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Abstract. The decomposition of mixed pixels in Moderate Resolution Imaging
Spectroradiometer (MODIS) images is essential for the application of MODIS data in many
fields. Many existing methods for unmixing mixed pixels use principal component analysis
to reduce the dimensionality of the image data and require the extraction of endmember spectra.
We propose the pixel spectral unmixing index (PSUI) method for unmixing mixed pixels in
MODIS images. In this method, a set of third-order Bernstein basis functions is applied to reduce
the dimensionality of the image data and characterize the spectral curves of the mixed pixels in a
MODIS image, and then the derived PSUIs (i.e., the coefficients of the basis functions) are cali-
brated by means of the abundance values of the ground features from the Landsat Enhanced
Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI) classification images corre-
sponding to the date and region of the MODIS image. The proposed method was tested on
MODIS and ETM+/OLI images, and it obtained satisfying unmixing results. We compared the
PSUI method with conventional methods, including the pixel purity index, the N-finder algo-
rithm, the sequential maximum angle convex cone, and vertex component analysis and found
that the PSUI method outperformed the other four methods. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work
in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
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1 Introduction

Moderate Resolution Imaging Spectroradiometer (MODIS), as well as later-developed hyper-
spectral sensors have made great breakthroughs in spectral channel settings compared with ear-
lier remote sensors. There are 36 discrete channels, including 20 reflective spectral channels, in a
MODIS image, and each pixel of the image acquires many bands of light intensity data from the
spectrum, instead of just the three bands of the RGB color model, which makes it possible to
accurately depict the spectrum characteristics of typical ground features using not only the wave-
lengths, ranges, and intensities of the peaks and valleys but also the integral area that is in the
range enclosed by the spectral reflectance curves of the ground features and the x-axis (in
Cartesian coordinates). The MODIS visits the globe once or twice per day with coarse resolution
of 250 to 1000 m. However, the spatial resolution of MODIS images is not high enough to
clearly distinguish different ground features. In many cases, a MODIS pixel is a mixed pixel
that is covered by multiple land cover types, which has a significant influence on the information
that can be derived.1,2 Thus, the decomposition of mixed pixels in MODIS images is critically
important for the application of MODIS data in many fields, such as mapping land cover dis-
tributions,3 evaluating vegetation/soil fractional cover,4–6 monitoring and evaluating karst rocky
desertification,7 flood mapping,8,9 and retrieving fire temperature and area.10

The spectral characteristics of ground features are the basis not only for identifying them in
remote sensing images but also for decomposing mixed pixels in images. The decomposition of

*Address all correspondence to Xiaohua Shen, E-mail: shenxh@zju.edu.cn; Lejun Zou, E-mail: zoulejun2006@zju.edu.cn

Journal of Applied Remote Sensing 046509-1 Oct–Dec 2019 • Vol. 13(4)

https://doi.org/10.1117/1.JRS.13.046509
https://doi.org/10.1117/1.JRS.13.046509
https://doi.org/10.1117/1.JRS.13.046509
https://doi.org/10.1117/1.JRS.13.046509
https://doi.org/10.1117/1.JRS.13.046509
mailto:shenxh@zju.edu.cn
mailto:shenxh@zju.edu.cn
mailto:shenxh@zju.edu.cn
mailto:zoulejun2006@zju.edu.cn


mixed pixels is generally based on a linear spectral mixture model (LSMM) or a nonlinear spec-
tral mixture model (NLSMM).11 Although the NLSMM is more applicable when the multiple
scattering among distinct endmembers is not negligible,12 such as in intimate mineral mixtures
and vegetation canopies,13 the LSMM is a mature and more widely used technique than the
NLSMM.14,15

To apply existing methods for decomposing mixed pixels, the endmembers must be obtained.
Endmember extraction is the process of selecting a collection of pure signature spectra of ground
features present in a remote sensing image.16–18 The corresponding abundance of each endmem-
ber is usually estimated by using the fully constrained least squares (FCLS) method based on the
LSMM.19 The endmember extraction is generally performed in two ways: (1) by deriving them
directly from the remote sensing images, which is referred to as image endmember analysis;1 or
(2) from a spectral library that contains the spectra of known target features measured in the field
or laboratory, which is referred to as library endmember analysis.20 When considering the effect
factors, such as the atmospheric interaction and remote sensor peculiarities and noise, image
endmember analysis is now most widely used. Two major approaches are used to extract end-
members based on the LSMM. One approach uses geometrical methods, including the pixel
purity index (PPI),21 the N-finder algorithm (N-FINDR),22 the sequential maximum angle con-
vex cone (SMACC),23 vertex component analysis (VCA),24 etc., of which the PPI and SMACC
methods are widely used for decomposing mixed pixels in remote sensing images due to their
publicity and availability in the Environment for Visualizing Images software.25 Another
approach uses statistical methods, such as independent component analysis.26

It is usually difficult to acquire pure pixels in a MODIS image because of its spatial resolution
limit. Many researchers have suggested that there are no pure pixels in remote sensing images
with low spatial resolution.17,27,28 Some authors have tried to use nonnegative matrix factoriza-
tion (NMF) for hyperspectral data unmixing.29,30 Miao and Qi31 presented a constrained NMF
(MVC-NMF) method without the pure-pixel assumption for unsupervised endmember extrac-
tion from highly mixed image data.

The accuracy of extracted endmembers has a great impact on the unmixing accuracy.
To assure unmixing accuracy, an unmixing method for MODIS data that does not resort to
extracting endmember spectra is taken into account.

