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Abstract. The planar interface of an isotropic homogeneous metal and an ambichiral dielectric
material can guide surface-plasmon-polariton (SPP) waves. The planar interface of an isotropic,
homogeneous dielectric material and an ambichiral dielectric material can guide Dyakonov–
Tamm waves. In either instance, we found that, as the ambichiral partnering material evolves
into a finely chiral material, the solutions of the dispersion equation for surface-wave propaga-
tion evince convergence. The convergence is faster for Dyakonov–Tamm waves than for SPP
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1 Introduction

Anticipating the discovery of cholesteric liquid crystals by about two decades,1,2 Reusch3 pro-
posed in 1869 that a periodically nonhomogeneous multilayered material reflects normally inci-
dent circularly polarized light of one handedness, but not of the opposite handedness, provided
that all layers are made of the same homogeneous, uniaxial dielectric material such that the optic
axis in each layer is rotated about the thickness direction with respect to the optic axis in the
adjacent layer by a fixed angle. Such a periodically nonhomogeneous dielectric material is nowa-
days called a Reusch pile.

Extensive theoretical and experimental work by Joly and colleagues4–7 showed that the cir-
cular-polarization-selective reflection of normally incident light by a Reusch pile may occur in
several spectral regimes. This selective reflection of circularly polarized light of one handedness,
but very little of the other, in a given spectral regime is commonly called the circular Bragg
phenomenon.8,9

A classification scheme based on the number N of layers in each period of a Reusch pile was
developed by Hodgkinson et al.10 IfN ¼ 2, the Reusch pile is classified as an equichiral material;
if N > 2, but not very large, it can be called an ambichiral material; and if N → ∞, it is a finely
chiral material. Equichiral materials do not exhibit the circular Bragg phenomenon. Ambichiral
materials may exhibit the circular Bragg phenomenon in several spectral regimes, depending on
the variations of their constitutive parameters with frequency. A cholesteric liquid crystal11 can
be considered as a finely chiral Reusch pile made of uniaxial dielectric layers.

Reusch piles can also be made of biaxial dielectric material such as columnar thin films
(CTFs).12 A chiral sculptured thin film (STF)8 can be considered to be a finely chiral
Reusch pile comprising biaxial CTFs. Chiral STFs were first fabricated by Young and
Kowal13 in 1959 and were rediscovered in the 1990s.14 They have been extensively studied
since then for optical applications exploiting the circular Bragg phenomenon.8,9
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The effect of the number N of layers in a period on the circular Bragg phenomenon has been
studied.15 Both N and the total number of periods have to be substantially large for the circular
Bragg phenomenon to fully develop.15

Now, the planar interface of an isotropic homogeneous metal and an ambichiral dielectric
material can guide surface-plasmon-polariton (SPP) waves. The planar interface of an isotropic,
homogeneous dielectric material and an ambichiral dielectric material can guide Dyakonov–
Tamm waves. What is the effect of N on both types of surface waves? The results reported
in this communication elucidate the evolution of the solution(s) of the dispersion equation
for surface-wave propagation with N.

The plan of this communication is as follows. Section 2 succinctly presents the common
formulation of the canonical boundary-value problem for both types of surface waves.
Numerical results are presented and discussed in Sec. 3. An expð−iωtÞ dependence on
time t is implicit, with ω denoting the angular frequency and i ¼ ffiffiffiffiffiffi

−1
p

. Furthermore,
k0 ¼ ω

ffiffiffiffiffiffiffiffiffi
μ0ε0

p
and λ0 ¼ 2π∕k0, respectively, represent the free-space wavenumber and free-

space wavelength, where μ0 is the permeability and ε0 is the permittivity of free space.
Vectors are in boldface, dyadics are double-underlined, and the three Cartesian unit vectors
are denoted by ûx, ûy, and ûz.

2 Theoretical Preliminaries

The canonical boundary-value problem of surface-wave propagation is depicted schematically in
Fig. 1. The half space z < 0 is occupied by an isotropic and homogeneous material with relative
permittivity εs. The half space z > 0 is occupied by an ambichiral dielectric material comprising
homogeneous layers each of thickness D, the l’th layer occupying the region
ðl − 1ÞD < z < lD, l ∈ ½1;∞Þ. The relative permittivity dyadic is given as

