplementary Material), so our method cannot sample phase
functions with γ ≥ 3g1 . This is not a concerning limitation given the range of phase function
parameters seen in our phantoms and in biological tissue.2,21,26,32–35 Our method uses a novel
mapping which relates the γ and g1 values to the GK parameters38 (Supplement 1 in the
Supplementary Material) to calculate the GK parameters when using the GK phase function.
It should be noted that the GK phase function has an analytical inverse CDF52 that can be used
in tandem with our mapping in place of the inverse CDF look-up table, but using look-up tables
for both phase functions allowed for more seamless switching between GK and MHG, the latter
of which does not have an analytical inverse CDF.32

This hybrid MHG-GK phase function sampling method allows for simulations of RðfÞ
across a wide range of phase function parameters encompassing the γ and g1 values seen in
both our phantoms and in biological tissue.2,21,26,32–35 The method’s ability to sample phase func-
tions with a specified γ and g1 combination, enabled through our GK mapping and MHG’s
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analytical relation to γ and g1,
23 allows for the simulation of a reference phantom’s spectrum

RrefðfÞ. This is necessary for calibrating measurements of physical data so that the calibrated
data can be input into models trained on simulated data.11

We verified that the phase function of the hybrid model was a good match for the phase
function of the calibration phantom as calculated with Mie theory (Supplement 1B in the
Supplementary Material). The modified Monte Carlo program with hybrid phase function sam-
pling was then used to generate a training dataset, a validation dataset, and the calibration spec-
trum. Datasets were generated for combinations of the optical properties seen in Table 1, chosen
to cover the range of optical properties seen in biological tissues2,21,26,32–34 as well as our tissue
phantoms. A wide array of μa values was included to account for variations in μa values when
estimating μ 0

s. Table 1 also shows the optical properties of the phantoms whose measurements
served as the experimental dataset for testing the model. The labels of the datasets, which the
models would be trained to predict, were μ 0

s and γ. The features, which the models would use to
make these predictions, comprised the reflectance values RðfÞ at the 26 spatial frequencies as
well as the value of g1. Table 1 shows the total number of samples used in each dataset.
Combinations that fell outside the upper bound of the GK range (i.e., γ ≥ 3g1 ) were discarded
during simulation, shrinking the total number of samples in the training and validation dataset.

The value of g1 is assumed to be known ahead of time, allowing for its use as a feature. This is
possible because g1 is known for the phantoms and is assumed to be constant at 0.945,53 for
biological tissues. More specifically, the g1 of soft mammalian tissue falls within the range
of 0.8 to 0.95,35 and RðfÞ remains relatively invariant to changes in g1 at g1 values >0.8.54

We note that the training data did not entirely encompass the range of our testing data, which
is an opportunity for future improvement with the model. However, the model still performed
well when applied to testing data whose optical properties fell outside the range of the data the
model was trained on.

The model was trained on the training dataset, and the validation dataset was used to deter-
mine the stopping point. More specifically, the model was set to train for 2000 epochs or until the
mean squared error of the model on the validation dataset failed to improve for 100 epochs in
a row.

While outside the scope of this study, we note that our sd-SFDI method could potentially
also find μa values. The model already includes RðfÞ values at diffuse spatial frequencies in its
inputs and is trained on simulations with a variety of μa values. However, the Monte Carlo
simulations that the ANN was trained on used a semi-infinite geometry, where x and y are
infinite in space, and z extends to negative infinity, which means that the ANN assumes the
sample has infinite thickness. Although this assumption holds at sub-diffuse frequencies,
where the penetration depth of the photons is shallow,26 the assumption does not hold when
considering our tissue samples at diffuse frequencies. At diffuse frequencies, the penetration
depth is in some cases deeper than the thickness of our tissue samples,25 which range from
around 1 to 2 mm in thickness. Fortunately, the impact this has on our model’s μ 0

s calculations,
which only partially relies on RðfÞ values at diffuse spatial frequencies, appears to be minimal,
as shown in Supplement 2 in the Supplementary Material. However, the prediction of μa is
likely to be adversely affected by low sample thickness, so further research would be required
to examine and account for this impact before attempting to predict μa. Alternatively, a future
study could use thicker tissue samples.

Table 1 Parameters used for training, validation, and experimental datasets. Formats of “½x; y �n”,
signify n elements in the range of ½x; y �.