Adjacent channels in multispectral/hyperspectral imagery have good correlation and often
contain similar information, which produces redundancies in a multispectral/hyperspectral
dataset.32,33 Thus, many conventional unmixing methods, e.g., PPI,21 manual endmember selec-
tion tool,32 N-FINDR,22 spectral mixture analysis based on simulated annealing,34 VCA,24 sim-
plex growing algorithm,35 Gaussian elimination method,36 etc., use statistical techniques such as
principal component analysis (PCA) to reduce the dimensionality of the image data for both
computational time saving and signal-to-noise improvement. Then, a set of uncorrelated vari-
ables (principal components) are generated, and those containing the most information from the
original bands are selected to extract endmember spectra. Each endmember spectrum can be
constructed as a linear combination of the principal components.32 As a statistical technique,
the PCA transformation is highly dependent on the numerical characteristics of the image.
Hence, the principal components vary with the images, and the difficulty of interpreting a priori
the content of the principal components is an inherent problem of PCA.33,37

A set of basis functions are independent of each other as well as principal components, and
they are purely theoretical functions. In mathematics, a complex curve can be represented as a
linear combination of a set of basis functions.38,39 Similarly, the spectral curve made by mixing
spectra with more than one ground cover type can also be represented as a linear combination of
a set of basis functions. The basis functions can be employed to reduce the dimensionality of the
image data and characterize the spectral curve of each pixel without redundant information. A
comparison of basis functions with the principal components generated by using PCA shows that
on one hand, the basis functions can be used to depict each endmember spectrum with a linear
combination as well as the principal components do. On the other hand, there exists the differ-
ence that the basis functions are invariant and independent of image data. Thus, the coefficients
of the basis functions for pixels in different images are comparable, and the coefficients can be
employed to depict the spectral curves of mixed pixels with various combinations of ground
feature abundance fractions. Thus, to ensure unmixing accuracy, an unmixing method for
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MODIS data based on a set of basis functions, which does not resort to extracting endmember
spectra, is proposed and tested in our study.

This study exploits a set of third-order Bernstein basis functions to construct the pixel spec-
tral unmixing indexes (PSUIs), i.e., the coefficients of the basis functions, for a MODIS image
without resort to extracting endmember spectra, and then a higher spatial resolution image, such
as a Landsat Enhanced Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI) image
from the same region and same day with the MODIS image, is utilized to calibrate these indexes,
which then creates a calibration model. The calibration model indicates the relationship between
the PSUIs and the component abundances and thus can be used for calculating the abundances of
the mixed pixel’s components in MODIS images. This method was tested on MODIS and ETM
+/OLI images in different scenes or at different times and was compared with other methods,
such as the PPI, the N-FINDR, the SMACC, and VCA.

2 Methodology

2.1 Bezier Curve and Bernstein Basis Functions

Given a set of control points, Pi, i ¼ 0; 1; : : : ; n, its n’th-order Bezier curve is defined as

EQ-TARGET;temp:intralink-;e001;116;516PðtÞ ¼
Xn
i¼0

PiBi;nðtÞ; t ∈ ½0;1�; (1)

where Pi is the control point, and Bi;nðtÞ is known as the n’th-order Bernstein basis function.40

For the n’th-order Bernstein basis function, the expansion terms of the binomial expression
1 ¼ ½tþ ð1 − tÞ�n are defined as

EQ-TARGET;temp:intralink-;e002;116;433Bi;nðtÞ ¼
�
n
i

�
tið1 − tÞn−i; t ∈ ½0;1� and i ¼ 0;1; : : : ; n: (2)

When n ¼ 3, it is known as a Bernstein basis function of order 3 (see Fig. 1), which may be
defined as

EQ-TARGET;temp:intralink-;e003;116;363

B0;3ðtÞ ¼
3!

0!ð3 − 0Þ! t
0ð1 − tÞ3−0 ¼ ð1 − tÞ3;

B1;3ðtÞ ¼
3!

1!ð3 − 1Þ! t
1ð1 − tÞ3−1 ¼ 3tð1 − tÞ2;

B2;3ðtÞ ¼
3!

2!ð3 − 2Þ! t
2ð1 − tÞ3−2 ¼ 3t2ð1 − tÞ;

B3;3ðtÞ ¼
3!

3!ð3 − 3Þ! t
3ð1 − tÞ3−3 ¼ t3: (3)

Fig. 1 Curves of third-order Bernstein basis functions (see the text).
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In a plane or in a higher-dimensional space, the explicit form of this cubic Bezier curve with
four control points can be written as

EQ-TARGET;temp:intralink-;e004;116;711PðtÞ ¼ P0B0;3ðtÞ þ P1B1;3ðtÞ þ P2B2;3ðtÞ þ P3B3;3ðtÞ; t ∈ ½0;1�: (4)

2.2 Calculation of Pixel Spectral Unmixing Indexes

2.2.1 Calculation principle

To calculate the PSUIs for a MODIS image, a set of samples needs to be taken from the image.
Here, a MODIS image of the Pearl River Delta region of China was used [MOD021KM: level 1b
calibrated, 1000 × 1000 m spatial resolution, date: 2001324, time: 03:10, derived from the
Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active
Archive Center (DAAC)]. Acquiring pure pixels containing only one ground object from a
MODIS image is difficult because of its spatial resolution limit, but it is possible for each sam-
pling pixel to be dominated by only one category of ground features. For the convenience of
discussion, in this paper, such sampling points are called pseudo-MODIS pure pixels, and the
ground features estimated from the pseudo-pure pixels are called quasiground features. There are
four main kinds of spectral reflectance curves for quasiground features (e.g., water body, sedi-
ment-laden water, vegetation, and bare soil) derived from a MODIS image.

Figure 2 shows the spectral reflectance curves of the four types of quasiground features
obtained from the sampling points for the above-mentioned MODIS image (a total of 280 sam-
ples, each category accounts for a quarter of the total sampling points) and the spectral reflec-
tance curve of a random mixed pixel in the MODIS image, where the original reflectance curve
obtained from the MODIS data has been normalized with respect to the total area enclosed by the
curve and the x-axis. Normalization offers the advantage that it can reduce statistical fluctuations
without losing any information. Each curve in Fig. 2 contains 13-channel reflectance data points
distributed in a wavelength range from 405 to 2155 nm. Channels 13 to 18 and 26 are not used in
Fig. 2, because channels 13 to 16 and 26 are invalid on land and the wavelength ranges of chan-
nels 17 and 18 overlap with that of channel 19. According to the spectral reflectance curves of the
quasiground features derived from MODIS data shown in Fig. 2(a), different quasiground
features reach high reflectance in different channels, e.g., water body in blue–green channels,
sediment-laden water in red channels, vegetation in near-infrared (with shorter wavelengths)
channels, and bare soil in near-infrared (with longer wavelengths) channels. The peak feature

