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Abstract

Significance: Standardized data processing approaches are required in the field of bio-Raman
spectroscopy to ensure information associated with spectral data acquired by different research
groups, and with different systems, can be compared on an equal footing.

Aim: An open-sourced data processing software package was developed, implementing algo-
rithms associated with all steps required to isolate the inelastic scattering component from sig-
nals acquired using Raman spectroscopy devices. The package includes a novel morphological
baseline removal technique (BubbleFill) that provides increased adaptability to complex baseline
shapes compared to current gold standard techniques. Also incorporated in the package is a
versatile tool simulating spectroscopic data with varying levels of Raman signal-to-background
ratios, baselines with different morphologies, and varying levels of stochastic noise.

Results: Application of the BubbleFill technique to simulated data demonstrated superior base-
line removal performance compared to standard algorithms, including iModPoly and MorphBR.
The data processing workflow of the open-sourced package was validated in four independent
in-human datasets, demonstrating it leads to inter-systems data compatibility.

Conclusions: A new open-sourced spectroscopic data pre-processing package was validated on
simulated and real-world in-human data and is now available to researchers and clinicians for the
development of new clinical applications using Raman spectroscopy.
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1 Introduction

Over the last decade, Raman spectroscopy has seen a resurgence in biomedical applications, in
good part due to its synergy with emerging advances in data interpretation enabled by recent
trends in machine learning and artificial intelligence.1–3 The increasing appeal for Raman spec-
troscopy in medical applications can be traced back to the fact it allows non-destructive (e.g.,
non-ionizing radiation) interrogation of any biological tissue or fluid, potentially informing on
hundreds of biomolecular vibrational bonds within the same measurement. A strength of the
technique is that this information can be reinterpreted as a molecular fingerprint lending an inter-
pretation of the material’s composition in terms of the relative concentration of proteins and
specific amino acids, lipids, deoxyribonucleic acid, and ribonucleic acid, as well as water and
other metabolites.4,5

In biomedical sciences, Raman spectroscopy technologies have been deployed at different
spatial scales on tissues and on biofluids. Spatial scales consist of confocal microscopy appli-
cations for imaging at cellular resolution,6–8 up to mesoscopic scales for biofluids,9–13 in situ
tissue measurements during surgery,14–16 and more recently, at macroscopic scales.17–19 For these
applications, tissue and fluids were submitted to different pre-processing methodologies. These
include in situ in vivo (without sample pre-processing), in situ ex vivo (aqueous solution to
maintain tissue viability/integrity), deposition on ex vivo microscope slides for formalin-fixed,
paraffin-embedded tissue, and centrifugation for blood and saliva applications. Other important
aspects to consider, in all study designs and imaging protocols, relating to the potential impacts
associated with measurement temperature,20 heat-induced damages, and signal contamination
from preservation chemicals and contaminants.

Raman spectroscopy technology variants include spatial offset Raman spectroscopy
(SORS),21–26 surface-enhanced Raman spectroscopy (SERS),27–31 and shifted-excitation Raman
difference spectroscopy (SERDS).32–34 By modulating the distance between the excitation
source and the light re-emission detection locations, SORS allows access to different tissue
depths, albeit at the cost of reduced photonic signals, capitalizing on the varying photon sensi-
tivity functions (co-called diffusion banana shapes) in highly scattering media. SERS uses the
plasmonic effect from the coupling of Raman-active molecular bonds with nanostructured met-
allic surfaces to enhance the inelastic scattering signal of specific molecular bonds, effectively
amplifying signals up to several orders of magnitude, although enhancement factors attained in
biological material are usually more modest. Finally, SERDS is a method alleviating the need to
remove baseline spectral contributions through a direct subtraction of spectra acquired at two
closely separated excitation wavelengths. While this technique offers an attractive alternative to
the use of background removal algorithms, it does not help resolve the issue of the limited
signal-to-background ratio (SBR) (i.e., inelastic scattering over intrinsic tissue fluorescence)
in bio-Raman spectroscopy. Fluorescence from biomolecules usually diminish monotonically
(approximately quadratically) with excitation wavelength (λ), while the inelastic scattering cross
section decreases approximately as λ−4. Excitation wavelengths used in Raman spectroscopy are
most often in the red to near-infrared (NIR) range, frequently including 670, 785, 830, and
1064 nm.35 The latter could, by probing tissue into the short-wavelength infrared (SWIR) region,
provide advantages in terms of deeper tissue sensing (reduced elastic scattering and absorption)
as well as an improved Raman-to-fluorescence ratio. However, these advantages need to be bal-
anced against the need to switch sensing technologies, from CCD detectors to InGaAs detection
technologies in the SWIR, at the cost of reduced sensor quantum efficiencies and usually less
favorable noise characteristics. Time-resolved detection using pulsed lasers and time-gated mea-
surements can also be used to address the signal-to-background problem in biological samples.
This is done by limiting light detection to non-resonant interaction phenomena with relaxation
time scales occurring on sub-nanosecond timescales, thereby excluding contributions from
resonant phenomena such as fluorescence.36

