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Abstract. We have previously shown the advantage of using neural network (NN) inversion
algorithms over other ocean color (OC) algorithms in Visible Infrared Imaging Radiometer
Suite satellite retrievals of Karenia brevis (KB) in the west Florida shelf (WFS). We now extend
NN retrievals well beyond theWFS, to include both complex coastal and open ocean waters along
the Florida and Atlantic coasts with a large dynamic range of chlorophyll-a values. Most impor-
tantly, we add in situ radiometric measurements (which in contrast to satellite retrievals, are invul-
nerable to atmospheric transmission correction errors) as inputs to retrieval algorithms, permitting
algorithm comparisons for in situ and simultaneous colocated satellite retrievals against sample
measurements. Results unequivocally demonstrate the intrinsic efficacy and unfettered applicabil-
ity of NN algorithms in widely varying waters beyond the WFS. Furthermore, they show that
avoiding deep blue bands in retrieval algorithms significantly improves accuracies. Likely, ration-
ales are that longer wavelengths (used with NN) are less vulnerable to atmospheric transmission
correction errors and to spectral interference by colored dissolved organic matter and nonalgal
particles in more complex waters than deeper blue wavelengths (used with other algorithms),
thereby arguing for development of OC algorithms using longer wavelengths. Finally, quantita-
tive analysis of temporal, intrapixel, and sample depth variabilities highlights their important
impact on retrieval accuracies. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.024509]
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1 Introduction

In our previous work,1–4 results showed the efficacy of a neural network (NN) approach for
detecting Karenia brevis (KB) harmful algal blooms (HABs) in the west Florida shelf
(WFS). The essence of the approach is the application of a standard multiband NN inversion
algorithm, evolved and reported by us.1,5–8 This takes Visible Infrared Imaging Radiometer Suite
(VIIRS) remote sensing reflectance (Rrs) measurements at the 486, 551, and 671 nm bands
[or 488, 555, and 667 nm bands for Moderate Resolution Imaging Spectroradiometer Aqua
(MODIS-A)] as inputs. It then produces related inherent optical properties (IOPs) at 443 nm as
its outputs, including the absorption coefficients of phytoplankton (aph443). The NN is used to
generate an aph443 image of the WFS, which is then converted into an equivalent chlorophyll-a
concentration [Chla] image, using empirical relationships for specific chlorophyll-a absorption
values in the WFS, which have been determined from in situmeasurements.9 Then, to obtain KB
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HABs values from the VIIRS NN retrieved aph443 image, two filter processes are applied. These
are based on constraints known to be associated with KB HABs in the WFS. These are: (i) low
backscatter at 551 nm and (ii) a minimum permissible [Chla]min threshold value10,11 and hence
an equivalent minimum permissible value of aph443 ≤ aph443 min. Following the application of
these two filter processes, the residual image shows aph443 values that are compatible with both
the above criteria for KB HABs and are convertible to KB HAB concentrations. In previously
published work,1,2 VIIRS retrievals of KB HABs in the WFS, using the NN technique, were
compared with those obtained using other retrieval algorithms to evaluate its efficacy. All
retrievals were evaluated, with the National Oceanic and Atmospheric Administration (NOAA)
participation, against near coincident in situ cell count measurements available from the start of
the VIIRS mission in January 2012 to 2016 using NASA/NOAA data. The results highlighted
the important impact of short-term (15 to 20 min) temporal variations on retrieval accuracies.1,2,4

These previous empirical comparisons also unequivocally showed that the NN technique exhib-
ited the highest accuracy statistics for retrievals of KB HABs in the WFS, closely followed by
ocean color indexes (OCI/OCx), then more distantly by the red green chlorophyll index (RGCI),
the generalized inherent optical property (GIOP), and the quasianalytical algorithm (QAA), par-
ticularly in optically complex and shallow waters. However, it should be noted that this previous
work was restricted to the WFS. In this paper, we examine and more generally compare and
extend the applicability of the NN technique to waters well beyond the WFS with larger dynamic
ranges of chlorophyll-a values and with much larger numbers of data points. In addition to the
results of this extended comparison, significant results are also presented in two other areas.
Highlights for all three areas are summarized below.

i. We extend evaluations and comparisons of NN retrievals of aph443 and [Chla] with retrieval
from other OC algorithms to waters well beyond the WFS, including both complex coastal
and open ocean waters, along the Florida and Atlantic coasts, with a large dynamic range of
chlorophyll-a values. Further and most importantly, in addition to retrievals from satellite
measurements, we now also add coincident in situ radiometric measurements to obtain Rrs

inputs to retrieval algorithms. These in situ radiometric Rrs measurements, in contrast to
satellite Rrs retrievals, are invulnerable to atmospheric transmission correction errors. This
permits comparison of in situ radiometric measurement-based retrievals with simultaneous
colocated satellite retrievals, with validation of both against coincident in situ sample mea-
surements. This allows us to isolate different factors affecting algorithms retrieval accu-
racies and evaluate the intrinsic merits of different algorithms unencumbered by possibly
inadequate or erroneous atmospheric transmission assumptions and/or satellite instrumen-
tal calibration limitations. The data for these extended studies, which are now freely avail-
able to the public and the scientific community, were obtained from NOAA dedicated
VIIRS OC calibration and validation cruises, which we participated in. NN algorithm
retrieval comparisons were carried out again with NOAA participation. While still empiri-
cal, much larger numbers of data points are used. The results unequivocally extend and
demonstrate the efficacy of NN algorithms to widely varying waters beyond the WFS. The
NN algorithm again exhibited higher retrieval accuracy statistics in comparisons with other
algorithms. It was again closely followed by OCI/OCx, then more distantly by other algo-
rithms, particularly in optically complex and shallow waters.

ii. Since it is conjectured that in satellite retrievals, it is the deep blue wavelengths that are
more detrimentally affected by atmospheric correction inadequacies, the work reported
here also zeroed in on impacts on algorithm retrieval accuracy when deep blue wave-
lengths are used for retrieving Rrs values. For this work, we compared algorithm retrievals
from the two best performing algorithms, NN and OCI/OCx against in situ sample mea-
surements. These comparisons used in turn in situ radiometric Rrs measurements and sat-
ellite Rrs retrievals as inputs, with blue wavelengths, first at 443 nm (deep blue) and then at
486 nm (nondeep blue) in each of the algorithms. Comparisons of these two types of
retrievals using 443 or 486 nm permit us to examine relative impacts at each wavelength
of atmospheric correction inadequacies, as well as identify possible underwater spectral
interference in colored dissolved organic matter (CDOM) rich and complex waters and
generally evaluate the relative impacts for the deep blue and nondeep blue bands. The
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results unambiguously show that both satellite retrieval accuracies, as well as intrinsic
retrieval accuracies from in situ radiometric measurements, are improved when deep
blue wavelength measurements (443 nm) are avoided in favor of nondeep blue wave-
lengths (486 nm), thereby arguing for development and use of OC algorithms using
the longer wavelengths.

iii. Finally, quantitative analysis of temporal, intrapixel, and sample depth variabilities high-
lights their important impact on retrieval accuracies.