Fig. 2 (a) Spectral reflectance curves of four types of quasiground features that are derived from a
MODIS image (280 samples, each category accounts for a quarter of the total sampling points).
G0, G1, G2, and G3 are groupings of the spectral reflectance data. (b) Spectral curve of a mixed
pixel in a MODIS image. Gray-shaded areas with the names S0, S1, S2, and S3 were used to show
the spectral integral areas corresponding to these four groups of the mixed pixel. Red rectangles
below the horizontal axis indicate the locations of MODIS channels.
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of spectral reflectance curves is important for identifying different ground features. Based on this
point, the reflectance data on each spectral curve can be divided into four groups [see Fig. 2(a)],
including G0 at wavelengths from 405 to 565 nm, G1 at wavelengths from 620 to 876 nm, G2 at
wavelengths from 915 to 1250 nm, and G3 at wavelengths from 1628 to 2155 nm. This way of
grouping reflectance data guarantees that high reflectance of the quasiground features appears in
different groups. In addition, according to the property of Bernstein basis functions, Bi;nðtÞ
reaches a maximum when ti ¼ i∕n, which means that the peaks of different basis functions
appear at different t-values. Both the Bernstein basis function curves and the spectral curves
of the ground features have evident peak features. Thus, the third-order Bernstein basis functions
with four curves (Fig. 1) are used to characterize the spectral signatures of mixed pixels in
MODIS data by using their coefficients.

A cubic Bezier curve from a linear combination of the third-order Bernstein basis functions
consists of innumerable data points, whereas a spectral reflectance curve derived from MODIS
data consists of 13 data points. Consequently, the spectral reflectance curve of each mixed pixel
should be mapped to a cubic Bezier curve before employing the third-order Bernstein basis
functions to characterize the spectral curve with their coefficients. A cubic Bezier curve mapped
to the mixed spectral curve can be expressed as

EQ-TARGET;temp:intralink-;e005;116;532f∶ FðλÞ → PðtÞ; (5)

where FðλÞ represents the spectral curve of a mixed pixel, and PðtÞ represents the mapped cubic
Bezier curve, which is determined by four control points.

Here, the spectral integral area (S0, S1, S2, and S3), which is in the range enclosed by the
spectral curve for each group and the x-axis [see Fig. 2(b)], and the t-value (ti ¼ i∕n, i ¼ 0, 1, 2,
3 and n ¼ 3) are used together to generate four data points for the mapped cubic Bezier curve.
The spectral integral area, which is a combination of sequentially related channels, is employed
to replace the single reflectance value. This is because data points generated by 4 of the 15 valid
channels of the MODIS sensor cannot fully reflect information about channel width and inter-
relation, whereas data points generated by the spectral integral areas can do so. Thereafter, four
control points can be determined by these four data points. Thus, the cubic Bezier curve is
determined.

The components in the LSMM are endmembers with physical meaning, and the abundances
are nonnegative. The components in Eq. (4) are third-order Bernstein basis functions, namely
B0;3ðtÞ, B1;3ðtÞ, B2;3ðtÞ, and B3;3ðtÞ, which have exact shapes. The coefficients in Eq. (4), namely
P0, P1, P2, and P3, express the content of the four basic functions for the mixed spectrum and
can be positive or negative. Because the geometric shapes of the four basic functions are invari-
ant, P0, P1, P2, and P3 can objectively describe the complex spectral curves of mixed pixels in
MODIS images. Here, these coefficients are called PSUIs.

2.2.2 Calculation process

There are four steps used to generate PSUIs (P0, P1, P2, and P3) for each mixed pixel in
a MODIS image.

Step 1: Divide the spectral reflectance data of each pixel in the MODIS data into four groups
(G0, G1, G2, and G3) according to the peak locations of the spectral curves of the four types
of quasiground features [see Fig. 2(a)].

Step 2: Calculate the spectral integral areas corresponding to these four groups for each pixel as
S0, S1, S2, and S3, respectively.

EQ-TARGET;temp:intralink-;sec2.2.2;116;163

S0 ¼ ½ðR8 þ R9Þðλ9 − λ8Þ þ ðR9 þ R3Þðλ3 − λ9Þ þ ðR3 þ R10Þðλ10 − λ3Þ
þ ðR10 þ R11Þðλ11 − λ10Þ þ ðR11 þ R12Þðλ12 − λ11Þ þ ðR12 þ R4Þðλ4 − λ12Þ�∕2;

EQ-TARGET;temp:intralink-;e006;116;102

S1 ¼ ðR1 þ R2Þðλ2 − λ1Þ∕2;
S2 ¼ ðR19 þ R5Þðλ5 − λ19Þ∕2;
S3 ¼ ðR6 þ R7Þðλ7 − λ6Þ∕2; (6)
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where Ri represents the reflectance (%) at the i’th channel of a pixel, and λi represents the
central wavelength (nm) of the i’th channel:

EQ-TARGET;temp:intralink-;e007;116;713

S ¼ S0 þ S1 þ S2 þ S3;

S 0
0 ¼ S0∕S;

S 0
1 ¼ S1∕S;

S 0
2 ¼ S2∕S;

S 0
3 ¼ S3∕S: (7)

To reduce statistical fluctuations without losing any information, S0, S1, S2, and S3 are
normalized to be dimensionless [Eq. (7)]. Hereinafter, S0, S1, S2, and S3 represent the nor-
malized values of the spectral integral areas, respectively.

Step 3: According to the property of Bernstein basis functions that Bi;nðtÞ reaches a maximum
when ti ¼ i∕n, and considering the importance of the peak feature of spectral curves, we set
t0 ¼ 0, t1 ¼ 1∕3, t2 ¼ 2∕3, and t3 ¼ 1; then, four data points of a cubic Bezier curve are
generated as ðt0; S0Þ, ðt1; S1Þ, ðt2; S2Þ, and ðt3; S3Þ.

