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Abstract. The Alberta Stroke Program Early CT score (ASPECTS) scoring method is frequently used for quan-
tifying early ischemic changes (EICs) in patients with acute ischemic stroke in clinical studies. Varying interob-
server agreement has been reported, however, with limited agreement. Therefore, our goal was to develop and
evaluate an automated brain densitometric method. It divides CT scans of the brain into ASPECTS regions using
atlas-based segmentation. EICs are quantified by comparing the brain density between contralateral sides. This
method was optimized and validated using CT data from 10 and 63 patients, respectively. The automated
method was validated against manual ASPECTS, stroke severity at baseline and clinical outcome after 7 to
10 days (NIH Stroke Scale, NIHSS) and 3 months (modified Rankin Scale). Manual and automated
ASPECTS showed similar and statistically significant correlations with baseline NIHSS (R ¼ −0.399 and
−0.277, respectively) and with follow-up mRS (R ¼ −0.256 and −0.272), except for the follow-up NIHSS.
Agreement between automated and consensus ASPECTS reading was similar to the interobserver agreement
of manual ASPECTS (differences <1 point in 73% of cases). The automated ASPECTSmethod could, therefore,
be used as a supplementary tool to assist manual scoring.© The Authors. Published by SPIE under aCreative CommonsAttribution
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1 Introduction
Approximately 70% of acute strokes are caused by hypoxic
(ischemic) brain damage as a result of severe cerebral blood cir-
culation failure.1 The reduced blood flow can lead to infarction
of the brain tissue, which can be detected on noncontrast com-
puted tomography (NCCT).2 Ischemic tissue on NCCT is char-
acterized by changes in brain parenchyma that reflect either
decreased x-ray attenuation (e.g., loss of definition of the lenti-
form nucleus) or tissue swelling (e.g., hemispheric sulcal efface-
ment and effacement of the lateral ventricle).3 These changes in
brain parenchyma in the acute time window within 4.5 h after
symptom onset, i.e., early ischemic changes (EICs), correlate
with stroke severity and clinical outcome.4–6

To visually identify and quantify subtle EICs in the middle
cerebral artery (MCA) territory, the Alberta Stroke Program
Early CT score (ASPECTS) scoring method has been intro-
duced,6 standardizing the detection and reporting of the extent
of ischemic hypodensity. The ASPECTS value is calculated for
10 regions of interest at two standardized levels of the MCA
territory, one including the basal ganglia and the cortical MCA
areas at the level of the basal ganglia and below (M1 to M3,
lentiform and caudate nuclei and internal capsule) and one

above these structures, the supraganglionic level (M4 to M6).
An unaffected MCA territory is assigned a total score of 10.
For each area with signs of EIC, i.e., parenchymal hypodensity,
one point is subtracted from that initial score.

The reliability of visual EICs detection on NCCT is influ-
enced by several factors, including the time window between
CT scanning and symptom onset, the vascular territory of the
infarct, the experience of the CT reader,7 availability of clinical
history,8 viewing window width, and level settings.9,10 Even
among experienced clinicians, there is considerable lack of
agreement in recognizing and quantifying early radiologic
signs of acute stroke on CT.11–14 Hence, concern has arisen
about the reliability of the detection of EICs on CT, while
this is the basis for timely treatment, vital for stroke outcome.15

Therefore, objective and automated methods are needed to rec-
ognize and quantify ischemic brain damage in an early stage, not
only for daily clinical practice but also for large-scale clinical
trials on the treatment of ischemic stroke.

The quantitative nature of CT allows for a quantitative analy-
sis of density changes as a sign of EICs. Since the density of
ischemic brain tissue decreases with time after stroke onset,16

studies have used brain CT densitometry to identify EICs in
acute ischemic stroke. Bendszus et al.17 described a postprocess-
ing method for the detection of acute MCA territory infarcts. By
subtraction of density histograms of the entire hemispheres on*Address all correspondence to: Berend C. Stoel, E-mail: B.C.Stoel@lumc.nl
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CT scans, they showed a significant increase in acute infarct
detection rate by human observers. Maldjian et al.18 identified
potential areas of acute ischemia on CT scans by comparing
density histograms of the lentiform nucleus and insula with
histograms of the structures on the contralateral brain side.
ASPECTS areas were not used in these studies, which limits
their applicability in clinical practice. Furthermore, no data
were reported on the relation with clinical outcome.