μ 0
s (mm−1) γ g1 μa (mm−1) # of samples

Training [0.5, 6.0] 25 [0.95, 2.20] 18 [0.10, 0.9] 4 [0.001, 0.50] 15 14625

Validation [1.0, 5.5] 10 [0.96, 2.19] 5 [0.10, 0.9] 4 [0.084, 0.50] 6 330

Experimental [1.1, 3.6] 15 [0.97, 2.17] 9 [0.07, 0.93] 8 0.001 15
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2.3 Creating and Measuring Tissue-Mimicking Phantoms

Tissue-mimicking phantoms were created using polystyrene beads suspended in water
(Polysciences Inc., Warrington, PA) with mean bead diameters of d1 ¼ 0.0878 μm (SD:
0.01 μm), d2 ¼ 0.19 μm (SD: 0.01 μm), and d3 ¼ 0.99 μm (SD: 0.03 μm). We prepared two
dilutions of each bead distribution stock solution in distilled water: one to achieve a value of
μ 0
s ¼ 2 mm−1 at 530 nm and the other to achieve a value of μ 0

s ¼ 2 mm−1 at 530 nm, as calcu-
lated using Mie theory.55 This resulted in six bead phantoms which covered γ values ranging
from 0.97 to 2.17 and μ 0

s values ranging from 1.11 to 5.39 mm−1 to cover the ranges of values
previously reported for various biological tissues.2,21,26,32–34 The optical properties of the phan-
toms at each wavelength were quantified using Mie Theory.55 All phantoms had negligible
absorption (assumed to be 0.001 mm−1), as they were made with non-absorbing beads and
distilled water. The six phantoms were measured at three wavelengths, resulting in eighteen total
sd-SFDI image cubes.47,56 No cross polarization was used during sd-SFDI measurement as to
avoid rejecting sub-diffuse photons.57

One of these six phantoms was measured before the rest of the phantoms to serve as a cal-
ibration reference, thus creating the reference spectrum MrefðfÞ for each pixel and wavelength.
When simulating this phantom to find RrefðfÞ at each wavelength, μa was set to 0.001 mm−1 to
represent negligible absorption, as a value of 0 caused problems with the simulator.

2.4 Measuring Skin Tissue Samples

Mohs surgery skin tissue samples were obtained in collaboration with the dermatologic surgery
faculty at Dell Medical School. This study was approved and the informed consent requirement
was waived by the Institutional Review Board at The University of Texas at Austin and the Seton
Healthcare Family. We used four samples from three patients. Excision sites included the ear, the
ankle, and the nose. The samples were frozen, the top layer of each sample was removed and
processed using standard H&E staining methods, and digital microscopic images of the slides
were captured and stitched.58 The thicknesses of the removed layers ranged roughly from 0.5 to
3 mm. Regions of interest delineating epidermis, dermis, and basal cell carcinoma (BCC) were
outlined by a board certified dermatologist and fellowship trained Mohs surgeon (MCF) from
Dell Medical School. The remainder of the sample was thawed and imaged using our custom
SFDI set-up, using the same method and reference phantom that was used for measuring the
phantoms. During imaging, tissue samples were positioned on the stage such that they fell within
the same area the reference phantom was positioned in during imaging, but outside the area of
the specular reflection that the reference phantom had. The tissue samples were flattened under a
1-mm glass slide to mitigate additional specular reflections. Marked H&E images of the tissues
were co-registered with the SFDI heatmaps and used as a mask for each tissue subtype so that the
optical properties of their pixels could be compared.

It is important to note that the co-registration between digital histology images and optical
property heatmaps is not exact, as is likewise reported in the previous studies.2,6 The frozen
sample from which the top layer is removed for histological analysis must be thawed for
SFDI, resulting in slight shape changes to the sample. However, the heatmaps and H&E images
are approximately the same shapes. The marked H&E images were manually rotated, scaled, and
overlaid onto the heatmaps in MATLAB, and the markings were manually translated into the
digital masks, keeping in mind other landmark features of the images to guide the making of
the masks (Supplement 1C in the Supplementary Material).

Another limitation is that the histology image only captures the top-most layer, whereas the
diffuse frequencies of the SFDI image are sensitive to deeper layers of the tissue.56 Moreover,
since the top layer of the sample is removed for histology before the sample is imaged with
sd-SFDI, this top layer itself is not captured in the sd-SFDI images.