2 Background

2.1 NN Algorithm

For the development of the NN algorithm,1,2,4,12–15 a synthetic dataset of 20,000 IOPs was ran-
domly simulated within the very wide range of parameters exhibited in the NASA Bio-optical
Marine Algorithm Dataset.12 These randomly generated synthetic IOPs13–17 were then used as
inputs to a four component bio-optical model,7,16,17 which in conjunction with a HydroLight
based,18 parameterized forward model, described in Lee et al.,16 and produced 20,000 sets
of Rrs values at 486, 551, and 671 nm (for VIIRS) and at 488, 555, and 667 nm for
MODIS. The NN was trained on 10,000 of these values and tested on the 10,000 remaining
subset, to solve the inverse problem19 of retrieving physical variables, including aph443, from
Rrs values at 486, 551, and 671 nm, and at 488, 555, and 667 nm. The algorithm is a standard
multiband NN inversion algorithm that takes Rrs input at 486, 551, and 671 nm wavelengths,
which are not greatly impacted by atmospheric corrections. Output of IOPs, namely absorption
coefficients of phytoplankton (aph), dissolved organic matter (ag), and nonalgal particulates
(adm) as well as the particulate backscatter coefficient (bbp), all at 443 nm, which is at the
peak of aph and thus exhibits most variation. Detailed descriptions of the NN are given in
Refs. 1 and 4–8. A brief description of NN as well as the necessary parameters for its imple-
mentation are given in Secs. 7.1 and 7.2.

2.2 Summary of Previous Results—NN VIIRS HABs Retrieval Match-Ups in
the WFS against Near Simultaneous In Situ Cell Count Measurements
Compared with Retrievals Using Other Algorithms

To place the results presented in this paper in a proper context, a brief summary of previous
results (1) and (2) is presented here. In that work, which was restricted to the WFS, retrievals
of KB HABs from VIIRS satellite observations were matched with simultaneous or near simul-
taneous in situ sample measurements obtained over a 4 year period, 2012–2016, for which there
were available VIIRS observations and near concurrent in situ data, collected by the Florida Fish
and Wildlife Conservation Commission (FWC). For these observations, the accuracy of retriev-
als using the NN algorithm was compared to the accuracy of retrievals obtained using three other
available OC retrievals algorithms: (i) the OCI\OCx20,21 are the default NASA products22 that are
used to retrieve the near-surface chlorophyll-a concentrations [Chla]; the product uses a combi-
nation of the OCx and OCI algorithms; (ii) the GIOP model,23,24 the model estimates unified
IOPs from different semianalytical algorithms; (iii) the QAA,16,25,26 developed by Lee et al.16 to
derive the absorption and backscattering coefficients by analytically inverting the spectral
remote-sensing reflectance ½RrsðλÞ�; and (iv) the RGCI is an regional algorithm27 that retrieves
[Chla] from observations of MODIS-A and VIIRS bands.

The results of the comparisons supported the conclusion that at least for these preliminary
and somewhat limited datasets, the NN satellite retrievals exhibit significantly better perfor-
mances against the in situ measurements, for both the longer (100 min) and, more importantly,
the shorter (15-min) overlap time windows. This was observed both in terms of higher coefficient
of determination (R2) and in terms of lower errors against the in situmeasurements. It is also seen
that reducing the time window from 100 to 15 min between satellite and in situ observations very
significantly increased the accuracy between VIIRS retrieved [Chla] and in situ measured KB
cell counts. We believe that this reflects temporal changes in the HABs scene being observed.
These changes are clearly greater over the 100-min time window than for the 15-min window.
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These changes, can be quite rapid,28 were confirmed by our field measurements of KB HABs in
the WFS and reported in Ref. 2, where it was found that changes of the order of 30% in HABS
cell concentrations could typically occur (up or down) in tens of minutes whether due to drift or
up- or downwelling effects.2 These temporal effects in the WFS are now explored quantitatively
in Sec. 4.4 below.

3 Methods

This section describes the approach and methodology followed in this paper to arrive at results in
three areas:

3.1 Examination of General Applicability and Advantages of NN Approach
in Different Waters Types Beyond the WFS

To answer questions previously raised regarding general applicability and potential advantages
of NN approach in waters beyond the WFS, in this paper, we extend NN retrieval comparisons to
locations well beyond the WFS, to include both complex coastal and open ocean waters along
the Florida and Atlantic coasts, which encompass different water types with a large dynamic
range of chlorophyll-a values. The NN retrievals are now compared to retrievals using the
following algorithms: (i) the OCI\OCx,20,21 (ii) the QAA,16,25,26 and (iii) the RGCI.27 These mea-
surements and retrievals were carried out in NOAA cruises and our own cruises with Mote
Marine Laboratory in the WFS over the 2014 to 2018 period. Most importantly, in these com-
parisons, in addition to extending locations and water types studied, we now also added in situ
Rrs radiometric measurements, to complement the in situ sampling. Since these Rrs measure-
ments are in situ, they are not subject to the impact of possibly inadequate (or incorrect)
correction procedures that are applied to atmospheric transmission assumptions and that can
erroneously impact satellite Rrs retrievals and hence retrieval accuracies. Instead, by using
these in situ Rrs measurements as inputs to the different retrieval algorithms, the retrieval com-
parisons obtained in this manner indicate the intrinsic retrieval accuracies and efficacy of the
algorithms being compared, without the impact of possibly inadequate and erroneous atmos-
pheric transmission assumptions.