Kosior et al.19 computed an automated atlas-based topo-
graphical scoring of acute stroke based on the ASPECTS
regions based on MRI. They obtained an auto-ASPECTS from
the overlap of ischemic lesions detected on apparent diffusion
coefficient maps in MRI data, using atlas-based segmentation
of the MCA supply territories. They adopted a segmentation
method for artery supply territories in the brain20 using the
Fast Talairach Transform (FTT).21 The FTT method was opti-
mized and validated for MR images, but an extension to CT
images is not available.

Therefore, we developed an automated brain CT densitomet-
ric method to replicate the manual ASPECTS based on the so-
called brain density shift (BDS) between contralateral brain
areas, thereby systematically quantifying subtle EICs. We
hypothesized that this automated ASPECTS quantification cor-
relates with stroke severity and clinical outcome. We designed
and optimized the auto-ASPECTS method using a training set of
images. Subsequently, the method was validated against manual
ASPECTS determined by consensus, and stroke severity at pre-
sentation (National Institutes of Health Stroke Scale, NIHSS)
and clinical outcome after 7 to 10 days (NIHSS) and 3 months
(modified Rankin Scale, mRS) in a separate test set. The agree-
ment between automated and consensus scoring was compared
with the interobserver agreement for the global scoring data and
per ASPECTS region.

2 Material and Methods

2.1 Patient Data

As part of a prospective randomized multicenter controlled
trial22 on acute ischemic stroke, patients were included retro-
spectively for this study during the period of July 2008 until
April 2011. Out of these 73 patients, we randomly selected a
training set of 10 patients to optimize the automated method
and this optimal method was subsequently evaluated in a sep-
arate population of 63 patients (see Table 1). All patients came
from densely populated areas and, therefore, had short times
from symptom onset to scan. All image data were anonymized
to ensure blind assessments. The study protocol was approved

by the medical ethics committee and all patients or their legal
representatives provided written informed consent.

All images were acquired with a 64-slice CT scanner
(Sensation 64, Siemens Medical Solutions, Forchheim,
Germany) with syngo CT 2007s software, using a tube voltage
of 120 kVp and a current of 323 mAwith a pitch factor of 0.85
and 28.8 mm collimation. Axial slices were reconstructed with
a thickness of 1.0 mm and a 0.64� 0.12 mm (mean� SD)
increment, using a moderately soft kernel (Siemens “H31s”)
and a 512 × 512 matrix containing the whole brain. The in-
plane resolution was 0.46� 0.06 mm (mean� SD).

2.2 Reference Standard and Clinical Data

Baseline NCCT scans were independently inspected by two
experienced radiologists with more than 10 years of experience
(C.B.M. and L.F.B.) for signs of EIC occurring in the ASPECTS
regions of interest. Additional findings, such as a high degree of
atrophy, old ischemic lesions, or scanning artifacts, were also
recorded. EICs were defined as parenchymal x-ray hypoatten-
uation as indicated by a region of abnormally low attenuation
relative to other parts of the same structure or the contralateral
hemisphere. The observers were blinded for clinical data except
for the symptom side. Viewing settings were adjusted based on
standard preset viewing window width and center level of 70∕35
and 35∕30 Hounsfield unit (HU). After individual scoring, dis-
crepancies between both observers were resolved by consensus
reading.

Stroke severity was assessed by NIHSS at presentation by the
neurologist on duty and clinical outcome was assessed by
NIHSS after 7 to 10 days and by mRS at 3 months after symp-
tom onset.23,24

2.3 Automated ASPECTS Method

A schematic overview of the proposed method is shown in Fig. 1
divided into three main steps: ASPECTS labeling, brain densi-
tometry, and EIC detection. During ASPECTS Labeling [Figs. 1
(a)–(c)], the ASPECTS regions of interest are defined automati-
cally in the NCCT data. Through brain densitometry [Figs. 1(d)
and 1(e)], the density histograms are compared between contra-
lateral sides, yielding BDSs in each ASPECTS region. In the
final step, EICs are detected based on these BDSs resulting
in an auto-ASPECTS score [Fig. 1(f)]. The overall method
was implemented in the image processing and development
environment MeVisLab (version 2.2.1).25

In the following subsections, the different steps are presented
in more detail along with the optimization.

Table 1 Patient characteristics in the training and test image sets.