The common denominator of most of these Raman spectroscopy methods is that they lend
spectra composed of up to 1000 to 2000 intensity bins (e.g., vectors) that require post-acquisition
processing data treatment to isolate the inelastic scattering contribution associated with the inter-
rogated material. This is essential because the inelastic scattering (i.e., Raman scattering) con-
tribution is typically orders of magnitude smaller when compared to endogenous fluorescence
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from tissue biomolecules (e.g., collagen, elastin, NADH, and FAD). Moreover, spectra are
always distorted by instrument signal contributions (e.g. fluorescence and Raman scattering
from optical components), by the spectrally varying response of its optical components, as well
as the presence of cosmic rays.37–39 Post-acquisition processing is generally performed as an
intermediary step, after spectral acquisition and before (hence pre-processing) visual analysis
or machine learning applications (Fig. 1). In that context, achieving Raman signal pre-processing
in a manner that is standardized and that requires minimal expert knowledge is essential for the
future development of Raman spectroscopy biomedical applications. This would allow
researcher to compare their processed data (i.e., Raman spectra), would enable compatibility
and portability of machine learning models developed for similar biomedical applications, and
ensure future proofing of currently developed technologies.

This manuscript introduces the open Raman processing library (ORPL), an open-sourced
spectral processing python package that includes a new morphological baseline (e.g.,

Fig. 1 Depiction of all steps involved in acquiring spectroscopic data using Raman spectroscopy
devices and the development of predictive machine learning models. STEP 1: spectra are
acquired in different contexts [different organs (in situ, ex vivo, or fixed) or body fluids] with different
instruments, including commercial Raman microscopes, hand-held surgical guidance probes or
optical biopsy needles. STEP 2: Data (Raman spectra and metadata, including patient informa-
tion) is stored in files with formats that can be processed using readily available tools (e.g., Python,
Matlab). STEP 3 illustrates all pre-processing algorithms include in the open-sourced data
processing package. STEP 4 illustrates the process involved in training, validation and testing
of machine learning models with performance assessment based on receiver-operating-
characteristic (ROC) analysis.
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fluorescence from bio-molecules) removal algorithm named BubbleFill. This novel algorithm
features several advantages over other state-of-the-art methods, such as a reduced reliance on
expert knowledge and a decreased risk of under- and over-fitting spectral curves. The library
comes with a module allowing to generate benchmark spectra with various Raman, baseline and
noise characteristics. The spectra generated from this tool, along with real-world datasets,
acquired on different tissue/fluid types using different instruments, are used to demonstrate the
use of techniques and the low-level of variability induced by changes in level and shape of the
fluorescence baseline and instrument response.

2 Methods

The ORPL, (pronounced “orpel”) package offers the necessary tools for processing Raman sig-
nals acquired with a variety of different system types, and was optimized to address the specific
challenges that arise with biological samples. As there are currently no standards defining
which methods should be used for pre-processing steps (both in academia and industry),
systems developers tend to include proprietary and obfuscated algorithms and spectral process-
ing techniques within systems controllers and data acquisition software. In some cases, it is
neither possible nor practical (without extensive software modifications) to export and save
a raw spectrum measured by the detector (prior to e.g., cosmic ray removal, averaging, filtering,
and instrument response correction). This renders unrealizable the use of a unified processing
workflow across Raman datasets measured with different instruments. For this reason, ORPL
was designed to be modular, with each module being independent of the others, allowing out-of-
sequence usage.

This section presents the different modules and tools that are available as part of the ORPL
package, and the general guidelines for Raman signal pre-processing that our group has devel-
oped through multiple studies since 2013 [Fig. 1(a)]. An example of spectral processing is shown
in Fig. 2, where each intermediary step is illustrated. The acquisition was performed on a sample
of Nylon with a spectrometer from the company EMVision (equipped with a Newton CCD cam-
era, Andor) coupled to a 785-nm laser (Innovative Photonics Solutions). Spectra were measured
using a handheld probe (EMVision) and the system was operated via a custom in-house soft-
ware. First, a single spectrum was measured with the excitation source turned off, that is the
background signal (e.g., including ambient light). Then, a series of N spectra was measured
with the excitation source turned on; those are the accumulations or raw spectra. Additional
measurements were made on a acetaminophen tablet and on a NIST SRM 2241 standard for
x-axis and y-axis calibration, respectively. The processing steps are applied in the following
order: truncation (Sec. 2.1), cosmic ray removal (Sec. 2.2), background removal and combina-
tion of the accumulations (Sec. 2.3), y-axis calibration (Sec. 2.4) and baseline removal (Sec. 2.5).
Additional steps may include x-axis calibration (Sec. 2.6), smoothing and normalization
(Sec. 2.7), but are optional and depend on end-usage of the measured Raman spectrum.
Quantitative metrics can also be used to quantify the spectral quality of the spectra to allow
comparison between spectra acquired with different systems in the scope of different studies
(Sec. 2.8).