Step 4: Substituting t ¼ ti, PðtÞ ¼ Si, i ¼ 0;1; 2;3 into Eq. (4), we get
EQ-TARGET;temp:intralink-;e008;116;522

S0 ¼ P0B0;3ðt0Þ þ P1B1;3ðt0Þ þ P2B2;3ðt0Þ þ P3B3;3ðt0Þ;
S1 ¼ P0B0;3ðt1Þ þ P1B1;3ðt1Þ þ P2B2;3ðt1Þ þ P3B3;3ðt1Þ;
S2 ¼ P0B0;3ðt2Þ þ P1B1;3ðt2Þ þ P2B2;3ðt2Þ þ P3B3;3ðt2Þ;
S3 ¼ P0B0;3ðt3Þ þ P1B1;3ðt3Þ þ P2B2;3ðt3Þ þ P3B3;3ðt3Þ: (8)

Solving Eq. (8) for P0, P1, P2, and P3, we have
EQ-TARGET;temp:intralink-;e009;116;421

P0 ¼ S0;

P1 ¼ ð18 × S1 − 9 × S2 − 5 × S0 þ 2 × S3Þ∕6;
P2 ¼ ð18 × S2 − 9 × S1 − 5 × S3 þ 2 × S0Þ∕6;
P3 ¼ S3: (9)

Figure 3 shows the flowchart for employing the third-order Bernstein basis functions to
characterize the spectral signatures of mixed pixels in MODIS data by using their coefficients
(PSUIs).

Here, a Terra MODIS image (date: 2001324, time: 03:10) of the Pearl River Delta region of
China was taken as an illustrative example of decomposing mixed pixels. After preprocessing the
MODIS image (e.g., geometric correction and cloud masking41), the PSUIs were obtained using
Eq. (9) for the mixed pixels (Fig. 4). Figure 4(a) presents the pseudocolor image derived from
channels 7, 2, and 1 of the MODIS data. Figure 4(b) shows the distribution of the normalized
difference water index (NDWI),42 which is used to evaluate the water distribution information in
remote sensing applications,43,44 whereas the normalized difference vegetation index (NDVI) is
usually used to evaluate green coverage and vegetation growth [Fig. 4(c)]. Figure 4(d) shows the
distribution of the normalized difference soil index (NDSI),45 which is used to enhance soil
information. The PSUIs, namely P0, P1, P2, and P3, are shown in Figs. 4(e)–4(h), respectively.
The index P0, which mainly reflects the distribution information for the B0;3ðtÞ function, can be
used to identify the distribution of water, as NDWI does. The correlation coefficient between P0

and NDWI is 0.98. The index P2, which reflects the distribution information for the B2;3ðtÞ
function, may be used to estimate vegetation growth and to evaluate green coverage, as
NDVI does. The correlation coefficient between P2 and NDVI is 0.94. The index P3, which
reflects the distribution information for the B3;3ðtÞ function, can be applied to estimate the dis-
tribution of bare soil or outcropped areas, as NDSI does. The correlation coefficient between P3

and NDSI is 0.98. The index P1, as the coefficient of the B1;3ðtÞ function, can be correlated well
with sediment-laden water, and it may have a potential application in estimating the sediment
content of water. Figure 4 reveals that the B0;3ðtÞ, B1;3ðtÞ, B2;3ðtÞ, and B3;3ðtÞ functions can
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reflect information about water body, sediment-laden water, vegetation, and bare soil, respec-
tively, by their coefficients (P0, P1, P2, and P3). Thus, the third-order Bernstein basis functions
can be employed to characterize the spectral curves of mixed pixels in MODIS data with physical
meaning, which is superior to principal components.

2.3 Abundance Calculation Based on the Calibration Model

The PSUIs P0, P1, P2, and P3, which are derived from a MODIS image by adopting Eq. (9),
indicate the spectral signals from water body, sediment-laden water, vegetation, and bare soil,
respectively. Because the PSUIs represent the relative proportions of ground features in each
mixed pixel in the MODIS image, they need to be calibrated by means of the reference abun-
dance values of ground features from high spatial resolution remote sensing images (e.g.,
Landsat ETM+ or QuickBird image) using the FCLS method, which creates a calibration model
for calculating the abundances of the components of every mixed pixel in MODIS images. Here,
a Landsat ETM+/OLI image is taken as an illustrative example. Because it is difficult to dis-
tinguish the sediment-laden water from a water body when classifying an ETM+/OLI image, the
sediment-laden water and water body are classified as the same type (water body). Moreover,
water body, vegetation, and bare soil are three basic categories of ground features on the earth’s
surface,46 which means that P0, P2, and P3 contain most of the spectral information of each
pixel. Thus, P0, P2, and P3 are used for the calibration model. The steps for calibrating the
PSUIs can be considered as follows:

(1) Acquire the ETM+/OLI image (path/row: 122/044, date: 2001324) corresponding to the
date and region of the MODIS image (date: 2001324, time: 03:10; Pearl River Delta
region of China) from the USGS Global Visualization Viewer (GloVis), and classify
it as a water body, vegetation, or bare soil using the maximum likelihood classification
(MLC) method. Many researchers have used the MLC method for Landsat image clas-
sification and obtained satisfactory performance,47–53 and the classification accuracy pro-
duced by the MLC method has been found to be comparable to other classification
methods, such as support vector machine.48,49,52

Fig. 3 Flowchart for characterizing the spectral signatures of mixed pixels in MODIS data by
using cubic Bezier curves.
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(2) Collect a series of quasiground feature samples (i.e., water body, vegetation, or bare soil
are the main ones in each sample) from the MODIS image. Here, a uniform sampling cell
of 3 × 3 pixels (3 × 3 km) was used for collecting these samples in order to reduce
the projection error, and then the corresponding average values of P0, P2, and P3 were
respectively calculated for each sampling cell.