In addition to the above retrieval comparisons obtained from in situ radiometric measure-
ments, comparisons were also made of available simultaneous satellite retrievals using the differ-
ent algorithms of the same locations. Besides permitting us to rank the satellite retrieval
accuracies and efficacies of NN and other algorithms for waters beyond the WFS, this permits
us to examine and isolate the impacts of inadequate or incorrect assumptions for an atmospheric
transmission on these satellite retrieval accuracies.

Figure 1 shows the location of all open ocean, coastal, bloom, and nonbloom waters, where
in situ radiometric measurements and sample measurements were made, along with some coinci-
dent satellite measurements. A total of 83 coastal and open ocean measurements were obtained
from the NOAAVIIRS calibration and validation cruises29–31 over the 2014 to 2016 period as
well from in situ measurements that include KB blooms waters from our 2017 and 2018 WFS
field campaigns with Mote. The comparisons also added examination and comparison of
retrieval statistics for different retrieval algorithms as a function of distance from the coasts.

For comparisons of retrieval accuracies of NN, OCI/OCx, QAA, and RGCI algorithms, the
orthogonal linear regression approach (OR) was used to determine the coefficient of determi-
nation, R2, and errors (ε). The error (ε) is calculated as the sum of orthogonal distances and
assumed to exist for both variables. OR estimates of x on ywill minimize the orthogonal distance
from the observed data points to the regression line:32

EQ-TARGET;temp:intralink-;e001;116;145

X
ðyi − β0 − β1xiÞ2; (1)

where β0 and β1 are intercept and slope. The OR estimate of the slope is as follows:

EQ-TARGET;temp:intralink-;e002;116;98β̂1 ¼
SYY − SXX þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSYY − SXXÞ2 þ 4S2XY

p

2SXY
; (2)

El-Habashi et al.: Analyses of satellite ocean color retrievals show advantage. . .

Journal of Applied Remote Sensing 024509-4 Apr–Jun 2019 • Vol. 13(2)



where, SXX and SYY are the covariances for X and Y, respectively, and SXY is the correlation for
X and Y.

The average magnitude errors were also calculated, using the mean absolute error (MAE),
where all individual differences have equal weights. MAE calculates the average over the tested
sample of the absolute differences between retrieved (yj) and actual measured (ŷj) values. The
MAE is defined as follows:

EQ-TARGET;temp:intralink-;e003;116;357MAE ¼ 1

n

Xn

j¼1

jyj − ŷjj; (3)

where n is the number of observations.

3.2 Impact of Deeper Blue Wavelengths on Retrieval Performance

In the present work, satellite retrievals using different algorithms comparisons were carried out
not only against coincident in situ sampling, but, as discussed above, also now extended to com-
parisons with retrievals using in situ surface and below surface coincident Rrs radiometric mea-
surements as inputs to the retrieval algorithms. Since it is conjectured that in satellite retrievals,
it is the deep blue wavelengths that are more significantly affected by atmospheric correction
inadequacies, we next zeroed in on the impact on algorithm retrieval accuracy when deep blue
wavelengths are used for retrieving Rrs values. For this work, we compared algorithm retrievals
from by far the two best performing algorithms, NN and OCI/OCx against in situ sample
measurements, using both in situ radiometric measurements and satellite Rrs retrievals, as inputs,
with each of the algorithms using as blue wavelengths either 443 nm (deep blue) or 486 nm
(nondeep blue). These combined comparisons allow us to isolate the impact of atmospheric
correction inadequacies, as well as identify possible underwater spectral interference in
CDOM rich and complex waters. To carry out these comparisons, the NN algorithm, which
normally uses Rrs inputs at 486, 551, and 671 nm, was retrained to use Rrs at 443 nm instead
of the 486 nm as input. Comparisons could then be carried out of both satellite and in situ radio-
metric retrievals using the same NN algorithm using the Rrs 486 nm input or the deeper blue Rrs

input at 443 nm (to isolate relative impacts of inadequate atmospheric corrections, expected to be

Fig. 1 Locations for in situ radiometric and sample measurements used in retrieval comparisons.
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larger at 443 nm and underwater spectral interferences). These comparisons are also repeated
for the OCx algorithm, which has options for either 443 nm or 486 inputs.

3.3 Analysis of Temporal Changes, Sampling Depths and Intrapixel
Variations of KB HABs

Our previous results, summarized in Sec. 2.2 above and reported in Refs. 1 and 2, implied that
the accuracy and correlation of match-ups of VIIRS KB HABs retrievals against near simulta-
neous sample measurements in the WFS were very vulnerable to relatively short-term temporal
changes in the HABs scene being observed. We extend the quantitative examination of the
impact on retrievals of these temporal variations, as well of variations with sampling depths
and inter/intra-pixel variations by means of detailed in situ field sample and radiometric
measurements in the WFS in conjunction with Mote Marine Laboratories in 2017 and 2018.
Measurements were made along several transects, typically 2 to 3 km in length, off Sarasota,
Florida. Many of the measurements were made at stations subpixel distances apart (generally
300 m) on an outward leg and were then repeated for the same stations as closely as possible on
a return leg. Radiometric and sample measurements were made at different depths: 0.1, 0.5, and
1 m for each station. Chlorophyll concentrations were obtained by high performance liquid
chromatography (HPLC) analyses and KB cell counts obtained by microscope analyses at
Mote Marine Laboratories. We also examined images of KB HABs retrievals from consecutive
VIIRS and MODIS satellite overpasses of the WFS to support the conclusion of the observed
short-term changes.

4 Results

The section is organized as follows: Sec. 4.1 represents evaluating and confirming the efficacy of
NN OC retrievals beyond the WFS by extending comparisons with other OC algorithms to
different water types in open ocean and complex coastal waters along the Florida and Atlantic
coasts; Sec. 4.2 represents examining the impact of the use of deeper blue bands on satellite
retrieval accuracies, and the resultant advantages of algorithms that avoid deep blue bands;
Sec. 4.3 represents quantitative examination of temporal, sampling depth and intrapixel varia-
bilities in KB HAB waters of the WFS and their impact on retrieval accuracies; Sec. 4.4
represents satellite image retrievals and observations of variabilities in WFS.