Training set Test set

Total Follow-up mRS ≤ 2 Follow-up mRS > 2 Total

Number of patients 10 24 39 63

Male/female 6∕4 12∕12 23∕16 35∕28

Age (years), mean� standard deviation 66.6� 17 68.0� 13 65.8� 13 66.6� 13

Symptom onset-to-scan time (h), first to third quartile 0∶46 − 2∶36 1∶00–2∶59 0∶51–2∶49 0∶58–2∶52
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2.4 ASPECTS Labeling

The voxels are labeled according to their ASPECTS regions
using an atlas-based segmentation method, see Figs. 1(a)–1(c).
The atlas is composed of two image volumes: an atlas-intensity
image, IatlasðxÞ, containing the original intensity values, and
an atlas-label image, LatlasðxÞ, which contains the regions of
interest with ASPECTS labels. The atlas-intensity image is reg-
istered to the patient’s CT image data, IpatðxÞ, yielding a spatial
transformation, T. Subsequently, the same transformation is
applied to LatlasðxÞ to obtain the labeled patient CT data, LpatðxÞ.

To account for anatomical differences in the ventricular sys-
tem26 (including asymmetry of the lateral ventricles), two atlases
with different ventricular shapes were generated (each contain-
ing only one CT scan). An experienced neuroradiologist
(L.F.B.) selected two typical CT scans; one with a “nondilated”
and one with a “moderately dilated” ventricular system.

ASPECTS regions of interest as described by Barber et al.6

were delineated manually for both image data sets using a free-
form editing tool by a trained observer. All ASPECTS regions
consist of an eight-slice volume. Delineation was checked for
accuracy by an experienced neuroradiologist (L.F.B.).

Image data were registered using the open source software
package Elastix,27 version 4.3. Elastix deforms the atlas-inten-
sity image by a coordinate transformation to optimally agree
with the patient’s image data. First, the atlas images were
roughly aligned to the patient image by a rigid transformation.
Subsequently, an affine registration with four resolution levels
was used to compensate for remaining translation, rotation and
scaling differences. Finally, to achieve the most detailed align-
ment, a nonrigid registration was applied starting with a coarse

B-spline grid, which was refined at four subsequent resolutions.
For each of these steps, we used an iterative adaptive stochastic
gradient descent method29 with a maximum of 3000 iterations.
This maximum was set conservatively without optimizing for
speed to ensure convergence in all cases. We used a brain
mask for focusing the registration in obtaining similarities
within the brain, such as the ventricular system. This brain
mask was generated automatically by segmentation of the intra-
cranial structures.30 After registration, the ASPECTS labeling of
the patient image data was obtained by transformation of the
two atlas-label images. After visual inspection of the registered
atlases, the one that agreed best with the patient data was
selected.

2.4.1 Optimization of the registration

The registration was optimized by assessing its accuracy and
precision while varying registration settings. The alignment
of contours of the lateral ventricles and the outer surface of
the brain was used as accuracy measure. The brain contour
was generated from the brain mask, detected as described
above,30 and the contours of the anterior horn and body of
the lateral ventricles were determined by region growing. If
needed, contours were adjusted manually. It should be noted
that the manual adjustment was only needed during optimization
of the algorithm. Normal analysis was automated without
manual interaction. The registration error at a certain location
was defined as the shortest distance between the ventricle
and brain contours. The mean error and the variation in the
errors were used to determine the accuracy and precision for
different transform parameters.

Fig. 1 Flow chart of the automated brain densitometry method based on ASPECTS. (a) The spatial
transformation T ðxÞ matching the atlas image with the patient image is computed. (b) The atlas-label
image, LatlasðxÞ, is transformed by T ðxÞ to produce a labeled image LpatðxÞ. (c) The atlas is applied
as a mask over the patient image. (d) The density distribution is calculated for each ASPECTS region
in the left and right hemisphere; HL and HR , respectively. (e) For each ASPECTS region, i, the brain
density shift (BDSi ) is calculated between contralateral sides. (f) The EIC are detected by thresholding
the BDS values, while accounting for irrelevant defects.
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We optimized the nonrigid (B-spline) registration with
respect to the use of a brain mask and grid size using six differ-
ent spacings: 5, 8, 10, 20, 30 and 40 mm. The efficacy of the
usage of a brain mask was assessed by comparing the accuracy
of registering: (1) without a brain mask; (2) using a brain mask
covering brain tissue only; and (3) using a morphologically
dilated brain mask (9 × 9 × 1 kernel size).

2.5 Brain Densitometry

For each ASPECTS region, the contralateral histograms of the
density values were computed [Figs. 1(d)–1(e)]. The histograms
were normalized (area under the curve is 1) to compensate for
differences in volume between contralateral ASPECTS regions
of interest.