2.1 Truncation

Raman spectrometers are frequently outfitted with high-pass filters (e.g., interference optical
filters) to remove Rayleigh-scattered light that is typically orders of magnitude more intense
than inelastic scattering. The filter cutoff must be as sharp and as close as possible to the exci-
tation wavelength to limit excitation light bleed-through while maintaining sensitivity to Raman
shifts <400 to 500 cm−1. At the same time, the acquisition spectrometer window may extend
past the filter cutoff point, toward shorter wavelengths. This results in a spectral shift region at
the beginning of every measured signal where the high-pass filter transition and the spectrometer
window overlap [Fig. 2(a)], camera pixels 0–50). This region is truncated and removed from
the measured accumulations and background.
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2.2 Cosmic Ray Removal

Cosmic rays randomly hit spectrometer camera pixels during the acquisition of Raman signals,
resulting in the appearance of sharp artifacts. Short of reducing exposure time, nothing can be
done to mitigate the presence of cosmic rays during acquisitions. Worse, the typically long
acquisition times required for biological samples (seconds, up to minutes in some cases) makes
the presence of cosmic ray artifacts likely. Fortunately, they are relatively easy to remove using
one of the following methods.

The first approach, implemented in ORPL’s crfilter_single() function, relies on the localized
nature of the cosmic ray artifact. Since their spectral span is usually limited to 3–5 camera pixels,
it is possible to (1) use the numerical derivative of the spectrum, (2) identify cosmic ray artifacts
using an adaptive threshold, and (3) remove the artifact from the original spectrum using inter-
polation. This method should be limited to cases where it is impossible to acquire several spectra
during an acquisition (i.e., a single accumulation, N ¼ 1), or for removal of cosmic rays from a

Fig. 2 Overview of processing steps demonstrated on a signal measured from nylon with a point-
probe system. (a) The raw accumulations and background; (b) after truncation; (c) after cosmic ray
removal; (d) after background removal and combining accumulations; (e) after y-axis calibration;
and (f) after baseline removal.
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background signal. This is because it can be difficult to tune the algorithm parameters to remove
every cosmic ray while keeping the signal of interest intact.

The second approach, implemented in ORPL’s crfilter_multi() function, relies on the random
nature of cosmic rays. Because it is exceedingly unlikely that two spectra or accumulations
exhibit a cosmic ray artifact at the samewavelength (same camera pixel), it is possible to (1) com-
pare intensity across spectra (from different accumulations) wavelength per wavelength to com-
pute the disparity, (2) identify outliers as artifacts, and (3) replace the region neighboring the
artifact using interpolation. Related spectra can be the different accumulations from a single site
using a point-probe system, or spectra acquired over a small sample region using an imaging
system such as a Raman microscope.

In general, the second method should be prioritized whenever possible, as it tends to identify
cosmic rays more reliably while minimally affecting the filtered signals and is easier to tune.
However, it can only be used effectively on multiple signals or accumulations, which are not
always available.

2.3 Background Removal and Combining Accumulations

Backgrounds are measured before an acquisition to account for contributions to the signals that
are not related to the sample, such as ambient light. They should be measured with the same
experimental parameters (e.g., exposure time and instrument position whenever possible) as the
main acquisitions, but with the excitation source turned off. It is also important to make sure no
cosmic ray artifacts are present on a background spectrum to avoid introducing a downward
spike in the signal. This can be done using the crfilter_single() on the background before removal
when a single background signal is measured, or with crfilter_multi() otherwise. After this, the
background is directly subtracted from the spectrum, after normalizing for exposure time. When
multiple accumulations are measured for the same acquisition site, they are combined into a
unique spectrum by computing their arithmetic mean, leading to improved signal-to-noise ratio
(SNR). If that is the case, the background should be subtracted after the accumulation average to
avoid unnecessary computational steps.