4.1 Evaluating and Confirming the Efficacy and Advantages of NN OC
Retrievals Beyond the WFS by Extending Retrieval Comparisons
with other OC Algorithms to Different Water Types in Open Ocean
and Complex Coastal Waters along the Florida and Atlantic Coast

In this section, NN OC retrievals are compared with OCI/OCx, QAA, and RGCI retrievals.
The first set of comparisons uses in situ radiometric measurements as inputs to retrieval algo-
rithms. The second set of comparisons, shown later below, compares the VIIRS satellite retrieval
directly. The use of in situ radiometric inputs first eliminates concerns of possible atmospheric
correction inadequacies associated with satellite retrievals. All comparisons are also extended
to include a large variety of water beyond the WFS, including open ocean, complex coastal,
and KB bloom waters, covering a large dynamic range of chlorophyll-a values. Field measure-
ments were obtained from several field campaigns along the Florida and Atlantic coasts, as
discussed in Sec. 3.1 above. Figure 1 shows the location of the 83 data points from these
measurements.

Figure 2 shows retrievals and related statistics obtained with the different algorithms using
in situ radiometric Rrs measurements as inputs, plotted against sample measurements for all
83 stations, as shown in Fig. 1 above. This includes 40 complex coastal water measurements
and 43 open ocean measurements, both from the WFS and Atlantic coasts.

Performance of the different algorithms was also examined by comparing the residuals
(difference between retrieved values and sample measurements) at varying distances from the
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shoreline. These are shown in Fig. 3 for both open ocean and complex coastal waters of
the Atlantic coasts and KB HABs water in WFS. In both cases, measured in situ radiometric
Rrs and HPLC samples values are used.

As can be seen from Figs. 2 and 3, for the coastal water regions located 2 to 16 miles from the
shoreline, the NN algorithm generally exhibited the highest R2 correlations, the lowest retrieval
errors (ε), and the lowest MAE of 1.9 μg L−1, closely followed by OCx, then more distantly by
QAA and RGCI, particularly in optically complex and shallow waters. For the open ocean
regions, the order of retrieval accuracies was again NN followed by OCx and then QAA
and RGCI. The regression lines in Fig. 2 seem to improve for OCI/OCx for lower retrieved
chlorophyll-a values and in NN for the higher retrieved chlorophyll-a values. The fact that
for the more complex WFS waters with KB HABs, the NN algorithm performs better,
which would tend to support the notion that higher accuracies of NN retrievals may be at
least partially due to the use of longer Rrs input wavelengths for NN, than the deeper blue wave-
lengths used in other algorithms, thereby possibly lessening the impact on measured Rrs values
of spectral interference by dissolved organic matter CDOM, and nonalgal particles (both
expected in more complex waters). It should also be noted that while the NN approach does
not require measurements at the shorter wavelength channels, which are typically impacted
the most by atmospheric correction difficulties and possible underwater spectral interference
(CDOM/NAP) in coastal waters, the NN output of (aph) is at the 443-nm band, which is at

Fig. 3 Residuals (difference between retrieved values and sample measurements) at varying
distances from the shoreline for the different algorithms.

Fig. 2 Results for NN, OCI/OCx, RGCI, and QAA retrievals in the WFS and Atlantic coasts
obtained using in situ radiometric measurements as inputs plotted against sample measurements
for 83 stations, including 40 coastal and bloom water measurements, as well as 43 open ocean
measurements. Color bar relates retrieved [Chla] statistics to varying distance from the shoreline.
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the peak of phytoplankton absorption, and thus exhibits the most sensitive variation in natural
water. This contributes significantly to the sensitivity and accuracy of the NN approach to effec-
tively retrieve the aph (443) parameter, particularly in optically complex waters, without the
atmospheric correction vulnerabilities, which would occur if actual satellite measurements in
the deep blue (443 nm) band were required. In any case, it can be unambiguously concluded
from these results that the intrinsic efficacy of NN retrieval algorithms extends well beyond
the confines of the WFS to widely varying waters algorithms.

We next compare VIIRS satellite retrievals using different algorithms with colocated and
concurrent in situ sample measurements. We therefore looked for match ups from the
NOAA VIIRS Calibration and Validation cruises29–31 on the Atlantic coasts, over the 2014
to 2016 period, as well as from our 2017 and 2018 field campaigns in the WFS. The conditions
stipulated for match-up were that pixel centers were 0.3 miles or less from the in situ measure-
ment location. This is an empirical approach to ensure that the pixel values could be reasonably
assumed to reflect the related in situ measurements, more specifically for the case of bloom
pixels, and hence reduce potential impact of patchiness33 within the pixel (0.7 and 1.0 km2 cor-
respond to pixel size for nadir observation with VIIRS and MODIS, respectively). Pixels were
also excluded from the match-up comparisons if they had been flagged for any of the following:
land, clouds, failure in atmospheric correction, stray light, bad navigation quality, both high and
moderate glint, negative Rayleigh corrected radiance, viewing angles greater than 60 deg, and
solar zenith larger than 70 deg, as well as any pixels, which had water leaving radiance spectra
with negative values in any one wavelength. Chlorophyll-a and KB sample measurements had to
be made at less than 1-m depth. It should also be noted that [Chla] of 1 μg · L−1 is equivalent
to ∼105 KB cells · L−1.34

When comparisons were being made between retrievals using NN, OCI/OCx, QAA, and
RGCI algorithms, it was found that there were 41 match-ups of available in situ measurements
that satisfy the match-up conditions for the satellite observations stipulated above. Figure 4
above shows the wide variety of Rrs values for all 41 match-ups obtained from VIIRS measure-
ments and in situ radiometric measurements. These include measurements from complex coastal
and open ocean waters in the WFS and Atlantic coasts. VIIRS satellite retrievals obtained using
NN, OCI/OCx, QAA, and RGCI algorithms are shown in Fig. 5. The top row shows the available
satellite match-ups retrievals compared against in situ sample measurements. As can be seen, NN
and OCx satellite retrievals achieve much better accuracies against in situ sample measurements
than the retrieval accuracies achieved by the QAA and RGCI algorithms, at least for this widely
varied combination of waters. We would note that it is quite possible that in different specific
water types, performance by the other algorithms may be improved beyond the results shown
here for results from widely varying waters. For instance, in the results shown in Ref. 2,
where tests were more restricted to KB HABs retrievals in the WFS while NN still performed
considerably better than other algorithms, it was again followed, in that case, less closely by
OCI/OCx and then by RGCI, which in those waters achieved accuracies, still behind but closer
to those of OCI/OCx and with accuracies better than those attained for the widely varying waters
studied in this paper. In any case, the latest results presented here again unambiguously confirm