We examined seven different measures for assessing the
BDSs by comparing the density histograms of the left and
right hemisphere, HL and HR. These measures were either rep-
resented by a difference in distribution features (first, second,
and third quartiles, average density, and the peak density
value) or by a shift in the entire histograms based on minimizing
overlap or maximizing cross-correlation. As the affected side is
known in clinical practice by functional symptoms, this infor-
mation was also used in the automated assessment. The histo-
grams and BDS measures of the ASPECTS regions were
calculated in a MeVisLab-based software package (see Fig. 2).

2.6 EIC Detection

Before detecting EICs, we first optimized each measure and
evaluated which BDS measure would be the best basis for
this detection. This best method was used for the EIC detection
and is described in more detail below.

The ability of the different measures of BDS to detect
affected ASPECTS regions of interest was optimized regarding
their threshold parameters [i.e., DA, DO, D in Eq. (3)] by
receiver operating characteristic (ROC) curve analysis using the
consensus ASPECTS reading as the reference standard. After
optimization, we selected the best method for detecting EICs
in an ASPECTS region (i), with the largest area under the
ROC curve (see results section). This method is based on the
overlap OiðΔdÞ between the left and right histogram (HL;i
and HR;i, respectively), after applying a density shift, Δd:

OiðΔdÞ ¼ 1 −
1

2

X
d

jHL;iðdÞ −HR;iðdþ ΔdÞj: (1)

The value Δd between −40 and 40 HU for which OiðΔdÞ
was largest was defined as the BSDi

BDSi ¼ argmax
−40≤Δd≤40

OiðΔdÞ: (2)

In some cases, brain densitometry could be affected by cer-
ebrospinal fluid between the gyri in extensive atrophic brains or
old ischemic scars which may be included in the ASPECTS
regions, or by imaging artifacts. Therefore, additional findings
(including imaging artifacts) were detected separately based on
the dissimilarity of the contralateral histograms after applying
the density shift by a large difference in the first quartile
(BDSq1;i). Subsequently, the results were used to exclude these
areas automatically. The ultimate detection of an EICi in the i’th
ASPECTS region was thus determined by

EICi

¼
�
0 ð max

−40≤Δd≤40
OiðΔdÞ<DA∧ jBDSq1;i j>DOÞ∨ jBDSij≤D

1 jBDSij>D
;

(3)

where BDSq1;i is the density shift in the first quartile and optimal
thresholds for defect detection DA ¼ 84.5% and DO ¼ 3 HU;
and for EIC detection, D ¼ 1.5 HU.

Finally, the automated ASPECTS score was calculated by
following the ASPECTS definition:

autoASPECTS ¼ 10 −
X10
i¼1

EICi: (4)

2.7 Validation and Statistical Analysis

The best method, optimized in the training set, was subsequently
validated using a separate test set of 63 patients (see Table 1). In
a confounder analysis, correlations were evaluated between var-
iables that should not be associated (for example, between pixel
size and BDS). The Spearman’s correlation coefficient was used
to assess the association between ASPECTS (automated and
manual) and the clinical outcome parameters. The variability
between automated and consensus ASPECTS and the variability
between observers was studied by Bland–Altman analysis. The
agreement between ASPECTS measurements was evaluated by
first dichotomizing all scores using a threshold of 7 (one of the
common cut-off points for treatment6,31), followed by construct-
ing confusion matrices and computing the percent agreement
between observers, and between automated and consensus
ASPECTS.

Similarly, the agreement between observers and between
automated and consensus ASPECTS was also evaluated in
detecting EICs in different regions by calculating the percent
agreement for each region separately. A McNemar test was con-
ducted in these paired data to determine the significance of the
differences in agreement.

A p-value below 0.05 was considered to indicate statistical
significance.

3 Results

3.1 Method Optimization

The accuracy and precision of the different registration strate-
gies are represented in Fig. 3. The use of a brain mask improved
the ventricle registration accuracy considerably (from 6 to
2 mm), at the expense of a decreased accuracy of brain contour
alignment. By dilating the brain mask, the registration accuracy
of the brain contours improved with only a minor decrease in
accuracy in registering the ventricles. Using B-spline grid
sizes of 5, 8, and 10 mm gave comparable accuracies. Therefore,
we choose a spacing of 10 mm (to allow for smooth deforma-
tions) in combination with a dilated mask in the following
experiments.

Except for the measurements based on a shift in the histo-
gram peaks, all measures had similar ROC areas under the
curve, where BDS based on maximizing the histogram overlap
with a threshold of 1.5 HU performed best with an area under
the curve of 71.6%. This method detected the affected
ASPECTS regions in the training set with a sensitivity of
75% and specificity of 74%.
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The detection of additional findings (including artifacts) in
the ASPECTS regions of various measures was also optimized
by ROC analysis, where the visual classification of defects
by the radiologists was considered the reference standard.
Additional findings were detected best with a sensitivity of
78% and specificity of 81%.