ϵðz;ωÞ ¼ S
z
ðhξl þ hγÞ · S

y
ðχÞ · ϵ°

ref
ðωÞ · S−1

y
ðχÞ · S−1

z
ðhξl þ hγÞ; ðl − 1ÞD < z < lD;

l ∈ ½1;∞Þ;
(1)

where the reference permittivity dyadic

ϵ°
ref
ðωÞ ¼ ûzûzεaðωÞ þ ûxûxεbðωÞ þ ûyûyεcðωÞ (2)

contains the eigenvalues εa;b;cðωÞ of ϵðz;ωÞ. The dyadic

S
y
ðχÞ ¼ ðûxûx þ ûzûzÞ cos χ þ ðûzûx − ûxûzÞ sin χ þ ûyûy (3)

depends on the tilt angle χ ∈ ½0 deg; 90 deg� with respect to the xy plane, the dyadic

S
z
ðξÞ ¼ ðûxûx þ ûyûyÞ cos ξþ ðûyûx − ûxûyÞ sin ξþ ûzûz (4)

    Ambichiral dielectric material 

    Homogeneous and isotropic material 

Surface wave 
x 

z 

Fig. 1 Schematic of the canonical boundary-value problem.
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represents a rotation about the z axis by an angle ξ, ξl ¼ ðl − 1Þπ∕N with N ≥ 1 being the
number of layers in each period 2Ω ¼ ND, Ω is the half period, right-handed rotation is rep-
resented by h ¼ 1 and left-handed rotation by h ¼ −1, and γ is an angular offset with respect to
the x axis.

In the region z < 0, the electric field phasor may be written as16–18

Eðx; zÞ ¼
�
a1ûy þ a2

�
αsûx þ qûz

k0ns

��
exp½iðqx − αszÞ�; z < 0; (5)

where q2 þ α2s ¼ k20εs, ns ¼
ffiffiffiffi
εs

p
, q is the complex-valued wavenumber of the surface wave,

ImðαsÞ > 0 for attenuation as z → −∞, and a1 and a2 are unknown scalars with the same
units as the electric field.

For field representation in the region z > 0, let us write18

Eðx; zÞ ¼ eðzÞ expðiqxÞ; Hðx; zÞ ¼ hðzÞ expðiqxÞ: (6)

The Cartesian components of the electric and magnetic field phasors tangential to the xy plane
are used to form the column vector

½fðzÞ� ¼

2
664
exðzÞ
eyðzÞ
hxðzÞ
hyðzÞ

3
775 (7)

which satisfies the matrix differential equation

d

dz
½fðzÞ� ¼ i½PðzÞ� · ½fðzÞ�; z > 0; (8)

where the 4 × 4 matrix ½PðzÞ� depends not only on εðz;ωÞ but also on q.
The piecewise-uniform approximation technique8 can be used to determine the matrix ½Q̃� that

appears in the relation

½fð2ΩÞ� ¼ expfi2Ω½Q̃�g · ½fð0þÞ� (9)

for specific values of q. Let ½t�ðnÞ, n ∈ ½1; 4�, be the eigenvector corresponding to the n’th eigen-
value αn of ½Q̃�. After ensuring that Imðα1;2Þ > 0, we set

½fð0þÞ� ¼ ½ ½t�ð1Þ ½t�ð2Þ � ·
�
b1
b2

�
(10)

for surface-wave propagation, where b1 and b2 are unknown dimensionless scalars; the other two
eigenvalues of ½Q̃� pertain to waves that amplify as z → ∞ and cannot therefore contribute to the
surface wave. At the same time, ½fð0−Þ� can be obtained from Eq. (5) and the corresponding mag-
netic field phasor H ¼ −i∇ × E∕ωμ0.

Enforcement of the usual boundary conditions across the plane z ¼ 0 requires that
½fð0−Þ� ¼ ½fð0þÞ�, which may be rearranged as the matrix equation

½Y� ·

2
64
a1
a2
b1
b2

3
75 ¼

2
64
0

0

0

0

3
75; (11)

leading to the dispersion equation

det½YðqÞ� ¼ 0: (12)
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3 Numerical Results and Discussion

The dispersion equation (12) was solved using the Newton–Raphson method,19 with λ0 fixed at
633 nm. For all numerical results presented here, the ambichiral dielectric material was taken to
comprise CTFs made by directing a collimated evaporant flux of patinal titanium oxide in a low-
pressure chamber at a fixed angle χv ∈ ð0 deg; 90 deg� with respect to a planar substrate.20 For
the chosen CTF,

8>>><
>>>:

εa ¼ ½1.0443þ 2.7394ð2χv∕πÞ − 1.3697ð2χv∕πÞ2�2
εb ¼ ½1.6765þ 1.5649ð2χv∕πÞ − 0.7825ð2χv∕πÞ2�2
εc ¼ ½1.3586þ 2.1109ð2χv∕πÞ − 1.0554ð2χv∕πÞ2�2
χ ¼ tan−1ð2.8818 tan χvÞ

(13)

according to Hazel and co-workers.20 We fixed Ω ¼ 200 nm, while varying N ∈ ½1; 15� (so that
D ¼ 2Ω∕N was simultaneously varied) and γ ∈ f0 deg; 45 deg; 90 degg. Furthermore, χv ¼
20 deg was fixed so that εa ¼ 2.5135, εb ¼ 3.9426, and εc ¼ 3.1528.