Fig. 4 Shows a total of 41 Rrs from both VIIRS satellite and in situ radiometric measurements
covering a variety of water types over the WFS and the Atlantic coast sites. Color code is used
to indicate the difference water types. Same color code is used for satellite and in situ figures.
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the efficacy of NN retrievals for varied and different water types beyond the WFS and argue for
its adoption as a product for such retrievals.

We again compare retrievals for the same 41 locations but now use in situ radiometric mea-
surements as inputs into the algorithms, bottom row, Fig. 5. These show very similar retrieval
accuracies to those of the satellite retrievals, and that at least for these waters, inadequate atmos-
pheric corrections did not significantly affect NN and OCx retrieved Rrs values and retrieval
accuracies (since both algorithms are using nondeep blue 486-nm inputs). Greater impact is
observed (ε improved from 2.76 to 1.86) for the QAA retrievals, which use deeper blue
band inputs at 410 and 443 nm, with MAE showing some improvement, which is negatively
constricted by the large number of outliers in the data for the in situ radiometric input retrievals.
However, the improvements are more clearly seen in the reduced spread of the data points. In the
case of RGCI, it is seen that retrieval accuracies are much lower than for the other algorithms,
which is possibly due to the fact that RGCI is a regional specific algorithm intended for the WFS,
and its behavior for the much larger variety of waters compared above is severely limited.
Conclusions on the differences observed for in situ and satellite retrievals in the above figures
are therefore difficult to assess in the case of RGCI. The relative impacts of deep blue 486 nm
and nondeep blue 486 nm on retrieval accuracies are examined in more detail in Sec. 4.2, where
retrievals with the same algorithms using deep blue and nondeep blue wavelengths are compared
and unambiguous results obtained.

4.2 Examining the Impact of the Use of Deeper Blue Bands on
Satellite Retrieval Accuracies, and the Resultant Advantages of
Algorithms that Avoid Deep Blue Bands

The generally better performance of NN satellite retrievals against in situ sample measurements,
particularly in HAB rich and complex coastal waters, is conjectured by us to be partially due to
the relative invulnerability of the longer wavelengths used (486, 551, 671 nm) in NN to atmos-
pheric correction inadequacies that impact shorter wavelengths used in other algorithms, par-
ticularly for closer in-shore waters. To more directly examine possible atmospheric correction
inadequacy impacts, comparisons were made of retrievals using simultaneous in situ radiometric

Fig. 5 Top row: satellite retrievals against in situ sample measurement. Bottom row: same algo-
rithm retrievals, with same match-up locations, but using in situ radiometric measurements as
inputs. Color bar relates retrieved [Chla] statistics to varying distance from the shoreline.
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and satellite observations evaluated against in situ sample measurements—for different water
regions—both in-shore and off-shore, and for algorithms using deep blue and nondeep blue
wavelengths. These were carried out by examining retrievals accuracies obtained using NN
and OCI/OCx algorithms applied to the previous set (Sec. 4.2 above) of 41 measurements, includ-
ing KB HABs, complex coastal and open ocean waters. In one set of measurements, 443 nm was
used for the Rrs input in the deep blue, and in the other set, 486 nm for the Rrs input (for com-
parison as the not deep blue input). For the purpose of these comparisons, the NN algorithm was
retrained and adapted to use Rrs at 443 nm instead 486 nm as an input. OCx already has NASA
provisions for using either 443 or 486 nm as input. These retrieval comparisons were carried out
with one set using the in situ radiometric measurements as inputs (which are invulnerable to
atmospheric correction inadequacies), to the retrieval algorithms, whereas the other set examined
satellite retrievals ofRrs values for use as inputs to retrieval algorithms. Again, both sets of retriev-
als were compared against the in situ sample measurements.

Results for NN retrievals are shown in Fig. 6 below. The left-hand side shows retrievals for all
41 measurements using in situ radiometric measurements as inputs compared against sample
measurements. The top left-hand corner image shows retrievals using the NN algorithm with
443 nm as input. The bottom left-hand corner image shows these same retrievals using the
NN algorithm, but now with 486 nm as input instead of 443 nm. As can be seen, slightly better
accuracies are obtained with the 486 nm input. The modest improvement in retrieval accuracies
with 486 nm inputs is conjectured by us to be possibly due to lesser spectral interference from
absorption at 486 nm than at 443 nm in some of the CDOM rich complex coastal waters included
in the comparison.

On the top right-hand side, Fig. 6 shows the corresponding satellite NN retrievals for the
same 41 measurements using satellite retrieved 443 nm as input. This shows a much lower
retrieval accuracy than the left-hand image, which obtained by using in situ Rrs values at
443 nm. The results strongly suggest inaccurate satellite retrieved values of Rrs 443, possibly
because of atmospheric correction inadequacies. This is further confirmed by a comparison of
the satellite top right-hand corner as using 443 nm as input with the bottom right-hand corner,
which shows satellite NN retrievals using 486 nm as input instead of 443 nm. As can be seen, the
NN retrievals with inputs of 486 nm instead of 443 nm achieve considerably higher retrieval
accuracies, again probably due to larger atmospheric correction inadequacies contributing to

(a) (b) 

(c) (d) 

Fig. 6 Impact of using a deeper blue band at 443 nm instead of 486 nm, as input to the NN retrieval
algorithm for satellite and in situ radiometric retrieval accuracies of chlorophyll-a. Color bar relates
retrieved [Chla] statistics to varying distance from the shoreline.
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larger errors for the 443 nm retrieval than for the 486 nm retrieval. It should be noted that this
error would be in addition to the errors caused by possible spectral interference from
CDOM absorption, affecting the in situ radiometric retrievals shown on the left-hand side of
Fig. 6.

