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Abstract. The current remote sensing systems designed to measure soil moisture have a rel-
atively coarse spatial resolution ranging from 25 to 50 km. The Advanced Microwave Scanning
Radiometer 2 (AMSR2) is a passive sensor that measures soil moisture through C-band (6.9 and
7.3 GHz) observation of brightness temperature (BT). AMSR2 uses land parameter retrieval
model to retrieve surface soil moisture and vegetation optical depth. This model partitions the
microwave observation into its respective soil and vegetation emission components. AMSR2
loses sensitivity to soil moisture as vegetation density increases, during the growing season.
Field observations show that AMSR2 tends to overestimate the soil moisture when the vegetation
intensity increases and covers the soil. We address two existing issues in the use of soil moisture
products of the AMSR2: (1) spatial resolution of the soil moisture product and (2) the impact of
vegetation cover on the radiative transfer. We used a vegetative index to estimate when soil
moisture retrieval is not sufficiently accurate and how the optical data can be used to improve
soil moisture estimation. The land surface temperature and vegetation index products of the
Visible Infrared Imaging Radiometer Suite are used to downscale the AMSR2 soil moisture
products to 1 km. A series of soil moisture data collected in the field were used to analyze the
accuracy of the downscaled soil moisture values and the results indicated that introduction of
the BT in the downscaling model improves the accuracy of the soil moisture products over the
vegetated areas. The mean absolute error (MAE) of the downscaled soil moisture values is
∼5.6%—an improvement to 8.0% of original AMSR2 soil moisture products. In the presence
of vegetation, however, the MAE is still greater than that of a similar analysis of AMSR2 product
over semiarid areas. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1
.JRS.13.044520]
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1 Introduction

The volume of water content in the upper layer of soil, soil moisture, is a fundamental controlling
variable in many hydrological processes.1,2 Soil moisture is one of the main factors in the study
of global water, energy, and carbon cycles, as well as watershed applications, such as flood and
drought monitoring, water resources management, and crop yield forecasts.3

Microwave remote sensing has demonstrated the ability to map and monitor relative changes
in soil moisture over large areas, as well as the opportunity to measure absolute values of soil
moisture through inverse models.4 Compared to most natural surfaces (e.g., dry soil, rock, or
vegetation), the microwave dielectric constant (εr) of water is high.4,5 Because of large
differences in the dielectric constant of dry soil and water4 and the fact that microwave emissivity
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of the soil is a function of surface dielectric constant,4–6 the variations in surface soil moisture can
be studied through microwave reflectivity.7 The Fresnel reflection equations are used to predict
the surface microwave emissivity as a function of the dielectric constant and the viewing angle
(θ) based on the polarization of the sensor.8

Despite the developments of soil moisture measurement instruments, current widespread soil
moisture products are usually at coarse resolutions ranging from 25 to 50 km with large amounts
of uncertainty in the data. The uncertainty of soil moisture data is due to the fact that (1) soil
moisture fluctuates spatially and temporally due to the geological and climatic conditions and
depends on soil type9 and (2) in almost all of the soil moisture-observing instruments, the mea-
sured backscatter is a combination of soil and overlying vegetation cover responses, and the
vegetation water content contribution increases with increase in vegetation height and its water
content.10,11

The emissivity, whether it is the backscatter recorded by a radiometer or the return signal
from radar, can be influenced by surface parameters such as roughness, vegetation cover, and soil
density/texture.12 Hence, different models have been developed to account for vegetation and
roughness. For remote sensing in the microwave portion, however, only wavelengths greater
than ∼5 cm are particularly effective, as these wavelengths have fewer problems with interfer-
ence from the atmosphere and vegetation, sense deeper into the soil, and maximize soil moisture
sensitivity.13

For bare soil conditions, the emissivity is approximated by dividing the brightness temper-
ature (BT) by the soil effective temperature. In the presence of vegetation, the observed emis-
sivity is a composite of the soil and vegetation, and the vegetation cover characteristics can have
a significant impact on the emissivity. The land parameter retrieval model (LPRM), developed by
Owe et al.,14 is based on a radiative transfer model that solves for soil moisture and vegetation
optical depth (VOD) simultaneously. The LPRM uses the microwave polarization difference
index from passive microwave observations in an analytical approach for the simultaneous
VOD estimation. Partitioning of the emissivity into the soil and vegetation components by
LPRM has improved the accuracy of soil moisture estimation over the vegetated areas.15