2.4 Y -axis Calibration

Instrument response correction is a necessary step for any spectroscopic measurement. Typical
methods involve measuring using a spectrum from a reference calibration light source of known
emission profile to recover the instrument response function (IRF). However, this approach can
be challenging to integrate in most Raman spectroscopy acquisition workflows due to the
requirement of additional equipment and the difficulty of positioning the calibration lamp.40

Instead, an alternate method for calibrating Raman instruments (e.g., correct for filter, detector
etaloning, and quantum efficiency effects41) is based on measurement on a standard reference
material (SRM) calibrated and manufactured by NIST (SRM-2241 for 785-nm excitation).35

Because this method does not involve the use of additional instruments (irradiance source),
it is better suited for use in clinical environments where time and space are limited.
Additionally, reference materials can be encased in a custom 3D-printed enclosure to facilitate
positioning of probes or instruments and improve systems calibration repeatability. With this
method, the IRF is computed from a Raman spectrum measured on the SRM using experimental
parameters (laser power and exposure time) that maximize the sensor’s dynamic range. Then, the
measured spectrum is processed using the steps previously described: truncation, cosmic ray
removal, background removal. After those steps, the instrument’s IRF is computed from the
known theoretical fluorescence response (SRMtheoretical), given as polynomial coefficients by
the manufacturer and the measured signal (SRMmeasured) as

EQ-TARGET;temp:intralink-;e001;116;134IRF ¼ SRMmeasured

SRMtheoretical

: (1)

The instrument response is then corrected for by dividing the Raman spectrum acquired by
the IRF vector.
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2.5 Baseline Removal

2.5.1 Standard algorithms

Baseline removal is the most difficult yet most critical step in the processing of a Raman spec-
trum. Because the probability of Raman scattering is orders of magnitude smaller compared
to elastic scattering and fluorescence (in biological materials), even small artifacts introduced
during this step can have a disastrous effect and completely overshadow the Raman signal. A
common baseline removal method consists in using a polynomial fit (typically of order 5 or 6)
coupled with a peak rejection rule (e.g., iModPoly algorithm42). The peak rejection rule is used to
exclude regions of the signal that feature Raman peaks. Ideally, the entire Raman signal is
excluded, leaving only a smooth baseline to be fitted with the polynomial function. This method
is simple and can be effective in cases where Raman peaks are easily detected with simple peak-
finding algorithms and if the baseline can be well-modeled by a polynomial function. However,
it is not often the case for biological samples. Although intrinsic fluorescence can be adequately
modeled as a polynomial function, the same cannot be said for absorption and scattering within
the visible-IR range. Furthermore, biological Raman peaks are weak and complex, which makes
them far harder to automatically detect compared to pure chemical compounds or inorganic mate-
rials. The result is that polynomial methods for baseline removal are difficult to tune and often
introduce important artifacts when used for spectra measured on biological samples [Fig. 3(a)].
A method developed by Perez-Pueyo based on morphological processing (referred to as MorphBR
moving forward) has shown to be better suited than polynomial fitting for biological applications.43

However, baselines removed using this algorithm feature a jagged staircase effect and a “hill,” that
is as wide as the filtering window, near the beginning of the spectrum [Fig. 3(b)].

2.5.2 BubbleFill algorithm

Inspired by the approach of Perez-Pueyo (MorphBR), we developed a new algorithm based on
morphological processing that results in a smoother baseline fit, introduces fewer artifacts and
for which fitting parameters can be tuned to different levels across the x-axis. We named this new
algorithm BubbleFill because the fitting process uses circular bubbles to fill the region under-
neath the spectrum. A detailed flowchart of the algorithm is shown in Fig. 4 and an illustration of
the bubble growth loop is presented in Fig. 5. First, the overall slope of the spectrum is removed
using a linear fit and the result is scaled for the x-axis and y-axis to span the same range
(square aspect ratio). The baseline estimate is initialized at 0 over the entire x-axis. Then, circular
bubbles are iteratively grown under the scaled spectrum, starting with a bubble of diameter equal

Fig. 3 Demonstration of problems with common baseline removal algorithms. The spectrum used
in this example was measured with a Renishaw Raman microscope on saliva samples.13

(a) iModPoly (polynomial fit) and (b) MorphBR (morphological baseline removal).
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to the spectrum’s length aligned on the center of the x-axis. The bubble pops when it reaches the
spectrum, and two new bubbles start to grow on each side of the contacting point. A bubble’s
diameter and alignment depend on the x-axis region where it is grown. After every bubble has
popped, the new baseline estimate is updated as the maximum value between the bubble and the
current baseline. This process repeats until every new bubble has reached the critical minimum
diameter specified as a tuning parameter. Finally, the baseline estimate is smoothed using a
Savitzky–Golay filter and scaled back to the original spectrum y-axis range. The final Raman