3.1 Surface-Plasmon-Polariton Waves

Let the isotropic homogeneous partnering material be thin-film aluminum with εs ¼ −14.65þ
i5.85 (Ref. 21) at λ0 ¼ 633 nm. Then, all solutions q of the dispersion equation (12) represent
SPP waves.16,18 These solutions are complex valued because εs is complex valued.

Only one solution of the dispersion equation exists for any γ ∈ ½0 deg; 90 deg� when the
anisotropic partnering material is homogeneous (i.e., N ¼ 1).22 However, when that partnering
material is periodically nonhomogeneous (i.e., N > 1), the solutions can be organized into two
branches for γ ¼ 0 deg and 45 deg but only one for γ ¼ 90 deg, as shown in Fig. 2.
Convergence on either branch is monotonic for N > 2.

The most notable feature of the solutions presented in Fig. 2 is their evolution and conver-
gence as N increases. Although not shown in this figure, both the real and imaginary parts of q
on the first branch in Fig. 2 lie within 0.1% of the corresponding solutions for the metal/chiral-
STF interface16 when N ≥ 18, and on the second branch in that figure lie within 0.1% when
N ≥ 55. Also, ReðqÞ converges faster with respect to N than ImðqÞ does.
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Fig. 2 Real and imaginary parts of the solutions q of Eq. (12) as functions of N ∈ ½1; 15� and γ ∈
f0 deg; 45 deg; 90 degg for SPP waves guided by the planar interface of aluminum
(εs ¼ −14.65þ i5.85) and an ambichiral dielectric material characterized by Eq. (13) with
χv ¼ 20 deg, when λ0 ¼ 633 nm and Ω ¼ 200 nm. Top panels: First branch of solutions.
Bottom panels: Second branch of solutions.
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In order to delineate the effect of N on the localization of SPP waves to the interface z ¼ 0,
the penetration depth δs ¼ 1∕ImðαsÞ into aluminum is presented in Fig. 3 in relation to N for all
solutions of Eq. (12). The penetration depth converges to ≃23 nm for the first branch and to
≃24 nm for the second branch as N increases.

Since the ambichiral material is periodically nonhomogeneous and anisotropic, two decay
constants β1;2 ¼ exp½−2ΩImðα1;2Þ� ∈ ð0; 1Þ are defined18 to quantify localization in the aniso-
tropic partnering material. The smaller that minfβ1; β2g is, the higher is that localization of the
SPP wave to the interface. The decay constants for all SPP waves found are presented in Fig. 4.
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Fig. 3 The penetration depth δs of SPPwaves into aluminum for the (top) first and (bottom) second
branches of solutions provided in Fig. 2.
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Fig. 4 The decay constants β1;2 of SPP waves for the (top) first and (bottom) second branches of
solutions provided in Fig. 2.
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The SPP waves on the first branch are highly localized to the interface within the ambichiral
material as both decay constants converge to values <0.05 with increasing N. The SPP waves on
the second branch are loosely bound to the interface, and the degree of localization strongly
depends on the direction of propagation. Both decay constants converge to ≃ 0.6 for
γ ¼ 0 deg, but both converge to ≃ 0.9 for γ ¼ 45 deg. Furthermore, data for N > 15 (not
shown) indicated that δs, β1, and β2 converge to within 0.1% of their respective values
when N ≥ 29 on the first branch and N ≥ 30 on the second branch.

3.2 Dyakonov–Tamm Waves

Next, let the isotropic homogeneous partnering material be magnesium fluoride—a dielectric
material with εs ¼ 1.896 at λ0 ¼ 633 nm—instead of a metal. Every solution of the dispersion
equation (12) represents a Dyakonov–Tamm wave17—named thus because this wave has the
attributes of both the Dyakonov wave23,24 and the Tamm wave18,25—since both partnering mate-
rials are dielectric materials and one of the two is anisotropic and periodically nonhomogeneous
normal to the waveguiding interface for N ≥ 2.17,18

For every γ ∈ f0 deg; 45 deg; 90 degg, only one solution of Eq. (12) was found.
Dissipation being absent in both partnering materials, q is real valued. The dependence of q
on N is shown in Fig. 5. Also provided in the same figure are δs and β1;2 in relation to N.