2.5 Testing the Model

Average RðfÞ spectra were extracted from the 15 phantom sd-SFDI image cubes by averaging
the spectra from select pixels of the image cubes at each wavelength (Supplement 1B in the
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Supplementary Material). To quantify the accuracy of the trained ANN model, the model was
applied to these 15 averaged RðfÞ spectra along with their corresponding g1 values to predict the
optical properties of each phantom at each wavelength. The mean absolute relative error of the
results for each optical property was calculated using the equation jεj ¼ 1∕n �Pn

i ðyi − ŷiÞ∕yi.
The model was then applied to the SFDI image cubes of the phantoms to render μ 0

s and γ
heatmaps of the phantoms. The SFDI image cubes of the skin tissue were then processed using
the trained ANN to render heatmaps of μ 0

s and γ. The skin tissue was assumed to have an
anisotropy factor of g1 ¼ 0.9.45 Software timing tools were used to measure the frame rate
at which the model was able to render these heatmaps.

In tandem, μ 0
s and γ predictions were rendered using the semi-empirical non-linear fitting

method first reported by Kanick et al.26

3 Results

3.1 Model Speed and Accuracy on Phantoms

The results of the model when tested on the experimental phantom spectra and image cubes are
shown in Fig. 3. Looking at select sub-diffuse optical property heatmaps [Figs. 3(a) and 3(b)], we
see that the model is able to correctly predict the optical properties of these phantoms, whose true
values are shown in white text beneath the samples. Moreover, the model is able to make these
predictions over a wide field and render optical property heatmaps from the sd-SFDI image
cubes. One limitation to note, though, is that the heatmaps contain small artifacts from specular
reflections in the liquid phantoms. This is likely due in part to not being able to use cross polari-
zation. We avoided using this technique because it could reject sub-diffuse photons,57 but it is
often used to filter out specular reflections.45 In order to mitigate the degradation of the inverse
model’s performance caused by these artifacts, the specular reflections were avoided during
all quantitative analysis of phantom heatmaps. This was done by selecting a section from each
phantom that was free from specular reflections (Supplement 1B in the Supplementary Material).

Fig. 3 Performance of the neural network across five homogeneous phantoms with known optical
properties and three wavelengths. Image cubes comprising 26 sd-SFDI images were transformed
into optical property heatmaps for each phantom at each wavelength using the trained deep learn-
ing model, resulting in 15 heatmaps. (a), (b) Select μ 0

s heatmaps and select γ heatmaps, respec-
tively, from the results, with the true value for the phantoms written in white underneath. Note these
selections span multiple wavelengths and phantoms. The model accurately produces wide-field
optical property heatmaps over the range of values tested. (c), (d) The accuracy of the model when
run on an average spectrum from each of the phantom image cubes, where the x axis is the true
optical property, the y axis is the predicted optical property, and the dotted green line represents
unity. The mean absolute relative error was 6.8% for μ 0

s and 3.6% for γ.
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In future experiments, specular reflections may be reduced further by subtracting measurements
of water in a deep well with dark walls from both the sample and reference phantom
measurements.2,45

Quantifying the accuracies further, Figs. 3(c) and 3(d) show the predicted values plotted
against the true values, with the solid line representing unity. The mean absolute relative errors
of the μ 0

s predictions and γ predictions were 6.8% and 3.6%, respectively, which is within the
range of error values previously reported in the literature.2,6,26 When run on simulated versions of
these same phantom spectra, the model performed with an accuracy of jεj ¼ 0.77% for μ 0

s and
jεj ¼ 0.94% for γ, on par with the accuracy that Naglič et al.’s model achieved over a narrower
range of γ values.36

Comparing the speed of this method to the non-linear fit method previously used for sd-SFDI
(Table 2), the ANN is able to render optical property heatmaps from 2050 × 2048 pixel image
cubes in significantly less time. The frame rate of the non-linear fit method is only 0.0005 fps,
i.e., a frame rendering time of 2000 s per frame. In contrast, the ANN run on the same device has
a frame rate of 2.32 fps, i.e., a frame rendering time of 0.43 s per frame, which meets the require-
ment for real-time imaging.14 It is important to note that the ANN method is implemented with
parallelization, allowing it to process multiple pixels simultaneously, while the non-linear fit
method is not. In order to compare the speeds of the two methods independent of their
parallelization, the speed of each process was examined when run on a single pixel. The non-
linear fit method processed a single pixel with an average speed 0.013 s∕pixel, while the ANN
accomplished this in only 0.00187 s∕pixel. Thus even without parallelization, the ANN still
outperforms the non-linear fit method by an order of magnitude.