Fig. 4 Flowchart of the BubbleFill baseline removal algorithm. The algorithm inputs are: (a) A
raman signal (S0) represented as a vector of length N ; (b) the minimum width of the bubbles
allowed to grow (ϕmin); and (c) the order of the polynomial fit used to remove the global slope
of the signal (f order). First, the global slope of the signal (S0) is removed using a polynomial fit
and the signal intensity is normalized to obtain a square aspect ratio (min ðS0Þ ¼ 0,
max ðS0Þ ¼ 1). Then, bubbles of increasingly smaller size are grown underneath the signal and
the baseline fit (B) is iteratively updated. Once the bubble growth loop is completed, the square
aspect ratio normalization is reversed and the baseline fit is smoothed using a Savitzky–Golay
filter. The output Raman signal is computed as the subtraction of the baseline fit to the input signal.
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signal is then obtained by the subtraction of the baseline estimate to the original spectrum. The
only tuning parameter corresponds to the smallest allowed bubble diameter. The smaller they are
allowed to grow, the more aggressive is the baseline fitting process and vice versa. Additionally,
it is possible to specify different bubble diameters across the x-axis, effectively achieving a
different degree of sensitivity over different regions of the input signal.

2.6 X -axis Calibration

For the same reason that the y-axis calibration of a Raman instrument should ideally not be made
using a calibration light source, the x-axis Raman shift needs to be computed from a reference
sample’s spectrum. Reference samples used for this purpose should have a Raman to baseline
ratios (RBR) that is the ratio between the intensity of the tallest Raman peak to the maximum of
the baseline signal, of at least 0.2. Additionally, it is preferable to use samples featuring narrow
Raman peaks that can be easily identified with an automatic peak-finding tool, such as SciPy’s
find_peaks() function. Acetaminophen and Nylon are two reference samples well suited for this
purpose. They both feature narrow peaks that are uniformly spread over the 0 to 2000 cm−1

region, have an RBR ratio above 0.5, are shelf stable while not requiring tedious maintenance
and can easily be brought into sterile environments.

To calibrate a Raman spectrometer’s x-axis, a spectrum is measured from a chosen reference
sample, then the spectrum is processed using the steps described in Secs. 2.1–2.5. The camera
pixel location index of the most prominent Raman peaks are identified using a peak-finding tool
[e.g., SciPy’s find_peaks() function]. Finally, a polynomial fit of order 2 or 3 is used to create a
map conversion between camera pixel index and Raman shifts. An important note, when cal-
ibrating the x-axis for machine learning applications, is that it is critical to interpolate every
spectrum over a common x-axis. Otherwise, there is no guarantee that all spectra are expressed
in the same vector space or, in other words, that the intensity vectors across spectra correspond to
the same wavelength/energy.

Fig. 5 First six iterations of the bubble growth and baseline update iterative process that is at the
core of the BubbleFill algorithm. Only the first six iterations are displayed, resulting in a small,
obtuse angle toward the right side of the peak. Additional iteration reveals that a small bubble
is eventually grown in that region and significantly improve the baseline fit. The Savitzky–
Golay filter applied to the baseline fit after the bubble growth process further smooths possible
remaining sharp angles.
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2.7 Smoothing and Normalization

Smoothing and normalization are highly dependent on the end use of a Raman spectrum. When
spectra are intended for visual analysis, they are smoothed using an average moving filter and
normalized so that the resulting spectrum’s minimum is 0 and maximum, or intensity at a chosen
Raman shift, is 1. This type of normalization helps with visual comparison and assessment of
spectra acquired on samples that cover a wide range of absorption and scattering. When spectra
are used in machine learning applications, however, they are not smoothed and are normalized
using the standard normal variate (SNV) method. The SNV normalized (s⋆) transformation of
a signal (s) is given as

EQ-TARGET;temp:intralink-;e002;116;620s⋆i∈½0;N� ≔
si − s

1
N

P
i
ðsi − sÞ2 ; (2)

where the normalized signal has a mean of 0 and a standard deviation of 1.

2.8 Spectrum Quality Factor

The definition of a general spectra quality factor is necessary for comparison and ranking of
signals from different datasets. However, common metrics such as the SNR or the RBR tend
to be highly dependent on the instrument (spectrometer slit and resolution and detector effi-
ciency) and acquisition parameters (excitation power, and exposure time). Because of this,
Raman signals measured from different sample types or using different systems tend to have
vastly different SNR and RBR. Often, a top-quality spectrum from one dataset would have
an SNR and RBR smaller than every spectrum from another dataset. It is therefore impracticable
to use either metric for general spectrum quality comparison across multiple datasets or instru-
ments. Instead, the quality of the Raman spectra presented in this work was measured using the
average signed squared intensity (ASSI) as defined as

EQ-TARGET;temp:intralink-;e003;116;400ASSI ≔
1

N

XN

i¼1

sgnðr⋆i Þ · r⋆2i ; (3)

where r⋆ is an SNV normalized Raman spectrum and sgnðxÞ is the sign function of x, that is −1
or 1 whether x is negative or positive. Given this definition, the ASSI of an arbitrary Raman
signal is bound between −1 and 1. Because an SNV-transformed signal’s average is 0, squaring
the Raman intensity is necessary for the ASSI computation sum to return a non-zero value.
Additionally, this non-linear scaling and the use of the sign function favors large intensity peaks
and penalizes signals that have intensity drops below the signal average. In summary, if a signal
contains few large and narrow peaks, its ASSI will be large, whereas if a signal contains many
small and broad peaks, its ASSI will be small. Finally, a signal that contains only stochastic noise
will have an ASSI of 0.