Soil moisture retrieval over bare and sparsely vegetated areas has been extensively researched
and many models have been developed regarding this issue. Soil moisture retrieval over veg-
etated areas, however, is more complicated because vegetation and surface roughness reduce the
sensitivity of microwave observations to soil moisture.16,17 During the plant-growing season,
as the vegetation cover and its water content increases, the accuracy of soil moisture retrieval
using microwave remote sensing significantly decreases.18 Therefore, the soil moisture-sensing
system may reach a point at which estimated values will no longer correlate with the in-situ
observations.19,20

In this study, the accuracy of soil moisture retrieval over vegetated areas during different
plant growth stages is characterized, and a potential method for improving the soil moisture
accuracy is proposed. The main objective of this paper is to provide quality assessment of
the soil moisture product from Advanced Microwave Scanning Radiometer 2 (AMSR2) as
a function of vegetation index (VI). The absolute accuracy of the soil moisture product from
the AMSR2 over different crop types is analyzed, and a downscaling method is applied on
the AMSR2’s C-band radiometer data to improve the accuracy and spatial resolution of the soil
moisture product.

2 Data

2.1 Ground-Based Soil Moisture

The in-situ soil moisture data were collected at sites in five counties in Mississippi Delta during
the plant-growing season of 2016. The main crop types in this region are soybean, cotton, and
corn, and there are very few small rice and wheat farms. Figure 1 shows the distribution of the
stations that are visited monthly for soil moisture data collection. During the field visits, soil
moisture data were collected at 33 stations using a soil moisture probe. In each station, the soil
moisture data were collected at several nearby but variant locations and then averaged to include
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the heterogeneity of the land surface and soil moisture in the satellite pixels. The uniformity of
the soil type, elevation, and the land cover within the visited fields guarantees the representa-
tiveness of the in-situ observations on the scale of satellite pixels.

Microwave BT observation at C-band is sensitive to the soil moisture in top 1 to 2 cm of
the soil.22 Therefore, the soil moisture content was measured at the same depth. In this study,
a portable Waterscout™ SM100 was used with the Fieldscout® soil sensor reader to measure the
volumetric soil moisture information instantaneously. For each measurement, after removing a
few centimeters of the soil top, the sensor blade was horizontally pushed in the soil at the depth
of ∼2 cm and the soil moisture value was recorded. The sensor has the nominal accuracy of 3%
in soil moisture measurement at the soil condition with electrical conductivity smaller than
8 millisiemens∕cm, which is within the range of electrical conductivity of agricultural fields.23

Fig. 1 Study site and data collection stations in the Mississippi Delta. Land cover from National
Land Cover Database 2011 (NLCD 2011).21
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Furthermore, at sites where the soil is near its plastic limit, a soil sample was collected for
calibration purposes. The gravimetric method described in ASTM D 2216-98 instruction24 was
used to calculate the soil moisture content of the samples in the lab to calibrate the soil moisture
probe data.

2.2 Visible Infrared Imaging Radiometer Suite Data

Visible Infrared Imaging Radiometer Suite (VIIRS) is a scanning radiometer onboard Suomi
National Polar-orbiting Partnership spacecraft that collects visible and infrared imagery and
radiometric measurements of land, atmosphere, cryosphere, and oceans. The sensor was suc-
cessfully launched in October 2011. The VIIRS Environmental Data Record (EDR) products
are validated by National Oceanic and Atmospheric Administration (NOAA) Joint Polar
Satellite System. As a product validation procedure, both land surface temperature (LST) and
vegetation index (VI) EDR products reached stage 1 validation-level maturity in 2014.25,26 The
spatial resolution of the LST product is 0.75 km at nadir. The VIIRS VI product is generated
daily at the resolution of 0.375 km at nadir over land in swath form. VIIRS data were acquired
from NOAAComprehensive Large Array-Data Stewardship System.27 The top of atmosphere—
normalized difference vegetation index (NDVI) and LST data that are collected during ascending
node (crossing the equator around 13:30 local time) are used in this study.