3.2 Tissue Type Comparison

Some highlighted results of the tissue experiments can be seen in Fig. 4. We focus on μ 0
s and γ at

530 nm in this figure because these two properties showed the greatest quantitative differences
between the tissue subtypes as determined by visual inspection of all quantitative figures.
A comprehensive figure with all results can be seen in Supplement 3 in the Supplementary
Material. Figure 4(a) shows zoomed in regions of interest from the tissue samples for each tissue
subtype. Dashed lines circle the regions of interest on H&E images, μ 0

s heatmaps, and γ heatmaps
for each tissue type. Areas of contrast can be seen in the heatmaps that align with the boundaries
of the tissue subtypes.

Adipose tissue exhibits high μ 0
s, likely due to connective tissue septa which are particularly

dense in subcutaneous fat in areas of the face and head,41 from which 3 of our 4 samples were
excised. Adipose tissue also exhibits high γ, indicating that the large adipocytes result in a high
ratio of the adipose tissue’s largest particles to smallest particles.24 Dermis exhibits a relatively
high μ 0

s and a low γ, which may be caused by its collagen fibers and relatively small constituent
particles.59 BCC tends to have a lower μ 0

s than normal skin tissue subtypes, echoing trends seen
in the previous research.41,43,44 It also exhibits low γ values, which may be associated with its
high density of small nuclei.2

To examine the sub-diffuse optical property differences between tissue subtypes, Fig. 4(b)
shows box and whisker plots of the combined pixels from the tissue subtypes across all four
tissue samples. In these data, while μ 0

s values of BCC show a fair amount of overlap with those of
adipose and dermis, the inner quartiles of μ 0

s values for BCC show almost no overlap with those
of adipose and dermis. Meanwhile, γ seems to separate adipose from dermis and BCC, as its
inner quartiles show no overlap with those of dermis and BCC.

Table 2 Comparison of the frame rate for non-linear fit method versus artificial neural network.

Method Frame rate (fps) Frame rendering time (s/frame) Pixel rendering time (s/pixel)

Non-linear fit 0.0005 2,000 0.013

Artificial neural network 2.32 0.43 0.00187
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If these results prove to be consistent over a larger dataset, viewing them in the context of
previous studies would suggest that γ is a more reliable feature than μ 0

s for discriminating
between adipose and BCC. Salomatina et al. conducted a study using spatially resolved diffuse
measurements with wavelengths ranging from 370 to 1600 nm. The study found that adipose
tissue in skin excised from the face, neck, and scalp exhibited trends similar to our results, with
μ 0
s higher in adipose tissue than in BCC. However, this study also found that adipose tissue in

skin excised from the back exhibited low μ 0
s values, on par with those of BCC, due to its thin

connective tissue.41 McClatchy et al., in a study on breast tissue using sd-SFDI at wavelengths of
658, 730, and 850 nm, found that adipose tissue from breast also exhibits low μ 0

s values.
However, this tissue still exhibited high γ values similar to what is seen in our results.2

These results indicate that γ could be more consistently higher in BCC than in adipose tissue,
whereas μ 0

s may not always be higher in BCC than in adipose tissue.
These findings suggest that using both of these properties in tandem could separate all three

tissue subtypes from each other. To explore this idea further, Fig. 4(c) shows a two-dimensional
scatter plot of the mean μ 0

s value versus the mean γ value from each tissue’s adipose, dermis, and
BCC regions, ± one standard deviation. The optical properties of each tissue subtype form
small clusters with overlap within standard deviations but separated means.