3 Results and Discussion

Two different complementary approaches were used for the validation of ORPL. First, a module
for the numerical generation of synthetic spectra was implemented as part of the library. This
module enables the creation of synthetic benchmark spectra that can be used for quantitative
testing of the novel BubbleFill baseline removal algorithm. Then, experimental datasets from
previous studies have been compiled and uniformized in a single dataset. The uniformization
consisted in the conversion of all data files into the .json open standard file format and the bun-
dling of acquisition metadata as object properties for each spectrum. The compound dataset was
used for validation of the capabilities of ORPL for the processing of spectra from different bio-
logical sample types (including different tissue types or similar tissues with different sample
preparation) across different systems. Here, validation served to confirm that the BubbleFill
algorithm addresses current limitations of other baseline removal algorithms and that the
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processing workflow implemented in ORPL enables the recovery of Raman spectra featuring
vibrational bands commonly expected in biological samples.

3.1 Comparison of Baseline Removal Algorithms: Synthetic Tool

Synthetic spectra (Si) were modeled as a combination of three signal components: Raman (Ri),
baseline (Bi) and noise (Ni). Generation of benchmark signals in this manner allows a fine con-
trol on the desired SBR and SNR. Additionally, outputs given by a baseline removal algorithm
can be compared to the original signal components with which the input spectrum was generated
to compute overall fitting error. However, the Raman and baseline components used for the
generation of synthetic spectrum need to be independent of the baseline removal algorithm
to be tested to limit possible biases. The formula used to generate synthetic spectra is

EQ-TARGET;temp:intralink-;e004;116;591Si ¼
sbr · Ri þ Bi

maxðsbr · Ri þ BiÞ
þ Ni; (4)

where the index i runs from 1 to N, that later being the total number of bins composing each
spectrum.

The Raman component used for generation of benchmark spectra were experimentally
measured on acetaminophen, Nylon and PDMS samples using a point probe system44 and
were processed using the aforementioned workflow. The experimental Raman spectra were
hand-fitted as a superposition of Gaussian curves [Fig. 6(a)] to ensure only clean Raman peaks
remained, and to limit eventual biases introduced by the baseline removal algorithm. For the
baseline component, spectra were measured on aluminium and nigrosin. As neither of the signals

Fig. 6 Baseline algorithm benchmark with synthetic spectrum generated from the aluminium
baseline and acetaminophen Raman with a RBR of 0.05. (a) Manual fitting of a signal composed
of Gaussian peaks over a experimental spectrum. (b) Synthetic benchmark spectra can be created
by combining a Raman signal component (nylon, PDMS or tylenol) and a baseline signal com-
ponent (nigrosin or aluminium). (c) The Raman to Baseline Ration can be adjusted to be repre-
sentative of different tissue types or applications.
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featured noticeable Raman peaks, it was concluded that their spectral responses consisted essen-
tially of pure fluorescence (baseline) signals. These experimental baselines were smoothed using
a 50-pixel wide average moving filter to further remove residual traces of noise resulting in the
Baseline components (Bi) used for the generation of benchmark spectra. Together, the two base-
line components and three Raman components [Fig. 6(b)] enable the creation of a wide variety of
possible synthetic spectrum suited for use as quantitative benchmark tests for baseline removal
algorithm validation and optimization [Fig. 6(c)]. Finally, the noise component (Ni) is generated
following a normal distribution with an average of 0 and a specified standard deviation.

The metric chosen to evaluate the performance of the different baseline removal algorithms
implemented in ORPL is the normalized mean squared error (nMSE). The nMSE between a
Raman signal computed from a baseline removal algorithm (Rc

i ) and the Raman target (Rt
i) used

in the generation of a benchmark signal is defined as

EQ-TARGET;temp:intralink-;e005;116;592nMSE ≔
P

iðRt
i − Rc

i Þ2
ðPiR

t
iÞ2

: (5)

3.2 Baseline Removal Benchmark without Noise

A benchmark spectrum is generated using the acetaminophen Raman and aluminium baseline
components with an SBR of 0.05. The spectrum’s baseline is removed with the BubbleFill,
MorphBR and iModPoly algorithms and their respective Raman outputs are compared to the
target. The results presented are the optimal fit of each algorithm (smallest nMSE) obtained by
sweeping the possible range of value for their respective tuning parameter. This method is
used to compare baseline removal algorithms in a ‘best-case scenario’ leveled playing field.