Similar results are obtained with retrievals using 443- and 486-nm bands as inputs to the
OCI/OCx algorithms. These are shown in Fig. 7 below. The regression performances of both
NN and OCI/OCx algorithms are also summarized in Fig. 8 for comparison. All the percentage

(a) (b) 

(c) (d)

Fig. 7 Impact of using a deeper blue band at 443 nm instead of 486 nm, as input to the OCI/OCx
retrieval algorithm on satellite and in situ radiometric retrieval accuracies of chlorophyll-a. Color
bar relates retrieved [Chla] statistics to varying distance from the shoreline.

Fig. 8 The impact of using a deeper blue band at 443 nm instead of 486 nm, as input to the NN
and OCI/OCx retrieval algorithms on satellite and in situ radiometric retrieval accuracies of
chlorophyll-a.
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differences are calculated relative to the highest value in each statistical parameter for both
algorithms. Results shows that the exclusion of 443 nm in the algorithms inputs reduced
the absolute errors by 8% to 63% and 2% to 25% for satellite and in situ radiometric retrievals,
respectively. Additionally, the relative errors between satellite and in situ radiometric
retrievals significantly decreased from 8% to 38% to values of 0% to 2% when using 486-nm
inputs instead of 443 nm. Again, this tends to confirm that the use of longer wavelengths
as inputs to the retrieval algorithms is advantageous, whether due to lesser vulnerability to
inadequate atmospheric correction, and/or to lesser spectral interference from CDOM, and
nonalgal particles, particularly in optically complex waters. These results are summarized in
Fig. 8 below.

4.3 Quantitative Examination of Temporal, Sampling Depth and
Intrapixel Variabilities in KB HAB Waters of the WFS and
their Impact on Retrieval Accuracies

Our previous results, summarized in Sec. 2.2 above and reported in Refs. 1 and 2, implied that
the accuracy and correlation of match-ups of VIIRS KB HABs retrievals against near simulta-
neous sample measurements in the WFS were very vulnerable to relatively short-term temporal
changes in the HABs scene being observed. We report here on a quantitative evaluation and
impacts of these temporal variations, as well of variations with sampling depths and inter/
intra pixel variations carried out by means of detailed in situ sample field measurements in
the WFS in conjunction with Mote Marine Laboratories in 2017 and 2018. Measurements
were made along several transects, typically 2 km in length, off Sarasota, Florida. Many of
the measurements were made at stations subpixel distances apart (generally 300 m) on an
outward leg and were then repeated for the same stations as closely as possible on a return leg.
Radiometric and sample measurements were made at different depths: 0.1, 0.5, and 1 m for
each station. Chlorophyll concentrations were obtained by HPLC analyses and KB cell counts
obtained by microscope analyses at Mote Marine Laboratories.

Figure 9(a) shows measured variabilities of KB cell counts for eight stations (purple triangles)
along a round trip transect over a 2-h period. The time between measurements at each numbered
station is shown in minutes with the height of the triangle along the Y-axis being the magnitude
of the coefficient of variation for that point. For station 7, with measurements 60 min apart,
there is almost no variation, with a coefficient of variation close to zero, with the [Chla] holding
steady (in the zoomed image) at 11 μg L−1 for the 60 min, whereas for station 8, there were three
measurements, the second measurement being 60 min after the first, and the third measurement
being another 60 min after the second, with corresponding changes in measured [Chla]
(see zoomed image) and in coefficient of variation. As can be seen, temporal variations in
KB HABS concentrations are very common in the WFS with coefficients of variations of up to
22% being typical over periods of 20 to 60 min.

Figure 9(b) shows the coefficient of variation of measured [Chla] across four VIIRS pixel
sizes in the WFS. Three of the pixels had coefficients of variation of the order of 16% to 21%.
Pixel 3 was the highest, with a coefficient of ∼21%, corresponding to a variation of [Chla] from
6.51 to 10 μg L−1 over a 230 m distance within the pixel (zoomed image). Pixel 4 had the lowest
coefficient of variation of nearly zero, with a [Chla] of 2.8 μg L−1 remaining constant over
a distance of 433 m in the pixel (zoomed image).

Figure 9(c) shows the variation with depth of measured [Chla] for transect of 11 stations.
The black triangles show the coefficient of variation for each numbered station as the sampling
depth is changed from 0.1 to 0.5 m, with coefficients of variation typically in the range of
5% to 10%. When the sampling depth range is increased from 0.5 to 1 m, the coefficients of
variation typically increase between 10% and 30%. This suggests that a constant sampling
depth of 0.25 m would be a reasonable practical goal for these types of waters.

These results highlight the temporal, intrapixel, and sampling depth variations that
can typically occur in connection with retrievals in KB HAB waters in the WFS. These can
clearly have important impacts on attainable satellite retrieval accuracies, which merit
further study.
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4.4 Satellite Image Retrievals, and Observations of Variabilities in WFS

Temporal variabilities in KB HAB distributions in the WFS were also evident in consecutive
satellite images available from VIIRS and MODIS satellites. For this purpose, changes in
three consecutive overlapping satellite images of the WFS obtained on November 3, 2014,
were studied. The first set of these images, Fig. 10, shows [Chla] concentrations of KB HABs
in Tampa Bay, Florida, as retrieved by the NN algorithm. Two of these images are from VIIRS,
from first and second overpass, 96 min apart, plus an intermediate image is from MODIS-A,
70 min after the first VIIRS overpass image. The three images are overlaid with coincident
KB cell count measurements, which varied from nonexistent and low to high concentrations.
We can focus on NN retrievals of [Chla] from a small rectangular area in these three consecutive
images, Figs. 10(a)–10(c). The three zoomed images at the top of the figure show the retrieved
[Chla] distribution in the rectangle obtained from the consecutive VIIRS–MODIS–VIIRS
images. The zoomed images show that concentrations are generally seen to be increasing,
from zoomed image 10(a) to 10(b), then decreases again to 10(c), all within time intervals
consistent with the temporal variations in situ field observations described above in Sec. 4.3
above. The changes in bloom concentrations observed may be due to drift, up- or downwelling,
bloom growth or demise, and/or bloom swimming in vertical migrations. For reference, the left-
hand side of Fig. 10 shows three zoomed open ocean, bloom-free areas, which as expected,
remain unchanged for the three images. It should also be noted that Fig. 10(b) shows relatively
high bloom concentration, even though an overlapping in situ measurement (denoted by “o” in
the zoomed area) shows a very low or no bloom value. This may be explained by the occurrence
of intrapixel variation, where a localized low value is overwhelmed by the averaging process
apparently applicable to the retrieval of the whole pixel. An alternative explanation is an actual
temporal variation in concentration that occurs between the time of the in situ measurement and