(3) According to the latitudes and longitudes of the four corners of each sampling cell in the
MODIS image, project the boundaries of the samples onto the ETM+/OLI image and the
ETM+/OLI classification image (see Fig. 5). Then, respectively calculate the percentages
of water body, vegetation, and bare soil pixels accounting for the total pixels in each
projection scope in the ETM+/OLI classification image, which are taken as the reference
abundances that are used to calibrate the PSUIs. The calibration model for the PSUIs can
be expressed as

Fig. 4 (a) Pseudocolor image derived from MODIS data of the Pearl River Delta region of China
(date: 2001324, time: 03:10. RGB: bands 7, 2, and 1); (b) NDWI from the MODIS data; (c) NDVI
from the MODIS data; and (d) NDSI from the MODIS data. PSUIs derived from the MODIS data:
(e) P0, (f) P1, (g) P2, and (h) P3.
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EQ-TARGET;temp:intralink-;e010;116;475

Yw ¼ a10 þ a11P0 þ a12P2 þ a13P3;

Yv ¼ a20 þ a21P0 þ a22P2 þ a23P3;

Ys ¼ a30 þ a31P0 þ a32P2 þ a33P3; (10)

where Yw, Yv, and Ys denote the abundances of water body, vegetation, and bare soil,
respectively, which are obtained from the ETM+/OLI classification image; P0, P2, and
P3 represent, respectively, the PSUIs; and aij (i ¼ 1, 2, 3, j ¼ 0, 1, 2, 3) are the fitting
coefficients.

(4) In the illustrative example, we took 189 samples from the MODIS and ETM+ classi-
fication images (Fig. 6). We substituted the abundance values of water body, vegetation,
and bare soil obtained from the ETM+/OLI classification image and the PSUIs (P0, P2,
and P3) obtained from the MODIS image for the samples into Eq. (10), and then
obtained the fitting coefficient aij using a least squares method. The calibration model
for each pixel in the MODIS image can be expressed as

EQ-TARGET;temp:intralink-;e011;116;297

Yw ¼ 0.5377þ 1.4790 × P0 − 0.4161 × P2 − 1.2738 × P3 ;

Yv ¼ 1.6038 − 2.6723 × P0 þ 1.0573 × P2 − 3.2340 × P3;

Ys ¼ −1.1416þ 1.1934 × P0 − 0.6411 × P2 þ 4.5079 × P3; (11)

where Yw, Yv, and Ys denote the abundances of water body, vegetation, and bare soil,
respectively, and P0, P2, and P3 are the PSUIs.

The test results for the calibration model are shown in Table 1. All of the multiple
correlation coefficients are larger than 0.97, indicating that there are significant linear
correlations between the PSUIs (P0, P2, and P3) that were derived from the MODIS data
and the reference abundances of water body, vegetation, and bare soil that were obtained
from the ETM+ classification image. The test results for the calibration model show that
all the observed values for the F-test are evidently larger than the critical F-test value at
the 99% confidence level [F0.01 (3,185)]. Thus, there is a marked regression relationship
between the PSUIs and the abundances of water body, vegetation, and bare soil, which
ensures performance accuracy. The significance test for each PSUI shows that all the
significance probabilities are larger than 99.00% and that each index has a significant
effect on the abundances. Thus, the calibration model is acceptable.

Fig. 5 Sampling cells of 3 × 3 pixels of ground feature mixtures in a MODIS image, ETM+ image,
and ETM+ classification image with the MLC method (date: 2001324). Black quadrangles denote
the boundaries of the sampling areas. (a) Water body, (b) water body, (c) bare soil, and
(d) vegetation.
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Fig. 6 (a) Distribution of sampling cells in the MODIS image. Red squares represent the locations
of 189 sampling cells. The positions of these sampling cells are projected onto (b) the ETM+ image
and (c) the ETM+ classification image (black squares).

Table 1 Test results for the calibration model.

Calculated model MCC F -test F 0.01 (3185)

Significance probability (%)

P0 P2 P3

Yw 0.979 1412.9 3.9 99.88 99.88 99.88

Y v 0.971 1004.8 3.9 99.82 99.74 99.74

Ys 0.977 1303.4 3.9 99.87 99.81 99.56

Note: MCC: multiple correlation coefficients. MCC ¼
ffiffiffiffiffiffiffi
ESS
TSS

q
, where the total sum of squares (TSS) is calculated

by TSS ¼ Pn
i¼1 ðY i − Y Þ2, the explained sum of squares (ESS) is calculated by ESS ¼ Pn

i¼1 ðŶ i − Y Þ2, Y i is

the reference abundance of the i ’th sample, Ŷ i is the estimated abundance of the i ’th sample, Y is the mean of
the reference abundances of the samples, and n is the number of training samples (n ¼ 189).
F -test: The observed value of F -test at 99% confidence level. F -test ¼ ESS∕p

RSS∕ðn−p−1Þ, where the residual sum of

squares (RSS) is calculated by RSS ¼ Pn
i¼1 ðY i − Ŷ i Þ2, p is the number of explanatory variables (p ¼ 3),

n-p-1 is the number of degrees of freedom, ESS and n are explained above.
F 0.01ð3.185Þ: the critical F -test value at 99% confidence level with a numerator degree of freedom of 3 and
a denominator degree of freedom of 185. F 0.01ð3.185Þ is obtained from the table for critical values of
the F distribution.54
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(5) Calculate the abundance of each component within each pixel in the MODIS image by
substituting the PSUIs for every mixed pixel into the calibration model. If a calculated
abundance fraction is less than 0, it is set to 0. The sum of the abundance fractions of
different ground features within each pixel must be 1. If not, Yw, Yv, and Ys should be
normalized using the following expressions:

EQ-TARGET;temp:intralink-;e012;116;406

Y ¼ Yw þ Yv þ Ys;

Y 0
w ¼ Yw∕Y;

Y 0
v ¼ Yv∕Y;

Y 0
s ¼ Ys∕Y: (12)

(6) Evaluate the accuracy of the component abundances obtained by decomposing the mixed
pixels in MODIS images. In this accuracy evaluation, the error is defined by the differ-
ence between the calculated component abundance and the reference component
abundance, where to ensure the objectivity of the accuracy evaluation, the reference
abundance used to evaluate the accuracy of the calculated component abundances and
the abundances employed to calibrate the PSUIs should be taken from the ETM+/OLI
classification images at different times or in different scenes.

The flowchart for the proposed approach to decomposing mixed pixels in MODIS images is
shown in Fig. 7.