During the data preparation, the cloud-contaminated pixels within the VIIRS optical dataset
were masked. Masking the cloud pixels made it necessary to have alternative data resources for
some study dates. Assuming that in the absence of precipitation the change in VI from day to day
is negligible, for some study dates the VI data are constructed by substituting masked pixels by
VIIRS VI value in the day before/after the study date. For missing LST information, the daily
1-km MYD11 products of the moderate resolution imaging spectroradiometer (MODIS) sensor
were used when it was necessary. Aqua MODIS (MYD11) passes over the equator about the
same time as VIIRS (13:30).

2.3 Advanced Microwave Scanning Radiometer 2 Data

The AMSR2 sensor onboard Global Change Observation Mission-Water (GCOM-W) is a
multichannel microwave radiometer. AMSR2 measures daily global soil moisture and BT data
with improved radio frequency interference mitigation, compared to its predecessor the
Advanced Microwave Scanning Radiometer for the Earth Observing System.28 Surface soil
moisture is derived from BT data using LPRM.28 The LPRM is based on a forward radiative
transfer model to retrieve surface soil moisture and VOD. The BT is measured at the frequen-
cies of 6.9, 7.3, 10.6, 18.7, 23.8, 36.5, and 89 GHz. The penetration depth into and through
the vegetation canopy is better for low-frequency bands, especially over dense canopies.4,29

Therefore, the low-frequency C-bands (6.9 and 7.3 GHz) contain more information about soil
emissivity beneath the canopy rather than the emissivity from overlying vegetation canopy.
The vertically polarized BT has less dependence on soil roughness and has shown a negative
correlation with soil moisture content in arid areas,30 but horizontally polarized BT data are
more sensitive to soil moisture variations.8 Level-3 soil moisture product of the AMSR2 is
available at 10-km grids, which are derived from the nominal 46-km-resolution C-band and
31-km-resolution X-band data using resampling and smoothing filter-based intensity modu-
lation technique.31 In this study, the 10-km level-3 H-polarized BT and soil moisture products
generated from applying LPRM model on 6.9-GHz band observations are used for the analy-
sis. AMSR2 data were acquired from the Japan Aerospace Exploration Agency GCOM-W1
data-providing service.32

2.4 Precipitation Data

The precipitation data collected by Soil Climate Analysis Network (SCAN) stations are used for
the validation of calculated soil moisture values. The SCAN precipitation data were acquired
from National Resources Conservation Service database.33
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3 Data Analysis

The in-situ-measured soil moisture data were utilized to assess the accuracy of AMSR2 soil
moisture products. The in-situ data collected during the different growing stages show the impact
of vegetation height and density on the AMSR2 accuracy over the time. Figure 2 shows observed
errors in AMSR2 coarse resolution (10-km) soil moisture for major vegetation types in the
agricultural fields in the Mississippi Delta. The vertical axis is the difference between in-situ-
measured soil moisture and AMSR2-estimated soil moisture for the visited data points in major
land cover types from April to September 2016 when the vegetation completes one growing
cycle. A positive difference (points above horizontal axis) suggests an underestimation, whereas
negative difference indicates an overestimation in the AMSR2 soil moisture.

In early stages of the growing season (0 < NDVI < 0.4), the soil moisture estimation accu-
racy of observed points falls within the standard accuracy of AMSR2 soil moisture product
(±10%). However, the negative slopes of the trendlines in Fig. 2 indicate that the difference
between in-situ-measured and remotely sensed soil moisture increases with NDVI increase over
the croplands. Therefore, AMSR2 tends to overestimate the soil moisture as the crops grow and
as the vegetation density increases. The linear trendlines of corn and soybean intersect the −10%
difference line at NDVI of 0.553 and 0.604, respectively, suggesting that the AMSR2 measure-
ments are not within the standard accuracy limit. Different trendlines are mainly due to different
scattering and attenuating properties of the various crop types. Different tillage practices used in
corn, soybean, and cotton fields and the roughness effect of the soil on emissivity can also be
the reasons for different trendlines. The coeffect of determination (R2) for corn, cotton, soybean,
and uncultivated trendlines are 0.94, 0.07, 0.32, and 0.01, respectively. The higher R2 value for
the corn suggests that the error in AMSR2’s estimated soil moisture over this crop type has an
inverse linear relationship with NDVI, whereas the sample data collected over other crop types
do not indicate a linear relationship with NDVI. The inverse relationship illustrated by trendlines
of corn, cotton, and soybean indicates that global constant parameters for the radiative transfer
used in this LPRM implementation are not appropriate for these agricultural settings.