(a)

(c)

(b)

Fig. 9 (a)–(c) Chlorophyll-a measurements variabilities in coastal bloom waters (chlorophyll-a
values shown here are values equivalent to in situ measured KB blooms cell counts). Results
show variations ranged from 1% to 30% in average, due to temporal, inter–intra pixel and depth
changes.
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the actual satellite observation. These results highlight the limitations on satellite retrievals
potentially arising from both temporal and intrapixel variations.

A second set of three consecutive images is shown in Fig. 11 of another part of the Tampa
Bay area. In these consecutive images, a bloom seems to shrink in [Chla] densities opposite to
the wind and current direction, shown on the right of the figure, implying that there is a complex-
ity of factors at work, possibly including downwelling and/or bloom swimming behavior,
though there is no specific or quantitative evidence of linkage.

It is recognized that while consecutive satellite images can help qualitatively illustrate
temporal changes and give an idea of their extent and concentration, it would be difficult to
obtain quantitative useful information from them. It should also be noted that while consecutive
overlapping images appear to show temporal changes, there is insufficient evidence from them to
attribute the relative contributions of drift, patchiness, upwelling/downwelling or bloom swim-
ming during vertical migration, or a combination of any of these causes to the changes observed.
The quantitative field measurements results from Sec. 4.3 present much more solid results,
confirming and quantifying KB HABs inter–intra, temporal and depth variabilities as well as
patchiness.

Finally, it should be noted that because of the low resolution of VIIRS and MODIS A sat-
ellites, with pixel sizes of 0.75 and 1.0 km, respectively, retrievals from them are likely to miss
many of the fine features associated with blooms. This can be seen in Fig. 12, where we have a
much higher resolution RGB Landsat image of observation of blooms in Tampa Bay on March
18, 2018. These show a general view of the area, with a section shown zoomed on the upper
right-hand side. This zoomed section can be contrasted with an image of the same zoomed
area retrieved by NN from simultaneous VIIRS observations. With the much lower resolution

(a) (b) (c)

Fig. 10 Changes in KB bloom for consecutive satellite images. Zoomed images (top row) show
low intensity blooms of 55667 cell L−1 (indicated by “o” symbol on the top row of the image) from
in situ measurements and their retrievable surrounding pixels from VIIRS-MODIS-VIIRS over-
passes. Zoomed images (bottom row) show nonbloom stable pixels nearby. (a) VIIRS 18:00,
(b) MODIS-A 19:10, and (c) VIIRS 19:36.
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available from VIIRS retrievals, it is seen that many of the fine details available in the Landsat
image are missed. This suggests possibilities for exploring the combination of VIIRS retrievals
with images from Landsat or drones to obtain additional detailed information.

5 Discussion

To answer questions regarding general applicability and potential advantages of our NN
approach in waters beyond the WFS, in this paper, we extended NN retrieval comparisons to
locations well beyond the WFS, to include both complex coastal and open ocean waters along
the Florida and Atlantic coasts, which encompass different water types with a large dynamic
range of chlorophyll-a values.

(a)

(b)

(c)

Fig. 12 Landsat RGB imagery during KB bloom event on 03/18/2018, in WFS. (b) and (c) KB
bloom and ocean features that are inadequately observed through VIIRS [Chla] imagery.

(c) VIIRS 19:36:00 

(a) VIIRS 18:00:00 

(b) MODIS-A 19:10:00 

Fig. 11 NN retrievals from Tampa Bay shows changes in KB bloom for consecutive satellite
images. (a) VIIRS 18:00:00, (b) MODIS-A 19:10:00, and (c) VIIRS 19:36:00.
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The NN retrievals were compared to retrievals using (OCI\OCx),20,21 QAA,16,25,26 and
RGCI.27 Measurements and retrievals were carried out in NOAA dedicated VIIRS OC
Cal/Val cruises and our own cruises with Mote Marine Laboratory in the WFS over the
2014 to 2018 period. Most importantly, in these retrieval comparisons, in addition to extending
locations and water types studied, we now also added in situ Rrs radiometric measurements,
to complement the in situ sampling. Since these Rrs measurements are in situ, they are not
subject to the impact of possibly inadequate (or incorrect) correction procedures that are applied
to atmospheric transmission assumptions and that can erroneously impact satellite Rrs retrievals
and hence retrieval accuracies. Instead, by using these in situ Rrs measurements as inputs to the
different retrieval algorithms, the retrieval comparisons obtained in this manner are probably
a better indication of the relative intrinsic retrieval accuracies and merits of the algorithms
being compared.

In addition to the above retrieval comparisons from in situ radiometric measurements, com-
parisons were made of simultaneous satellite retrievals against simultaneous colocated sample
measurements using the different algorithms. As well as permitting us to rank the satellite
retrieval accuracies and efficacies of NN and other algorithms for waters beyond the WFS, this
permits us to examine and isolate the impacts of different factors on satellite retrieval accuracies.

We next investigated the impact of using deep blue bands to obtain Rrs on satellite retrieval
accuracies. Since it is conjectured that in satellite retrievals, it is the deep blue wavelengths
that are more significantly affected by atmospheric correction inadequacies, we next zeroed
in on the impacts on algorithm retrieval accuracy when deep blue wavelengths are used for
retrieving Rrs values. For this work, we compared algorithm retrievals from by far the two
best performing algorithms, NN and OCI/OCx against in situ sample measurements, using both
in situ radiometric measurements as inputs, and satellite retrievals, with each of the algorithms
using for blue wavelengths either 443 nm (deep blue) or 486 nm (nondeep blue). These
combined comparisons allow us to isolate the impact of atmospheric correction inadequacies,
as well as identify possible underwater spectral interference in CDOM rich and complex waters.