From the above, we can see that although Eq. (4) is still a linear mixture model as is the
LSMM, this method using the third-order Bernstein basis functions is different from the LSMM-
based approaches in that it does not need to resort to extracting endmember spectra. For the sake
of convenience, hereinafter, using PSUIs for decomposing mixed pixels in the MODIS images is
called the PSUI method.

3 Experiments

3.1 Experiment Design and Datasets

A calibration model used to calculate the abundances of every mixed pixel’s components in
MODIS images was built based on a set of MODIS and ETM+ images of the Pearl River

Fig. 7 Schematic description of the approach to decomposing mixed pixels in MODIS image data.
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Delta region of China in Sec. 2. In this section, we present a performance evaluation of the
calibration model for decomposing mixed pixels in MODIS data. There are two groups of
experiments (Table 2).

One group (E1–E5) is conducted to apply the calibration model to MODIS data at different
times or in different areas to test the robustness of the PSUI method. Two experiments (E1–E2)
in this group, which are carried out to decompose mixed pixels in MODIS images in the Pearl
River Delta region at different times, can be used to test whether a good unmixing process is
performed for MODIS data at different times compared with that used for building the
calibration model. In the Pearl River Delta region, the water bodies are sea water (main type),
rivers, lakes, or dike-ponds; the vegetation is forests (main type), croplands, or grassland; and the
bare soil is urban and built-up (main type), or barren/sparse vegetation. Three experiments (E3 to
E5) in this group are then conducted in different areas with different types of water bodies,
vegetation, or bare soil, which can be used to test whether a new calibration model is needed
in different areas. E3 is carried out in the Kubuqi desert region of China, where the water bodies
are mainly rivers and lakes, the vegetation is mainly croplands, and the bare soil is mainly barren
or sparse vegetation. E4 is carried out in the North China Plain, where the water bodies are
mainly lakes and rivers, the vegetation is mainly croplands, and the bare soil is mainly urban
and built-up. E5 is carried out in Texas, where the water bodies are mainly sea water and lakes,
the vegetation is mainly savannas and grassland, and the bare soil is mainly urban and built-up.

The other (E6) is conducted to compare the PSUI method with conventional methods
(PPI, N-FINDR, SMACC, and VCA).

Six groups of datasets are to be tested in this section (see Table 2). Each dataset consists of a
MODIS image (MOD021KM: level 1b calibrated, 1000 × 1000 m spatial resolution), derived
from the LAADS DAAC, and a Landsat ETM+/OLI image (30 × 30 m spatial resolution),
derived from the USGS GloVis, in the same area, and from the same day or from two consecutive
days (Table 2).

3.2 Application of the Calibration Model

In this section, we present the application of the calibration model [Eq. (11)] to MODIS images
(see Table 2) in different areas or at different times to test the robustness and performance of
the PSUI method (E1 to E5). The abundance maps of water body, vegetation, and bare soil for
the MODIS images were then obtained (see Fig. 8).

Five sets of sampling grids of 3 × 3 pixels, which were randomly collected from the MODIS
images, were taken as test samples to evaluate the accuracy of the calculated abundances in these

Table 2 Basic information about six experiments.

Experiment name Experiment area Sensor Acquisition date Path/row
Number of
samples

Experiments for
applying the
calibration model

E1 In the Pearl River
Delta region of China

MODIS 2001324 (0310) 300
ETM+ 2001324 122/044

E2 In the Pearl River
Delta region of China

MODIS 2016039 (0300) 210
OLI 2016038 122/044

E3 In the Kubuqi desert
region of China

MODIS 2014210 (0340) 230
OLI 2014209 129/032

E4 In the North China
Plain

MODIS 2018108 (0300) 210
OLI 2018107 122/037

E5 In Texas of USA MODIS 2015028 (1700) 250
OLI 2015027 025/039

Experiment for
method comparison

E6 In the Pearl River
Delta region of China

MODIS 2001356 (0310) 295
ETM+ 2001356 122/044

Note: Acquisition date: in the form of YYYYDDD (YYYY: year; DDD: day of year).
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experiments. The accuracy evaluation results of these five experiments (Table 3) demonstrate
good accuracy for decomposing mixed pixels in MODIS images in different areas at different
times by using the calibration model. Therefore, the calibration model can be used for MODIS
data in different areas or at different times, which means that there is no need to build a
calibration model for every MODIS image.

Fig. 8 MODIS images (RGB: bands 7, 2, and 1) (first column) and their abundance maps of water
body (Yw ) (second column), vegetation (Yv ) (third column), and bare soil (Ys) (fourth column) in
five experiments (E1 to E5). (a)–(d) E1, (e)–(h) E2, (i)–(l) E3, (m)–(p) E4, and (q)–(t) E5.
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3.3 Comparison with Conventional Methods

To examine the effectiveness of the PSUI method, we compared it with the PPI, N-FINDR,
SMACC, and VCA methods using the same MODIS image, against the abundance values
of the ground features derived from the ETM+/OLI classification image from the same day
as the MODIS image. The PPI, N-FINDR, SMACC, and VCA methods are widely applied for
endmember extraction due to their light computational burden and clear conceptual meaning.15

Detailed descriptions of these four methods can be found in the literature.15,20–25

In this experiment (E6), the MODIS image (date: 2001356, time: 03:10) and ETM+ image
(path/row: 122/044, date: 2001356) used for the method comparison are taken from the same
area but not at the same time as those used for calibrating the PSUIs (date: 2001324).

The 295 sampling points of 3 × 3 pixels that were randomly collected from the MODIS
image (date: 2001356) were taken as test samples. As shown in Table 4, the mean error (ME),
mean absolute error (MAE), root-mean-square error (RMSE), and root-mean-square abundance
angle distance (rmsAAD) obtained by using the PSUI method are obviously smaller than those
obtained by using the PPI, N-FINDR, SMACC, and VCA methods. Furthermore, the errors
derived from the PSUI method are distributed around 0% and are centralized [see Fig. 9(a)],
whereas those derived from the PPI, N-FINDR, SMACC, and VCA methods exhibit a more
disperse distribution [see Figs. 9(b)–9(e)]. The accuracy evaluation results demonstrate that the
PSUI method outperforms the PPI, N-FINDR, SMACC, and VCA methods.