Those farms that were being irrigated at the time of field visit and had a high soil moisture value
are out of AMSR2 standard accuracy interval (difference>10%). This is because AMSR2 averages
the BT observation over an area of 25 × 25 km and, depending on the area that is being irrigated,
the high soil moisture value in the field might be missing in the coarse-resolution AMSR2 image.

4 Method

In this study, AMSR2 10-km C-band data were downscaled to 1-km resolution using a modified
VI-LST model. Downscaling is the process of relating information or data at relatively coarse

Fig. 2 Difference between soil moisture content measured in-situ and estimated by AMSR2 over
the agricultural fields of the Mississippi Delta. In-situ soil moisture data were collected from April to
September 2016.
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spatial and temporal scales to desired products at finer spatial and temporal scales. The down-
scaling algorithm used in this study is based on the universal triangle concept that relates NDVI
and LST to the soil moisture.34

Figure 3 illustrates the heatmap plots of NDVI and LST for the five study dates. In a con-
dition where a large number of pixels reflect a full range of vegetation cover and soil surface
wetness, the LST-NDVI scatter plot would resemble a triangle or a trapezoid35 where each border
reflects a real physical limit. The lower and upper borders of the triangle reflect bare soil and full
vegetation cover, respectively, and the left and slanted right borders indicate lower and upper
limits of the surface soil water content, i.e., completely dry or field capacity, respectively.36

The well-defined triangular borders for April and May data [Figs. 3(a) and 3(b)] indicate that
all the above-mentioned physical limits had existed in the field when VIIRS imaged the
Mississippi Delta. The left edge of the triangle shapes in these two figures is the cold border,
which consists of the minimum surface radiant temperature at each given NDVI and corresponds
to wettest pixels. The slanted right edge of the triangle is called warm edge and corresponds to
driest pixels.36

As the crops mature from April to August and more area become covered with vegetation, the
optical sensor would see less bare soil pixels and the triangle loses its lower edge. As Figs. 3(c)
and 3(d) indicate, the VI-LST heatmap plots lose the triangular shape, which is due to not having
a full range of vegetation cover. As the farmers start to harvest in late August and September,
more bare soil signature would be seen by the sensor and the VI-LST heatmap plot will start to
regain a triangular shape [Fig. 3(e)].

Theoretical and experimental studies of the VI-LST triangle model have demonstrated that
there can be a unique relationship between soil moisture, NDVI, and LST for a given region
under specific climatic conditions and land surface types.37 The general relationship can be
expressed through a regression formula in which soil moisture is a polynomial function of
NDVI and LST, as shown in Eq. (1).

EQ-TARGET;temp:intralink-;e001;116;98SM ¼
Xn
i¼0

Xn
j¼0

aijNDVIiLSTj; (1)

Fig. 3 Heatmap plots of VI-LST for different study dates from April to September 2016. The heat-
maps of April 28 and May 5 reveal well-defined triangles.
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where SM is the soil moisture, n is the order of the polynomial, and aij are the coefficients. Piles
et al.37 showed that introducing BT in the equation strengthens the relationship between land
surface parameters and soil moisture. Thus, Eq. (1) can be modified to Eq. (2) as

EQ-TARGET;temp:intralink-;e002;116;699SM ¼
Xn
i¼0

Xn
j¼0

Xn
k¼0

aijkNDVIiLSTjBTk: (2)

The BT includes information on all parameters that dominate the Earth’s emission at C-band, in
addition to soil moisture, e.g., vegetation opacity, vegetation scattering albedo, soil roughness,
soil texture, and soil temperature.

To downscale 10-km soil moisture product of AMSR2, the coefficients aijk in the Eq. (2)
were determined using aggregated 10-km NDVI and LST and AMSR2 10-km soil moisture and
BT products. Then the model coefficients were applied on 1-km NDVI and LST to calculate soil
moisture values at 1-km spatial resolution.

The finer resolution NDVI and LST data of VIIRS were aggregated to 10 km by an averaging
filter. In the next step, the maximum and minimum values of LST, NDVI, and BT datasets were
determined and these values were used to normalize the data. Equation (3) is used to calculate
normalized NDVI (NDVIN), normalized LST (LSTN), and normalized BT (BTN).