Figure 5 examines the results of a select tissue sample. Looking at a single-tissue sample over
a wide range is more representative of a clinical scenario, in which a medical professional may
use sub-diffuse imaging to help discriminate between tissue subtypes. Figure 5(a) shows a recon-
structed white light image of this tissue sample, created using the demodulated DC intensity
images at the red, green, and blue wavelengths as channels in an RGB image. This is not a
perfect reconstruction, as the individual wavelengths were not white-balanced, but it serves
to approximate a white light photo of the tissue. Figure 5(b) shows the marked H&E image
of this sample. Figures 5(c) and 5(d) show examples of the sd-SFDI reflectance images at a
diffuse spatial frequency (f ¼ 0.1 mm−1) and a sub-diffuse frequency (f ¼ 0.7 mm−1), respec-
tively, taken at a wavelength of 530 nm. The microstructural variety present within the tissue
sample is not apparent when examining the white light image or the reflectance maps. However,
looking at the sub-diffuse optical property heatmaps of the sample in Figs. 5(e) and 5(f), we see
that the sample contains a wide range of optical property values indicating vast differences in
microstructure. Moreover, looking at the tissue subtype masks that the marked histology image
was used to form [Fig. 5(g)], we see that some of the contrast seen in the heatmaps aligns with the
tissue subtype regions of interest. Finally, looking at a two-dimensional scatter plot of μ 0

s versus γ
for all pixels from these regions of interest [Fig. 5(h)], we see that the optical properties of the
pixels from these subtypes fall into their own clusters, though these clusters do overlap.

Fig. 4 (a) Selected regions of the H&E images, along with corresponding regions of the μ 0
s and γ

heatmaps at 530 nm, for each of the tissue subtypes. Areas of contrast which align with the
marked regions of interest can be seen in the heatmaps. (b) Box and whisker plots of the optical
properties of the pixels from each tissue subtype combined across all four tissue samples.
BCC has lower μ 0

s than adipose and dermis, while adipose has higher γ than dermis and BCC.
(c) Two-dimensional scatter plot of the mean values of the optical property for each sample’s
tissue subtypes ± one standard deviation. The tissue subtypes fall into three distinct clusters,
with γ separating adipose from BCC and μ 0

s separating Dermis from BCC.
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In general, the heatmaps of the samples frequently showed contrast that corresponded
roughly with the regions of interest, although this contrast did not go so far as to consistently
create clear, obvious outlines of these regions of interest. The scatter plot shows clear trends
between the optical properties of the tissue and the subtype of the tissue, supporting the hypoth-
esis that sub-diffuse optical properties could be useful in identifying and discriminating between
skin tissue subtypes.

4 Discussions and Conclusions

These results represent the first time that sub-diffuse optical property heatmaps have been ren-
dered from experimental sd-SFDI images in real time. This advancement, if combined with real-
time sd-SFDI acquisition, could bring wide-field measurement of sub-diffuse optical properties
to real-time speeds relevant for clinical applications (≥1 fps).14 Real-time acquisition could be
enabled by using state-of-the-art acquisition and demodulation techniques,14,17 which can be
readily used for sd-SFDI, and using fewer spatial frequencies in the ANN. Work by Naglič et al.

Fig. 5 A representative tissue sample. (a) Reconstructed white light image of the sample.
(b) Digital histology slide marked with regions of interest for the three skin tissue subtypes focused
on for this study: adipose, dermis, and BCC. (c), (d) Demodulated and calibrated reflectance
image for a diffuse and a sub-diffuse spatial frequency. Both images are taken at 530 nm. (e),
(f) Optical property heatmaps of this sample for μ 0

s and γ, each at 530 nm. The images reveal
structure not seen in the white light image. (g) Regions of interest from the marked histology slide
translated onto the shape of the co-registered heatmaps. The regions of interest align with areas of
contrast seen in the heatmap images. (h) μ 0

s versus γ scatter plot of all the pixels from these regions
of interest. Pixels from subtypes fall into optical property clusters, albeit with overlap.
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demonstrates that sub-diffuse optical property heatmaps can be accurately rendered with ANNs
using as few as five spatial frequencies: (0.0, 0.1, 0.2, 0.4, and 0.8 mm−1).36

This heatmap rendering method can also be used for other applications outside of cancer
detection, such as measuring burn wound severity3 or agriculture applications such as detecting
subsurface bruising in apples.22,60 While the range of properties for which the model can produce
accurate predictions is limited by the range of properties it is trained on, the model can easily be
retrained on new datasets generated with the sd-SFDI Monte Carlo algorithm for any possible
applications requiring a wider range of optical properties.