In the comparison experiment, the PSUI method and four conventional unmixing methods
were performed with an Intel Core i7-8550U CPU running at 1.80 GHz with 8.0 GB RAM. The
PPI, N-FINDR, and VCA methods were performed in MATLAB R2017b, and the running time
of these methods was 8.19, 5.53 and 6.42 s, respectively. The running time for building and

Table 3 Accuracy evaluation of the abundances calculated by using the calibration model.

Experiment name Ground feature ME (%) MAE (%) P-10% (%) P-20% (%) RMSE

E1 Water body −2.1 3.4 90.0 97.3 0.06

Vegetation 0.9 8.8 62.7 95.7 0.11

Bare soil 1.2 9.1 63.3 93.0 0.11

E2 Water body −1.3 4.4 88.6 95.7 0.08

Vegetation 4.0 7.4 71.4 91.0 0.11

Bare soil −2.6 6.5 75.7 93.3 0.09

E3 Water body −0.8 2.4 94.8 97.4 0.03

Vegetation −2.2 3.4 85.7 98.3 0.04

Bare soil 3.0 4.0 85.2 96.5 0.04

E4 Water body 3.6 7.6 91.0 95.7 0.10

Vegetation 1.7 6.0 80.5 95.2 0.09

Bare soil −5.3 8.0 68.1 97.1 0.10

E5 Water body 0.8 2.8 96.0 98.4 0.05

Vegetation 1.5 7.1 70.4 94.8 0.10

Bare soil −2.3 7.1 69.6 96.4 0.10

Note: ME, mean error; MAE, mean absolute error. Error = calculated abundance – reference abundance,
where reference abundance was derived from the ETM+/OLI classification image corresponding to the date
and region of the MODIS image from which test samples were collected.
P-10% or P-20%: percentage of the samples with error less than 10% or 20% accounting for total samples.
RMSE: root-mean-square error.
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applying a calibration model for the PSUI method was 0.49 and 0.21 s. The SMACCmethod was
performed in the Environment for Visualizing Images software (ENVI 5.1), which had the result
that the running time of the method could not be obtained. The running times in Table 4 show
that the PSUI method took less time than the PPI, N-FINDR, and VCA methods.

4 Discussion

The existing methods of decomposing mixed pixels, based on either LSMM or NLSMM,
are mainly based on pixel spectral information that is characterized by a single spectral curve
composed of discrete data points and require extracting endmember spectra.1,15,16,18,20 The pro-
cedures adopted by the methods, such as the PPI21 and the SMACC,23 have been quite successful
when pure pixels are present in the original image data. However, it is very difficult to find pure
pixels containing only one ground object in MODIS images with low spatial resolution. Many
authors have argued that there are no pure pixels in remote sensing images with low spatial
resolution.17,27 Miao and Qi31 and Plaza et al.17 suggested that a trend in the hyperspectral
imaging community was to design endmember identification algorithms that do not assume the
presence of pure pixels to ensure the endmember accuracy and unmixing accuracy.

Table 4 Accuracy comparison of the PSUI, PPI, N-FINDR, SMACC, and VCA methods.

Method Ground feature ME (%) MAE (%) P-10% (%) P-20% (%) RMSE rmsAAD
Running
time (s)

PSUI Water body 1.6 5.9 81.4 98.3 0.08 0.22 0.21

Vegetation 2.9 9.1 64.7 90.2 0.12

Bare soil −4.5 9.4 64.4 88.1 0.13

PPI Water body −9.6 10.4 73.2 78.3 0.19 0.57 8.19

Vegetation 19.7 22.0 39.7 50.5 0.29

Bare soil −10.1 25.3 29.5 44.4 0.31

N-FINDR Water body 15.3 20.0 12.5 51.5 0.22 0.38 5.53

Vegetation −8.1 12.3 54.9 73.2 0.17

Bare soil −7.3 14.8 40.7 64.7 0.18

SMACC Water body 0.6 9.2 64.4 81.0 0.13 0.30 —

Vegetation −5.5 13.7 48.1 69.5 0.18

Bare soil 4.8 12.7 45.1 77.3 0.16

VCA Water body 21.0 24.2 7.1 34.6 0.26 0.45 6.42

Vegetation −13.9 14.7 45.4 69.2 0.20

Bare soil −7.1 13.7 43.4 75.9 0.18

Note: ME, mean error; MAE, mean absolute error. Error = calculated abundance – reference abundance,
where reference abundance was derived from the ETM+/OLI classification image corresponding to the date
and region of the MODIS image from which test samples were collected.
P-10% or P-20%: percentage of the samples with error less than 10% or 20% accounting for total samples.
RMSE: root-mean-square error.
rmsAAD: root-mean-square abundance angle distance. It demonstrates an overall measure of performance of

each method. rmsAAD ¼
�
1
N

PN
i¼1ðAAD2

ai Þ
�
1∕2

, where AADai ¼ cos−1
�

aTi bai
kai kkbai k

�
measures the similarity

between reference abundances (ai ) and calculated ones (bai ) of sampling grids; N is the number of sampling
grids (N ¼ 295).
The best results of the four algorithms are in bold font in the table.
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The PSUI method proposed herein provides a solution that is different from previous work on
the effective decomposition of mixed pixels. This method does not need to resort to extracting
endmember spectra from MODIS data. It was tested on five sets of MODIS and ETM+/OLI
images, and satisfying unmixing results were obtained (see Fig. 8 and Table 3). The calibration
model can be applied to MODIS data in different areas or at different times with high accuracy.
The PSUI method was also compared with other methods using the same MODIS data, such as
the PPI, N-FINDR, SMACC, and VCA, and the experimental results (Table 4) showed that the
accuracy of the PSUI method was obviously higher than that of the PPI, N-FINDR, SMACC, or
VCA methods.