EQ-TARGET;temp:intralink-;e003;116;518

8>>><
>>>:

NDVIN ¼ NDVI−NDVImin

NDVImax−NDVImin

LSTN ¼ LST−LSTmin

LSTmax−LSTmin

BTN ¼ BT−BTmin

BTmax−BTmin

; (3)

where NDVImin, NDVImax, LSTmin, and LSTmax are the minimum and maximum values of
aggregated NDVI and LST data and BTmin and BTmax are minimum and maximum values of
the BT dataset.

After substituting normalized values, the expanded form of Eq. (2) will be as follows:

EQ-TARGET;temp:intralink-;e004;116;393

SMAMSRE ¼ a000 þ a001BTN þ a010LSTN þ a100NDVIN

þ a002BTN
2 þ a020LSTN

2 þ a200NDVIN2 þ a011LSTN:BTN

þ a101NDVIN:BTN þ a110NDVIN:LSTN þ : : : (4)

Since normalized parameter values range from 0 to 1, third order and higher terms can be omitted
due to their low impact on the result and the equation is approximated to first ten terms.37

Equation (4) can be rewritten in the matrix form of L ¼ A × X as shown in Eq. (5).

EQ-TARGET;temp:intralink-;e005;116;290

2
666664

SM1

SM1

..

.

SMn

3
777775
¼

2
664
1 BTN1

LSTN1
NDVIN1

BTN1

2 LSTN1

2 NDVIN1

2 LSTN:BTN NDVIN:BTN NDVIN:LSTN

..

. . .
. ..

.

1 BTNn
LSTNn

· · ·

3
775×

2
6664

a000
a001

..

.

a110

3
7775:

(5)

The coefficients matrix (aijk) can be calculated using the least squares theory. Assuming that
the matrix AT × A is nonsingular, the ordinary least squares estimator for the unknown matrix
(X) will be as shown in Eq. (6).38

EQ-TARGET;temp:intralink-;e006;116;170X ¼ ðAT × AÞ−1 × AT × L: (6)

Once the coefficients matrix (X) is calculated, the coefficients are then applied to normalized
1-km LST and NDVI data of VIIRS and the result would be the downscaled soil moisture at
1-km spatial resolution.
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5 Results

Microwave remote sensing-derived soil moisture maps at 1 km are generated by applying coef-
ficients aijk in Eq. (6) to normalized 1-km NDVI and LST data. Figure 4 illustrates the original
10-km soil moisture products of AMSR2 along with 1-km soil moisture maps created using
modified universal triangle model. The missing pixels in the downscaled maps are due to cloud
masking of VIIRS data.

The patterns of the soil moisture in the agricultural fields of the Mississippi Delta indicate
that the distance from the Mississippi River is not as important as the precipitation for the top
layer soil moisture. The precipitation data in the days leading up to each study date show how
the downscaling model provides more detailed information about soil moisture variation.
Figure 5 shows the distribution of the 10 weather stations of the SCAN network within the
study site. Figure 6 represents the accumulated precipitation during 5 days prior to each study
date in each weather station. For example, in August 9 data, some of the weather stations in
western and southern parts of the study site (Scott, Silver City, and Onward) experienced more
than 1 inch of rainfall during 5 days before the study date. Compared to the original AMSR2
product that shows high soil moisture concentration for central parts, the downscaled soil mois-
ture map of this date more accurately shows a higher soil moisture values in the southern and
western parts of the study site as the result of the precipitation that occurred before data
collection.

Fig. 4 (a) Volumetric soil moisture (%) maps of AMSR2 10-km-resolution products. (b) Volu-
metric soil moisture maps downscaled to 1-km resolution using modified universal triangle
method.
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6 Accuracy Assessment

The accuracy of the results is assessed by comparison of the model predicted value and independ-
ently measured field soil moisture data. The mean absolute error (MAE) and root mean square
error (RMSE) calculated from calibrated in-situ data are shown in Table 1. The MAE and RMSE
for each study date are calculated from 33 data points and the total accuracy is calculated from all

Fig. 5 SCAN network stations in the study site.

Fig. 6 Total precipitation increment in 5 days before each study date.33
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165 data points. The overall MAEs and RMSEs of the modified VI-LST triangle method improved
by 2.4% and 3.2%, respectively. The decrease in MAE and RMSE values indicate that the modi-
fied VI-LST triangle method improves the retrieval accuracy of AMSR2.