This first example highlights the shortcomings of polynomial fitting methods when removing
baselines that feature “localized bumps,” such as the ones seen in many biological samples
(Fig. 7). Even though not all biological sample feature a baseline as difficult to remove as

Fig. 7 Baseline algorithm benchmark with synthetic spectrum generated from the aluminium
baseline and acetaminophen Raman. Signal-to-noise : 0.05. Noise standard deviation : 0.
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aluminium, localized bumps can still be introduced in the measured signal when acquisitions are
made over an aluminium substrate. This is relevant and problematic because aluminium slides
are becoming an increasingly popular and cheaper alternative to calcium fluoride (CaF2) slides
for Raman microscopy.11,41,45 The Raman spectrum given by the BubbleFill algorithm closely
matches the target except for the two smaller peaks near 1500 cm−1. In most instances, using a
different tuning (e.g., larger bubbles) would result in fewer small peaks being removed at the cost
of a worse baseline fit. This is the general trade-off when tuning any baseline removal algorithm.
However, with BubbleFill, it is possible to use a different tuning for different regions of the
spectrum. For instance, the bubbles grown in the 1400 to 1600 cm−1 region could be much
larger than for the rest of the spectrum. This would result in a similar baseline fit, but the small
peaks near 1500 cm−1 would be preserved. This feature is, to our knowledge, unique to BubbleFill
and could lead to significant improvements to baseline removal in some applications. Furthermore,
additional testing with different combinations of baseline and Raman components and for different
SBRs indicate that BubbleFill outperforms other tested algorithms in numerous instances (Fig. 8).
The largest difference in performance was observed for spectra generated with the aluminium
baseline and acetaminophen or nylon Raman components. In these cases, BubbleFill has an
nMSE nearly two orders of magnitude smaller than the second-best performing algorithm. It fell
behind only for spectra generated with nigrosin baseline and nylon or PDMS Raman components
where it still remained the best option when the RBR approached 0.

The different algorithms tested in this work along with the results presented in this section are
summarized in Table 1.

3.3 Baseline Removal Benchmark with Noise

Baseline removal algorithms have been tested on spectra with noise to confirm that the results
shown thus far can translate to real-world applications. However, the method of comparing algo-
rithms’ performance via the mean squared error becomes impractical when noise is added to the
input signal. The problem is that the MSE between an algorithm’s computed Raman and the
target is overwhelmingly correlated with the added noise itself. This makes the computed MSE
seemingly identical between the three algorithms in every scenario tested, even when differences
remained visually noticeable in the respective outputs. Instead of comparing nMSE across the

Fig. 8 nMSE as a function of the RBR for the three algorithms tested. Each graph is for spectra
generated with a different combination of baseline and Raman signal components.
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different algorithms on noisy spectra, two examples have been chosen to illustrate tendencies
also observed in the experimental datasets presented in the following section. In both examples,
the input signal was generated using baseline and Raman components as described before, but
with the addition of noise. The noise signal added follows a normal distribution with average 0
and standard deviation of 0.01, i.e., 1% of the baseline’s maximum.

Figure 9 shows the baseline removal benchmark on a spectrum generated from nigrosin and
nylon with Raman-to-noise ratio of 0.15. This example was chosen because it is a best-case

Table 1 Baseline algorithm comparison summary. Execution time was measured on a bench-
mark spectrum generated with the Nylon Raman, aluminium baseline, Raman/baseline ratio of 0.5
and noise standard deviation of 0.1.

Algorithm
tested

General
performance

Tuning
parameters

Intuitiveness
of tuning

parameters
Noticeable

shortcomings

Execution time
on a signal of
size 1000

iModPoly − Order of polynomial
fit, precision target

− Fails to fit non-polynomial
baselines.

2.6 ms� 7.65 μs

MorphBR + Morphological filter
window size

− ‘Jagged staircase’ effect in
the fitted baseline.

727 μs� 1.71 μs

Introduces a hill in the output
Raman near the origin of the
x -axis.

BubbleFill ++ Minimal bubble width + — 743 μs� 2.44 μs

Fig. 9 Baseline algorithm benchmark with synthetic spectrum generated from the nigrosin base-
line and nylon Raman. RBR : 0.15. Noise standard deviation : 0.01.
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scenario for the iModPoly algorithm—the nigrosin baseline is smooth, and the nylon peaks are
easily identifiable and located toward the center of the spectrum. Yet, both BubbleFill and
MorphBR performed similarly to iModPoly.

Figure 10 shows the baseline removal benchmark on a spectrum generated from aluminium
and PDMS. Similarly to the tests performed on signals without noise, iModPoly failed to cor-
rectly remove the aluminium baseline while BubbleFill and MorpthBR managed a near-perfect
recovery of the Raman target except for a small discrepancy (shared by every algorithm) for
the first peak near 500 cm−1. In general, none of the algorithm’s performance was significantly
affected by the addition of noise to the input spectrum.