Other factors that were quantitatively studied included short-term temporal, intrapixel, and
sample depth variabilities, and their impact on retrieval accuracies was examined and confirmed,
in field studies, as well as from images obtained from consecutive satellite overpasses.

6 Conclusions

The extension of NN retrieval comparisons to examine their applicability to locations well
beyond the WFS, and including both complex coastal and open ocean waters along the Florida
and Atlantic coasts, which encompass different water types with a large dynamic range of
chlorophyll-a values compared, yielded the following results:

i. The comparison of retrievals using in situ Rrs radiometric measurements as inputs to
retrieval algorithms validated against in-situ sample measurements showed that NN
retrievals again evidenced the highest retrieval accuracy statistics for widely varying
waters beyond the WFS region. NN retrieval accuracies were closely followed by those
for OCI/OCx, then more distantly by QAA and RGCI, particularly in optically complex
and shallow waters. Since the use of in-situ radiometric measurements eliminates the
potential impact of inadequate atmospheric corrections, this result is more indicate of
the intrinsic retrieval accuracy of the algorithms.

ii. Similar results were achieved when comparing the available VIIRS satellite retrievals over
the same different waters types. Both results unambiguously confirmed NN efficacy and
viability in widely varying waters beyond the WFS and were a testament to the effective
training of NN on the 10,000 unfettered and randomly simulated water constituents within
the widest permissible range of values. The results also argue for a more general inves-
tigation of the suitability of adoption of NN retrieval algorithms on a global scale.

The results of the comparisons on the use of deep blue bands in both NN and OCI/OCx
retrieval algorithms clearly showed that for satellite retrievals validated against in situ sample
measurements, both algorithms gave better retrieval accuracies when the longer 486-nm band
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was used instead of the deeper blue 443-nm band. The inference being that the improvement is
due to inadequate atmospheric transmission corrections (i.e., bigger errors) and/or instrumental
limitations at 443 nm compared with 486 nm. Improvements were also seen for the longer
wavelengths when in situ radiometric values were used as inputs to the retrieval algorithms.
In this case, this is attributed to likely higher underwater spectral interference at 443 nm
than 486 nm in CDOM rich and complex coastal waters. The comparisons on the use of
deep blue bands are also repeated for the OCI/OCx algorithms, which has options for
either 443 nm or 486 inputs, and similar results were achieved. The results argue for the
avoidance of deep blue bands in satellite OC retrieval algorithms and the use of longer
wavelengths.

The fact that for the optically complex and shallow waters the NN algorithm exhibited higher
retrieval accuracy statistics would tend to support the notion that this may be at least partially due
to the use of longer Rrs input wavelengths for NN, than the deeper blue wavelengths used in
other algorithms, thereby possibly lessening the impact on measured Rrs values of spectral inter-
ference by dissolved organic matter (CDOM), and nonalgal particles (both expected in more
complex waters). It should also be noted that the NN output of (aph) is at the 443-nm band,
which is at the peak of phytoplankton absorption, and thus exhibits the most sensitive variation
in natural water. Furthermore, the NN approach does not require measurements at the shorter
wavelength channels, which would be typically most impacted by atmospheric correction
difficulties if actual satellite measurements in the deep blue (443 nm) band were required.
These factors can be expected to contribute significantly to the sensitivity and accuracy of
the NN retrievals of aph (443) parameter, particularly in optically complex waters, In any
case, it can be unambiguously concluded from results presented here, that the intrinsic efficacy
of NN retrieval algorithms extends well beyond the confines of the WFS region to widely
varying waters types, and argues for its adoption as a product for such retrievals.

Quantitative studies of other factors including short-term temporal, intrapixel, and sample
depth variabilities, and their impact on retrieval accuracies were examined and confirmed, in
field studies, as well as from images obtained from consecutive satellite overpasses. These
results highlight the limitations, which these factors place on the accuracy and utility of satellite
OC retrievals, particularly in complex coastal waters and suggest the complementary use of
other higher resolution observation platforms, possibly including unmanned aerial vehicles.

7 Appendix

7.1 NN Background

For the development of the NN algorithm,1,2,4–8 a synthetic dataset of 20,000 IOPs was randomly
simulated within the very wide range of parameters exhibited in the NASA bio-optical marine
algorithm dataset.12 These simulated IOPs, whose range and variability is well represented in the
literature,13–17 were then used as inputs to a four-component bio-optical model,7,16,17 which in
conjunction with a HydroLight based,18 parameterized forward model, described in Lee et al.,16

and produced 20,000 sets of Rrs values at 486, 551, and 671 nm (for VIIRS) and at 488, 555, and
667 nm for MODIS. The NN was trained on 10,000 of these values and tested on the 10,000
remaining subset, as well as on field data to solve the inverse problem19 of retrieving OC physical
parameters, including aph443, from Rrs values. The NN algorithm uses Rrs input at 486, 551, and
671 nm, values used at a longer λ, which are not greatly impacted by atmospheric correction.
NN produces output of phytoplankton absorption (aph) at 443. Output is at the peak of aph thus
exhibits most variation (Fig. 13).

7.2 NN Implementation

NN implementation to retrieve aph443 is shown in Fig. 14 below. The first step requires inputs of
remote sensing reflectance’s ½RrsðλÞ� at 486, 551, and 671 nm, all expressed as base 10 loga-
rithms, and standardized by removing the mean (μ), then scaling the difference by the standard
deviation (σ) of the simulated dataset for each RrsðλiÞ input. In the final step, the output (aph443)
is denormalized to obtain meaningful results, as shown in bottom of Fig. 14 (output). The NN is
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trained using normalized RrsðλÞ values so that it is equally sensitive to all inputs, avoiding
conditioning problems.

The term ð 2
1þe−2t − 1Þ in Fig. 14 represents the NN hyperbolic sigmoid activation function and

is used to transfer the final weighted sum activity and biases associated with each computational
neuron in the trained NN. More details of the NN algorithm architecture can be found in
Refs. 1, 2, 4, and 7.

The aph443 can then be converted to [Chla], assuming a constant specific absorption value or
using any value of specific phytoplankton absorption, which is area specific.9
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