The results show that the MAE of the AMSR2 soil moisture even in a vegetated area such as
Mississippi Delta is still below the 10.0% standard accuracy of the sensor. The accuracy obtained
by the sensor over low-vegetated or semiarid regions, however, is significantly different. The
AMSR2 2017 product update report shows that the soil moisture products have an average MAE
of 3.54% over the semiarid areas of Murrumbidgee catchment in Australia and Ulaanbaatar in
Mongolia.39

The MAE and RMSE values for individual dates indicate that from April to June the error in
the estimated soil moisture increases significantly and the error reaches its maximum in late
June. The increase in MAEs and RMSEs is due to the increase in the vegetation height and
density as the growing season progresses from April to June. Some crop types, such as soybeans
and cotton, approach their maximum vegetation density in July. Thereafter, the error gradually
decreases from June to September as the harvest season begins and AMSR2 observes more
harvested and usually dry fields.

Table 2 shows the observed error classified by NDVI. The accuracy results confirm that the
error in AMSR2-estimated soil moisture will increase with the increase in NDVI. The modified
VI-LST model has improved the accuracy in all NDVI categories. Therefore, the downscaling
model does not only reduce the overall bias, but it also actually reduces some of the biasing
effects on LPRM caused by vegetation. The error in estimated soil moisture, however, still
increases as the NDVI value increases.

The field observations data showed that AMSR2 can exceed its 10% standard accuracy when
vegetation grows and mask the soil (Fig. 2). The in-situ-measured soil moisture data showed that
as vegetation density increases, the increased emissivity due to vegetation40 makes AMSR2 over-
estimate the soil moisture. Based on the data in Table 2, we concluded that for NDVI > 0.4

AMSR2 exceeds its 10% standard accuracy.

7 Conclusion

In this paper, AMSR2 soil moisture and BT data and VIIRS LST and VI Environmental Data
Record data acquired simultaneously over agricultural fields were used in modified universal
triangle model to improve the accuracy of soil moisture retrieval.

Table 1 Accuracy results.

Error
April 28,
2016

May 5,
2016

June 24,
2016

August 9,
2016

September 12,
2016 Overall

AMSR2 MAE (%) 5.9 6.4 10.1 8.4 8.0 8.0

RMSE (%) 6.7 8.3 11.6 11.5 9.0 9.7

Modified
VI-LST
model

MAE (%) 4.2 4.6 7.8 5.7 5.6 5.6

RMSE (%) 4.5 5.6 7.9 6.6 6.4 6.5

Table 2 Accuracy results in different NDVI intervals.

Error NDVI < 0.2 0.2 < NDVI < 0.4 0.4 < NDVI < 0.6 0.6 < NDVI

AMSR2 MAE (%) 6.0 6.9 9.4 11.0

RMSE (%) 7.0 8.3 11.0 14.1

Modified VI-LST
model

MAE (%) 4.4 4.8 7.0 7.2

RMSE (%) 5.3 5.4 7.4 7.4
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To achieve the main objective of the study, ground observations were acquired simultane-
ously over various crop types during the growing season. The key issue in measuring soil mois-
ture in vegetated agricultural environments is the masking of soil by vegetation cover and the
emissivity of vegetation canopy. To address this concern, a modified universal triangle model
was used to downscale the AMSR2 soil moisture product and improve the retrieval accuracy.

We found that soil moisture retrieval accuracy has an inverse relationship with the VI. The
ground observations showed that AMSR2 overestimates soil moisture as NDVI value increases.
The downscaling technique used in this study improved the accuracy over the vegetated areas
by introducing the land surface parameters in the linking model and showed that the 5.0% goal
accuracy for MAE is reachable for NDVI <0.4. The daily LST and VI data obtained by VIIRS
provide a unique source of daily ancillary information that can be used to downscale AMSR2
soil moisture product to finer subkilometer resolution and improve the retrieval accuracy of soil
moisture values in the presence of vegetation.

This downscaling method may be applicable for other areas with dominant vegetation land
cover to improve the soil moisture retrieval accuracy using the daily surface temperature and VI
data. The sensitivity of soil moisture data collection not only depends on NDVI and vegetation
density, but it also depends on the types of crops, due to the characteristics of the crops such as
orientation, leaf size and density, and water demand. Future work will focus on addressing this
issue as the accuracy of the sensor could be better interpreted by various crop types and tillage
practices.
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