One analysis, including image registration and quantifica-
tion, takes approximately 15 min on a standard PC. The method

has not been optimized for speed, however, and parallelization
can significantly reduce analysis time.32

3.2 Confounder Analysis

In the auto-ASPECTS analyses, the atlas with the “moderately
dilated” ventricular system was used in 10 patients and the atlas
with the “nondilated” ventricular system in the remaining 53

Fig. 2 Capture of the graphical interface of the automated brain densitometry method based on the
ASPECTS regions. The top row represents the different BDS measures per ASPECTS regions. The
bottom rows are visualizations of the density distributions of the ASPECTS regions. From left to
right, top to bottom: caudate nucleus; anterior and posterior part of internal capsule (for the ultimate quan-
tification, these two regions weremerged into one region, conformmanual ASPECTS); lentiform nucleus;
insular ribbon; M1; M2; M3; M4; M5, and M6. Red (gray) curves represent histograms of the left hemi-
sphere and yellow (white) curves of the right hemisphere. A leftward shift of the yellow curve towards the
lower density values indicates a hypodensity in the right hemisphere. The internal capsula area was
divided in an anterior and a posterior part, to ensure detection of EICs when only a single part of
the capsula was affected.

Journal of Medical Imaging 014004-5 Jan–Mar 2015 • Vol. 2(1)

Stoel et al.: Automated brain computed tomographic densitometry of early ischemic changes. . .



patients. It was shown that mRS scores in the dilated group were
1.3 points higher than in the group with nondilated ventricular
systems (95% confidence interval (95%CI): [0.1 to 2.5],
p ¼ 0.03). However, this can be explained by the additional
effect of age, since age is associated with mRS (Spearman’s
R ¼ 0.64, p ¼ 0.036) and with the enlargement of cerebral ven-
tricles. Since the choice of atlas is based on ventricle dilation,
the two groups differ in age by 11 years, 95%CI: [2.8 to 20.0],

p ¼ 0.01, with an accompanying difference in mRS scores.
Therefore, the choice of atlas was not a confounding factor
but a correct adaptation to the patient’s anatomy.

No other potentially confounding factors were found.

3.3 Associations with Clinical Parameters

The correlation between the auto-ASPECTS score and clinical
parameters is presented in Table 2, together with the manual

Fig. 3 Box plots of the residual registration errors in the training set of 10 patients, showing the effect of
the use of brain masks. The left column shows the residual distances to the ventricle contours and
the right column the distances to the brain contours.
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ASPECTS, scored separately and in consensus. All patients
were included in a multicenter randomized open-label trial,
treated with standard alteplase or alteplase with the early addi-
tion of intravenous aspirin, where ASPECTS scoring was not
used as inclusion criterion. Since early administration of intra-
venous aspirin had no effect on the outcome, treatment was not
considered a confounder in this study.22 Due to the standardiza-
tion of the acquisition protocol, we used all trial data from one
center with the same CT scanner. For both consensus and auto-
ASPECTS, there was a weak but statistically significant corre-
lation with baseline NIHSS. The consensus scoring correlated
slightly better than the automated methods and individual
observers. After 7 to 10 days, the correlation between NIHSS
was maintained for the consensus and individual scores, but
the automated methods did not correlate significantly. The cor-
relations with mRS score at 3 months were lower than with
(baseline and follow-up) NIHSS, with a slightly higher correla-
tion for the automated method. The scores from the individual
observers, however, did not correlate significantly with mRS.

3.4 Interobserver Agreement

Figure 4 shows the results of the Bland–Altman analysis. The
interobserver differences and mean values did not follow a

normal distribution, and an association was observed between
the interobserver difference and the mean score (Spearman’s
R ¼ 0.67, p < 0.01), despite the outlier with a seven- point
difference [Fig. 4(b)]. Therefore, there was a significant bias
between observers that was dependent on the magnitude of
the score, and as a consequence, a reliable limit of agreement
could not be calculated. However, the over-all agreement
between automated and consensus was comparable to the agree-
ment between observers, with a slightly higher variability
between the observers. The average difference (SD) between
consensus and auto-ASPECTS was −0.54 (1.20) points, and
the average difference (SD) between observers was −0.81
(1.62) points. In 73% of the cases, the auto-ASPECTS deviated
from the consensus score by one point or less; the same exact
rate occurred for the interobserver agreement: in 73% of cases,
the difference was one point or less.