For N ¼ 1, the anisotropic partner is homogeneous and the solution q for γ ¼ 0 deg rep-
resents a Dyakonov wave;23,24 no solution was found for γ ∈ f45 deg; 90 degg. ForN > 1, only
one solution was found regardless of the value of γ, and that solution represents a Dyakonov–
Tamm wave. Figure 5 indicates the typical difference between Dyakonov and Dyakonov–Tamm
waves:17 The range of γ is much larger for surface waves of the latter type than for the surface
waves of the former type.

Just like the solutions presented in Fig. 2 for SPP waves, those presented in Fig. 5 for
Dyakonov–Tamm waves also evolve as N increases. Specifically, the solutions in Fig. 5 con-
verge monotonically to within 0.1% of the corresponding solution for the isotropic-dielectric/
chiral-STF interface17 when N ≥ 9.

Figure 5 shows that the penetration depth of the Dyakonov–Tamm wave into the
homogeneous partnering material depends upon γ and, hence, the direction of propagation,
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Fig. 5 Solution q, penetration depth δs into magnesium fluoride (εs ¼ 1.896), and the decay con-
stants β1;2 in the ambichiral dielectric material characterized by Eqs. (13) with χv ¼ 20 deg, as
functions of N ∈ ½1; 15� and γ ∈ f0 deg; 45 deg; 90 degg, for Dyakonov–Tamm waves guided
by the interface of magnesium fluoride and the ambichiral dielectric material, when
λ0 ¼ 633 nm and Ω ¼ 200 nm.
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but is about four times greater than for SPP waves. The plots of the decay constants show that the
degree of localization of the Dyakonov–Tamm wave in the ambichiral material increases as γ
increases. The values of β1;2 converge to ≃0.8 for γ ¼ 0 deg and to ≃0.5 for γ ¼ 45 deg and
90 deg. Furthermore, δs, β1, and β2 converge to within 0.1% when N ≥ 32.

3.3 Sufficient Value of N

In order to fabricate a structurally chiral material with continuous variation of εðz;ωÞwith z as an
ambichiral material, a sufficient value of N must be chosen based upon the tolerances in the
values of the wavenumber q, penetration depth δs, and the smaller decay constant
minfβ1; β2g. If all tolerances are chosen to be 0.1%, as in the previous subsections, N ¼ 55

is sufficient for the SPP wave, and N ¼ 32 for the Dyakonov–Tamm wave. However, if all
tolerances are chosen to be 1%, N ¼ 19 suffices for the SPP wave and N ¼ 11 for the
Dyakonov–Tamm wave.

Let us note that the thickness D of each CTF in the ambichiral material is 2Ω∕N ≃ 21 nm

for N ¼ 19 and ≃36 nm for N ¼ 11. If the thickness of each CTF either equals or is less
than one-tenth of the smallest wavelength inside the ambichiral material, then each CTF is elec-
trically thin.26 For the chosen parameters, one-tenth of the smallest wavelength inside the
ambichiral material is λ0∕ð10 ffiffiffiffiffi

εb
p Þ ≃ 32 nm since εb > εc > εa > 1. Therefore, if

D ≤ λ0∕ð10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfεa; εb; εcg

p Þ, the ambichiral material has a sufficiently smooth variation of
εðz;ωÞ with z and all important quantities characterizing a surface wave will converge to within
∼1%.

4 Concluding Remarks

The canonical boundary-value problem of surface-wave propagation guided by the planar inter-
face of an isotropic homogeneous material and an ambichiral material was set up and solved.
Both SPP and Dyakonov–Tamm waves were investigated. As the number N of layers per period
in the ambichiral partnering material was increased, the solutions of the dispersion equation for
surface-wave propagation were found to converge to those for the ambichiral material replaced
by the corresponding finely chiral material. The convergence is faster when the homogeneous
partnering material is dielectric than when it is metallic. The real part of the wavenumber q of an
SPP wave converges faster than the imaginary part with respect to N. The real and imaginary
parts of the surface wavenumber, the penetration depth into the isotropic partner, and the decay
constants in the ambichiral dielectric material converge to within ∼1% if the layers in the ambi-
chiral material are electrically thin.
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