Our unique GK parameter mapping and combined MHG-GK phase function sampling
method allow for targeted simulation of sub-diffuse reflectance spectra over a wider range
of γ and g1 values than previously possible. This sampling method enabled the application
of the ANN to physical experimental sd-SFDI measurements. However, the method could also
be used to simulate sub-diffuse spectra for other purposes, such as improving sub-diffuse optical
property estimation from spatially resolved reflectance measurements.61

Examination of the sub-diffuse optical properties of the tissue samples revealed intriguing
differences between the properties of the cancerous skin tissue regions and those of the normal
tissue regions explored in this study. Moreover, the observed trends are congruent with the lim-
ited existing information on sub-diffuse optical properties of biological tissue in general as well
as on skin tissue specifically.2,26,41–44 These preliminary data are exciting, but measurements of a
large number of tissue samples from several different subjects are needed to identify differences
in the sub-diffuse optical properties of skin tissue subtypes that are both statistically and clin-
ically significant.

Future studies can also expand this work to other skin tissue subtypes, such as epidermis and
hair follicles.41 Moreover, this work can be expanded to additional tissue types, with some cav-
eats. Skin cancer is an ideal candidate for this work. There is already a well-established and
widely used tissue-conserving surgery method, Mohs, in which examination of surface margins
is standard, and the existence of remaining cancer can be confirmed or denied by examining the
topmost layer alone.28,29 However, the limited penetration depth of sd-SFDI is less applicable to
cancers for which examination of the surface margin alone is insufficient to confirm negative
margins, such as breast cancer. Breast cancer surgery requires examination of deeper tissue (i.e.,
up to 2 mm below the tissue surface for ductal carcinoma in situ) to obtain clinically accepted
margin clearances.62 Additionally, this work may be more difficult to incorporate for cancers
for which tissue-conserving surgery is generally not considered a gold standard, such as with
testicular cancer.63

There are several other potential future studies which could be very useful. One would be to
run a similar experiment using different wavelengths of light. This study used wavelengths in the
visible range. These wavelengths penetrate tissue less deeply,43 making them useful for taking
the shallow measurements needed to examine surface margins during image guided surgery.
However, skin tissue subtypes have been shown to have better separation of μ 0

s at longer
wavelengths,41 and there could exist a similar trend for γ. This possible trade-off would be
worth exploring. Another future study which could improve these results further would be to
incorporate profilometry correction, a technique which has already seen wide use in SFDI
research.21,46 All of our sd-SFDI measurements were captured with the angle of projection ori-
ented orthogonally to the direction of the sine waves. Taking additional measurements where the
angle of incidence is instead oriented parallel to the direction of the sine waves provides mea-
surements that are highly sensitive to changes in the height of the sample and can be used to
automatically correct measurements to account for these changes.46 An additional reason to
explore using sd-SFDI with multiple pattern orientations is images captured this way can be
used to determine collagen fiber orientation,64 information which is difficult to determine at
wide-scale with other imaging techniques.65 The structure of collagen fibers in skin tissue
directly relates to the tissue’s subtype,41 and combining this information with the tissue’s
sub-diffuse optical properties could result in a powerful diagnostic feature set.

A possible limitation that we did not study is whether or not the freezing and thawing of the
samples has any impact on the results of the optical property measurements. All samples were
processed the same way, so any consistent effects from this would be consistent across all
samples. However, it is possible that imaging the samples before freezing would yield different
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values of the optical properties. This could be problematic if that difference is significant, as the
proposed use case of image-guided surgery does not involve freezing and thawing the tissue.
There is also the possibility that optical properties found when imaging tissue that has not been
frozen and thawed could be more accurate, or, more importantly, more useful in discriminating
cancerous tissue. For these reasons, it would be useful to conduct a study on the impact of freez-
ing and thawing a sample before determining its optical properties.

This study demonstrates a fundamental step forward in measuring sub-diffuse optical proper-
ties across a wide-field in real time and has already led to further projects in real-time sd-SFDI.66 It
also motivates further exploration into the potential of these properties in differentiating between
cancerous and normal tissue subtypes. Altogether, it provides a foundation for the prospective goal
of ultimately incorporating sd-SFDI into real-time medical applications, such as image-guided
surgery.
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