The agreement among the different ASPECT measurements
after dichotomizing with a threshold 7 is presented in Table 3.
The percent agreement between the individual observers was
83%, whereas the percent agreement between automated and
consensus scoring was 89%. These percent agreements did
not differ significantly, however, between the two comparisons
(McNemar test).

The agreement in detecting EIC’s in the individual
ASPECTS regions is shown in Fig. 5, between observers and
between the automated method and consensus ASPECTS.
Overall, the automated method found more EICs than the
consensus scoring (87 versus 52, out of 629 regions, that were
free of artifacts) and observer 2 found more EICs than observer
1 (82 versus 31, out of 629 regions). The percent agreement
between observers ranged between 67% and 97%, whereas
the percent agreement between automated method and consen-
sus ASPECTS ranged between 73% and 89%. In the regions
M2, M3, and M6, the interobserver agreement was significantly
higher than for the automated method and consensus scoring
(McNemar test). Of the 52 manually detected ASPECTS
regions, five EICs were missed by the automated method due
to the exclusion of these regions due to additional findings
such as high degree of atrophy, old ischemic lesions, or scanning
artifacts.

Table 2 Nonparametric (Spearman’s rho) correlations among
ASPECTS scores and clinical baseline and outcome parameters,
in the test image set.

ASPECTS (n ¼ 63):
Baseline
NIHSS

NIHSS after
7 to 10 days

mRS after
3 months

Auto-ASPECTS −0.277* −0.192ns −0.272*

Observer 1 −0.358** −0.285* −0.107ns

Observer 2 −0.315* −0.273* −0.091ns

Consensus −0.399** −0.367** −0.256*

Note: * Significant at the 0.05 level.; ** Significant at the 0.01 level.;
nsnot significant.

Fig. 4 Bland-Altman plots of (a) auto-ASPECTS versus consensus-ASPECTS and (b) differences
between observers. The size of the circles and the value inside indicate the number of cases with
the same result.
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4 Discussion
We have designed, optimized, and validated an automated
method for brain densitometry in ASPECTS regions of interest
to detect and quantify EICs on NCCT images, using atlas-based
segmentation to automatically delineate the ASPECTS regions.
In the validation against clinical parameters, we found variable
associations. Both manual and automated ASPECTS correlated
with baseline stroke severity (NIHSS). The individual manual
scores still correlated with NIHSS after 7 to 10 days, where
the automated method did not. On the other hand, the manual
ASPECTS scoring by the individual observers did not correlate
with clinical dependency scores (mRS) after 3 months, where
the automated method did correlate. The poor and absent cor-
relations could be due to the early or reversible stage of the

ischemic lesion, however, determining the cause of this differ-
ence was beyond the scope of this study.

Except for selecting the optimal atlas (normal versus
enlarged ventricles), the method is fully automated. For this rea-
son, no test-retest was performed as the remainder of the method
is completely observer independent. The atlas-based segmenta-
tion method for classifying voxels into specific ASPECTS
regions was optimized by minimizing the residual registration
errors of the brain and ventricle contours. From these experi-
ments, it became clear that brain masks are needed to focus
the image registration to brain tissue only. However, although
this improved the alignment of the ventricles, the accuracy of
registering the outer contours of the brain deteriorated due to
over-focusing. Therefore, a dilated brain mask was proposed in

Table 3 Confusion matrices between observers and between automated and consensus ASPECTS (equal to or less than 7 versus higher than 7),
in the test image set.

Agreement: Observer 1 Agreement: Consensus

83% ≤ 7 > 7 89% ≤ 7 > 7

Observer 2 ≤ 7 1 10 Auto-ASPECTS ≤ 7 4 6

>7 1 51 >7 1 52

Fig. 5 Percent agreement between observers (cylinders) and between automated and consensus scor-
ing (blocks), for each ASPECTS region. The lower part of the columns represents the percentage agree-
ment on positive EIC findings (i.e., the percentage of cases where both methods indicate a positive EIC
finding), the upper part represents the negative agreement (% agreement of a negative EIC finding).
From left to right: caudate nucleus (C); internal capsule (IC); lentiform nucleus (L); insular ribbon (I);
M1; M2; M3;M4, M5 and M6.

Journal of Medical Imaging 014004-8 Jan–Mar 2015 • Vol. 2(1)

Stoel et al.: Automated brain computed tomographic densitometry of early ischemic changes. . .



which the gradient between the skull and brain tissue is included
in the registration, thereby improving the registration quality of
the outer contours without significantly degrading the registra-
tion of ventricle contours.