In the PSUI method, the PSUIs quantify the relative proportions of spectrally distinct signals
from several ground features in each mixed pixel of MODIS data, thus the indexes need to be
calibrated with the abundance values of the ground features from a high spatial resolution remote
sensing image such as Landsat ETM+ image. One might say that since the PSUIs need to be
calibrated with the ETM+/OLI classification images, it would be more convenient to use the
results from the ETM+ images directly. However, the low temporal resolution of the 16-day
revisit cycle of Landsat ETM+ has long limited its use in many fields, such as studying global
biophysical processes, understanding changes in the terrestrial carbon cycle, or mapping the
quality and abundance of wildlife habitats.55,56 MODIS visits the globe once or twice per day
with coarse resolution of 250 to 1000 m. In addition, the calibration model is applicable for
MODIS data in different areas or at different times, which means that there is no need to build
a calibration model for every MODIS image. One of the advantages of the PSUI method is that it
combines MODIS data of high temporal resolution with Landsat ETM+ data of high spatial
resolution, which may be the reason the new method is superior to the PPI, N-FINDR,
SMACC, and VCA methods in terms of decomposition accuracy for mixed pixels in MODIS
images.

As we all know, there are 15 reflective spectral channels valid on land in a MODIS image,
and these are distributed over a wavelength range of 405 to 2155 nm. These 15 reflective spectral
channels can reflect the key spectral characteristics of ground features, such as the locations and
intensities of absorption and reflection bands, which are obviously demonstrated in a spectral

Fig. 9 Error distributions of water body, vegetation, and bare soil abundances obtained from
(a) the PSUI method, (b) the PPI method, (c) the N-FINDR method, (d) the SMACC method, and
(e) the VCA method.

Qin et al.: Decomposition of mixed pixels in MODIS data using Bernstein basis functions

Journal of Applied Remote Sensing 046509-16 Oct–Dec 2019 • Vol. 13(4)



curve. Three very different ground features (i.e., water body, vegetation, and bare soil) having
spectral curves that are easily distinguishable based on their peak locations are involved in the
unmixing process. Thus, a good unmixing process for the PSUI method can be performed.
However, the PPI, N-FINDR, SMACC, and VCA methods were originally proposed for hyper-
spectral data,21–24 and thus would not be expected to perform for multispectral data with limited
spectral resolution as well as for hyperspectral data. Furthermore, the endmembers in these con-
ventional methods are specific components, i.e., specific types of mineral or vegetation.21–24

There may be several specific types of vegetation and bare soil in a MODIS image. However,
in the method comparison experiment, mixed pixels in MODIS data were decomposed into three
general categories of water body, vegetation, and bare soil. Thus, the performance of the conven-
tional methods may be affected.

For the PSUI method, the training samples used to establish the calibration model were
derived from a MODIS image and an ETM+ classification image from the same day and in
the same area, which were in almost the same atmospheric conditions. Furthermore, the unmix-
ing accuracies of MODIS images without atmospheric correction were good, whether the
MODIS images were the same as that used for the calibration model or not (see Table 3).
Thus, atmospheric correction was not necessary for the PSUI method, which could save time
and reduce workload for time series analysis with MODIS imagery. To examine the effectiveness
of the PSUI method, it was compared with the PPI, N-FINDR, SMACC, and VCA methods
using the same MODIS image without atmospheric correction. The conventional methods did
not perform so well in this comparison experiment because they all required atmospheric
correction.21–24

The PSUI method, which is based on third-order Bernstein basis functions and does not
resort to extracting endmember spectra, has been shown to be effective in decomposing mixed
pixels in MODIS data. However, it should be noted that this study was the first attempt to decom-
pose mixed pixels by characterizing the spectral curves of the mixed pixels in MODIS data with a
set of Bernstein basis functions. There are still some limitations for the PSUI method. First, the
PSUI method is now only suitable for decomposition into three general components (water body,
vegetation, and bare soil) in images acquired by a coarse resolution multispectral sensor (e.g.,
MODIS). It would not be able to decompose mixed pixels into specific vegetation or soil types.
Future studies should be carried out to apply the PSUI method to much more complicated ground
feature situations. There are two situations: (1) if some of the ground features have very similar
spectral signatures, spatiotemporal information as well as spectral information fromMODIS data
should be utilized comprehensively; or (2) if the high reflectance of each ground feature appears
at different wavelengths, Bernstein basis functions of a higher order should be utilized. Second,
the calibration model, without atmospheric correction, might work only at low aerosol optical
depth (AOD), as the shape of the reflectance spectra at the top of the atmosphere would be highly
dependent on the AOD. The impact of absorption and scattering of atmospheric aerosol on
reflectance data varies with wavelength, which would change the shape of the spectral reflec-
tance curves and should be corrected by an atmospheric correction algorithm (e.g., the fast line-
of-sight atmospheric analysis of spectral hypercubes (FLAASH) algorithm57). A new calibration
model should be built and applied based on MODIS data with atmospheric correction if AOD
is high.

5 Conclusions

In this paper, the PSUI method, which provides a solution that is different from previous work on
the decomposition of mixed pixels, was proposed. This method does not need to resort to
extracting endmember spectra from MODIS data, which provides a new way of decomposing
mixed pixels to assure the unmixing accuracy. In the PSUI method, the spectral integral area that
is in the range enclosed by the spectral reflectance curves of ground features and the x-axis (in
Cartesian coordinates) and a set of third-order Bernstein basis functions are applied to character-
ize the spectral curves of mixed pixels in a MODIS image, and the derived PSUIs (i.e., the
coefficients of the basis functions) are used for representing the spectral characteristics of the
mixed pixels. Then the PSUIs are calibrated with the abundance values of the ground features
from a high spatial resolution remote sensing image such as Landsat ETM+ image, which creates
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a calibration model for calculating the abundances of the components of every mixed pixel in
MODIS images. The calibration model is applicable for MODIS images in different areas or at
different times, which has been proved by the experimental results using five sets of MODIS and
Landsat EMT+/OLI images. The PSUI method was compared with four conventional methods,
i.e., the PPI, N-FINDR, SMACC, and VCA. And the comparison results show that the PSUI
method outperforms the other four methods for decomposing mixed pixels in MODIS data.
Although the PSUI method performs well for decomposing mixed pixels in MODIS images
with low AOD into three general categories of water body, vegetation, and bare soil, further
study is needed to apply the PSUI method to MODIS images with much more complicated
ground feature situations or high AOD.
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