3.4 Testing ORPL with Different Experimental Datasets

We tested the capability of ORPL on four datasets acquired with three different Raman platforms
to cover a wide range of sample types, instruments, and sample preparation methods. The first
dataset (1719 spectra) consists of in vivo brain tissue spectra measured with the hand-held probe
from Reveal Surgical and provides a good reference for spectra acquired in a surgical workflow.
The second dataset (524 spectra) consists of in vivo and ex vivo prostate tissue spectra measured
with a custom lab-built system using a commercial EmVision LLC handheld probe. The third
(8670 spectra) and fourth datasets (7774 spectra) consist of paraffin-fixed prostate tissue slices
and dried saliva samples respectively and were measured with a commercial Renishaw Raman
microscope as 3D Raman maps. Combined, the four datasets amount to a total of 18,687 indi-
vidual acquisitions (not counting repeated accumulations) that cover a wide range of signal-to-
background and SNR as confirmed by the spectral quality of each signal measured using the
ASSI metric defined earlier (Fig. 11).

Fig. 10 Baseline algorithm benchmark with synthetic spectrum generated from the aluminum
baseline and PDMS Raman. RBR : 0.15. Noise standard deviation : 0.01.
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The raw data (first row of Fig. 12) shows that the spectra of each dataset covered nearly the
entire dynamic range of the acquisition instruments. This is frequent with biological samples and
is explained by the large variability of fluorescence signal strength, absorption, and scattering.
Nevertheless, Raman pre-processing using the workflow presented in this work and the

Fig. 11 Spectral quality histogram of the experimental datasets (brain, prostate Point Probe, pros-
tate Wide-Field and saliva) measured with the ASSI quality metric.

Fig. 12 Raw data: measured raw spectra from instruments with accumulations combined. Step 1:
Truncation (for datasets 1 and 2) and cosmic ray removal. Step 2: Background removal (for data-
sets 1 and 2) and calibration of x and y axis. Step 3: Baseline removal with BubbleFill. Step 4: SNV
normalization. Average Spectra: average spectra computed from step 4 results with +- standard
deviation zone represented as shadow.
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BubbleFill algorithm for the removal of intrinsic fluorescence (step 3 of Fig. 12) resulted in
averaged spectra with small deviations. Many common Raman active bands can be identified
and are common across all datasets, including vibrational modes typically found in proteins and
lipids.

Finally, spectra of all datasets were clustered in groups of high, average, and low quality
based on the ASSI metric (Fig. 13). As the quality increased, the standard deviation became
smaller, converging toward the average spectrum. This behavior was observed for all datasets.
Furthermore, some specific Raman bands (peak at 1300 cm−1 for the prostate wide field dataset)
gained in intensity while artifacts (400 to 600 cm−1 for the prostate point probe dataset) dis-
appeared. These results indicate that the ASSI metric has the potential to be used in machine
learning applications to discard low-quality spectra based on a threshold or as a general signal
quality metric during acquisition to facilitate troubleshooting of instrument and software.

Fig. 13 Average pre-processed spectra of each experimental tested datasets clustered in high
(top 20% ASSI), average (middle 20% ASSI) and low (bottom 20% ASSI) quality.
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4 Conclusion

In conclusion, we developed and released a python package under the MIT license that imple-
ments the necessary tools for Raman spectra pre-processing. Most notably, the ORPL package
includes the novel BubbleFill algorithm intended for the removal of autofluorescence baselines.
We validated BubbleFill using a combination of numerical benchmarks based on synthetic spec-
tra and real-world experimental data from previous studies. Comparative benchmark results
revealed that BubbleFill performed better especially for the removal of an aluminium baselines,
which is of critical importance in many of our group’s studies, or as well as other commonly
used algorithms. Although these results might not generalize to every possible baseline shapes,
the quantitative comparison methodology presented in this work can be extended to include a
larger variety of fluorescence and Raman responses. This makes it ideal for selecting and tuning
baseline removal algorithms for specific applications while limiting user biases. Finally, we com-
bined the Raman acquisitions of previous studies in a single dataset which is, to our knowledge,
the largest and most varied Raman dataset compiled for the purpose of testing and validating pre-
processing. This data was used to validate the ORPL package on signals covering a wide range of
signal-to-noise and SBRs representative of the biological application landscape. In the future,
additional modules will be added to ORPL to address other critical challenges such as spectral
unmixing and peak analysis tools and chemometric analysis. It is our hope that this package be
used as a stepping stone enabling a more open and uniformed pre-processing methodology
across the Raman research and clinical spectroscopy scientific communities.
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