B-spline grid spacing, which determines the smoothness of
the deformation, did not influence the accuracy as much as the
usage of masks, since sizes between 5 and 10 mm gave com-
parable results. Therefore, we choose a spacing of 10 mm to
allow for the smoothest possible deformations.

This optimized segmentation method obtained an accuracy
between 0.45 mm (at the brain surface) and 1.8 mm (at the ven-
tricle). For comparison, Pexman et al.33 reported at least a
10 mm difference in the size of each “M” area between the mini-
mum and maximum chosen by human observers. Despite this
variability, they still found an excellent interobserver agreement
of ASPECTS scoring. Therefore, the accuracy of our segmen-
tation method for labeling the ASPECTS regions may be suffi-
cient for clinical use.

Signs of EICs were indicated by a BDS between the histo-
grams of contralateral ASPECTS regions. To optimize this BDS
method, a comparison with manual consensus scoring was made
and we obtained an optimal method with a threshold of 1.5 HU.
A sensitivity of 75% and specificity of 74% was obtained.

In the early stages of cerebral ischemia, there is a maximum
change of only 1.6 to 4.4 HU within the first 2 to 2.5 h of ische-
mia.15,34–36 As our patient group was scanned between 0:58 and
2:52 h after symptom onset (first and third quartile), the optimal
threshold of 1.5 HU is consistent with this reported range of
density changes.

In a study on quantifying EICs by comparing density histo-
grams from contralateral sides,18 the nucleus caudatus, lentiform
nucleus, and insula were labeled by registration of the NCCT
scan to the Talairach37 template. Unfortunately, no objective
measure for the quality of the alignment was reported.
Furthermore, this method is not based on ASPECTS regions,
which makes it less applicable in clinical practice.

In the MRI atlas-based scoring method from Kosior et al.,19

the average errors in localization of the Talairach landmarks
using FTT ranged between 0.08 and 1.49 mm, depending on
the location of the landmark in the brain.21 The registration
accuracy reported in our study fits well within this range.

In the study by Kosior et al.,19 the mean symptom onset-to-
scan time was 11.2� 11.7 h (average� standard deviation) for
MRI scans, compared to a range of only [0∶58 to 2∶52] h for our
NCCT scans (Table 1). As a longer onset-to-scan time increases
the visibility of EICs, results from this study are not comparable
to our data.

This study has a number of limitations. The method com-
pares density distributions between contralateral sides. As such,
it does not account for lesions, such as remote infarcts or
encephalomalacia, on the contralateral side. The detection and
correction of such lesions could improve accuracy.

Because the patients included in this study live in a densely
populated area, onset-to-scan time is relative short. Especially
for these patients, it is difficult to detect the (very) EICs and
an automated method may have added value. As a result of
this short onset-to-scan time, the ASPECTS scores were higher,
resulting in a different ASPECTS distribution than in less-
densely populated areas with a less extensive public infrastruc-
ture or less stroke awareness. Furthermore, since all patients in
the population were part of a randomized trial, it was required
that they were eligible for alteplase. Guidelines for management

of patients with acute stroke suggest that hypodensity is the
only meaningful imaging finding in patients eligible for stan-
dard recombinant tissue plasminogen activator treatment.38

Therefore, all patients were eligible for standard treatment
because they all arrived within 4.5 h after symptom onset.
However, because ASPECTS is mainly used in clinical research
and not yet in clinical practice, we believe that the added value
of this score is highest for the population arriving within 6 h
after stroke onset for treatment effectiveness studies. The vali-
dation in patients with a longer onset-to-scan time is prudent, but
was beyond the scope of this study. Such a validation should be
performed with a more diverse patient population with a larger
window of onset-to-scan times. Moreover, it is expected that
the automated method has a higher accuracy for more severe
strokes since the hypodensity increases with time, making the
histogram shifts more apparent.

Although techniques have been described that increase vis-
ibility of EICs on NCCT scan,9,39–41 comparative data are lim-
ited since most methods are based on MR imaging, accuracy is
not always reported and none have been correlated to clinical
outcome. Although diffusion-weighted MRI is considered the
gold standard for assessing EICs, MRI is rarely available in
the emergency setting of patients with acute stroke and conse-
quently it is not the standard care.42 Our method was, therefore,
developed for NCCT, which is the standard initial imaging
examination for acute stroke, since it is fast, inexpensive, widely
and easily available, and provides whole brain coverage.43

A limitation of this study is, therefore, that no gold-standard
(MRI) of the EICs was available. We could only compare the
automated scoring with manual scoring, which had considerable
observer variability. The variation of the manual ASPECTS
limits the value of the reference measurement, however, accu-
rately it resembles the expected variation in clinical practice.
The variation in manual ASPECTS was a main motivation to
initiate this study on an objective automated approach knowing
that a direct comparison with observers cannot prove any
improvements.

The automated ASPECTS method excludes regions where a
small old ischemic scar is found (extreme hypoattenuation).
Therefore, this rules out situations where new EICs occurs in
proximity of an old infarct, which can be picked up by visual
scoring. Out of 52 EICs detected by the consensus scoring, 5
were missed by the automated method. As this is a substantial
limitation, new image analysis methods need to be developed
focused on this particular situation.

Another possible limitation of our method is the fact that
histogram analysis does not include local image information.
As a result, small focal lesions may not contribute to a detectable
shift in the histogram. Therefore, in order to improve the
performance of the method in detecting focal lesions, spatial
information needs to be included, requiring a different approach.
These methods may, however, be less sensitive to subtle BDSs
in diffuse hypoattenuation regions. Thus, hybrid approaches,
where histogram-based methods are combined with methods
that quantify spatial/texture information, may be developed.

Because of the retrospective standardization of the image
acquisition protocol, we used CT data from the same CT scan-
ner from only one center. Therefore, additional validation is
needed to prove the effectiveness of the method in a general
setting.

Some user-interaction was still needed in the study since the
appropriate atlas needed to be selected manually. A detection

Journal of Medical Imaging 014004-9 Jan–Mar 2015 • Vol. 2(1)

Stoel et al.: Automated brain computed tomographic densitometry of early ischemic changes. . .



method of the ventricles could be used to determine the ventricle
volume and select the dilated or nondilated atlas automatically.
Alternatively, the residual normalized cross-correlation after
registration could be used as a basis for this atlas selection.
Adding more atlases is not needed since the two atlases
cover the anatomical variances sufficiently, as the residual regis-
tration errors were independent of the atlas used and small errors
were obtained over the entire training set.

To evaluate the impact of the different scores on the decision
to initiate treatment, when using a threshold value of 7, the data
were dichotomized using this threshold. There was agreement
between individual observers in 83%, whereas agreement
occurred in 89% between automated and consensus scoring.
Please note that kappa values were not presented in this
study since the kappa statistic is affected by prevalence, and
the distribution of low and high scores was indeed skewed in
our study population. Using a threshold value of 7, the decision
for initiating treatment would be different between the individ-
ual observers in 11 out of 63 cases (17%), whereas between
automated and consensus scoring, this decision would be differ-
ent in 7 out of 63 cases (11%). This difference was, however, not
statistically significant.

The agreement analysis for each ASPECTS region (see
Fig. 5) showed that the observers agreed less in the internal cap-
sule (78%), lentiform nucleus (79%) and insular ribbon (67%),
compared to the other regions, whereas the agreement between
the automated and consensus scoring was less variable, but
generally at a lower level than the observer agreement. In the
regions M2, M3, and M6, the interobserver agreement was
significantly higher. This difference in agreement was mainly
determined by the difference in agreement in negative EIC
detections; for the positive detections, the interobserver agree-
ment and agreement between automated and consensus
ASPECTS was more evenly divided over the different regions.
This may explain the difference in results between local and
regional agreement.

In this paper, an automated ASPECTS scoring method has
been presented as an alternative to manual ASPECTS score.
The method can also be used, however, as a supplementary
tool to assist manual scoring. The display of the shifts in density
may help physicians in deciding whether a region of interest is
affected. The added value of using our tool in such a manner
needs to be evaluated in a future study in a population with
a wide range of ASPECTS scores. It should be noted that
ASPECTS is currently not a part of standard diagnosis workflow
but is mainly used in clinical research.4,5 However, with the
advent of alternative stroke therapies such as intraarterial treat-
ment, ASPECTS has the potential to be included in the acute
setting in the near future.

In conclusion, we have demonstrated the feasibility of a
stroke severity measurement by automated brain densitometry
of contralateral ASPECTS regions. This study provides an auto-
mated method to transform brain atlases to a patient’s NCCT
scan and to automatically detect and quantify EICs. This auto-
mated method was in agreement with manual consensus scoring
in 73% without bias or outliers, in contrast with individual
observers. With the same limits of agreement between observers
and between automated and consensus scoring, we can conclude
that the automated method performed comparable to the manual
ASPECTS scoring, keeping in mind that in the acute setting,
ASPECTS is not scored in consensus but by a single observer.
Since our method obtained similar correlations with clinical

outcome measures, it shows the potential to assist or eventually
replace manual ASPECTS assessments as indicators of stroke
severity.
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