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Abstract. Functional near-infrared spectroscopy (fNIRS) offers an advantage over traditional functional imaging
methods [such as functional magnetic resonance imaging (fMRI)] by allowing participants to move and speak
relatively freely. However, neuroimaging while actively speaking has proven to be particularly challenging due
to the systemic artifacts that tend to be located in the critical brain areas. To overcome these limitations and
enhance the utility of fNIRS, we describe methods for investigating cortical activity during spoken language
tasks through refinement of deoxyhemoglobin (deoxyHb) signals with principal component analysis (PCA) spatial
filtering to remove global components. We studied overt picture naming and compared oxyhemoglobin (oxyHb)
and deoxyHb signals with and without global component removal using general linear model approaches. Activity
in Broca’s region and supplementary motor cortex was observed only when the filter was applied to the deoxyHb
signal and was shown to be spatially comparable to fMRI data acquired using a similar task and to meta-analysis
data. oxyHb signals did not yield expected activity in Broca’s region with or without global component removal. This
study demonstrates the utility of a PCA spatial filter on the deoxyHb signal in revealing neural activity related to a
spoken language task and extends applications of fNIRS to natural and ecologically valid conditions. © The Authors.
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1 Introduction
Speech is a primary human function; however, brain activity
related to tasks using overt speaking is difficult to investigate
using traditional imaging methods, such as functional magnetic
resonance imaging (fMRI), due to motion artifacts resulting
from mouth and head movements. Language production has pri-
marily been studied using imagined (covert or internal) speech1 or
sparse sampling methods.2,3 These studies generally support clas-
sic literature on the canonical language system,4–6 in which brain
activity associated with speech production has been localized to
Broca’s region and supplementary motor cortex. This prior liter-
ature plus the gold-standard from lesion studies and neurosurgical
interventions where cortical stimulations document functional
loci for speech production based on picture-naming tasks7 pro-
vide a valid reference for the findings of this study. Our primary
goal in this study was to develop a technique to reliably acquire
hemodynamic signals during overt speech production. Here, we
compare the blood oxygen level-dependent signals of fMRI using
the picture-naming task and other prior language studies using
Neurosynth8 with hemodynamic signals of functional near-infra-
red spectroscopy (fNIRS) (acquired during covert object naming)
based on concentrations of both oxyHb and deoxyHb with and
without spatial filtering.

Although fNIRS has been available as a neuroimaging
methodology for more than 20 years,9,10–15 many technical
and computational challenges remain in order to investigate

spatially localized neural cognitive functions in adult
subjects.16–18 However, one of the primary advantages of
fNIRS includes signal acquisition in natural conditions that
allow relatively free movement and communication. One of
the specific challenges for this application includes filtering
of systemic artifacts, such as effects of blood pressure and res-
piratory changes, that are often prominent in fNIRS
signals.16,19,20 Overt speaking tasks, as compared to nonverbal
cognitive tasks such as mental arithmetic, have been shown
to effect breathing and the end-tidal CO2 concentration in
blood (PetCO2) with differential global effects on task-related
changes in oxyHb and deoxyHb signals.20 The complex combi-
nation of effects due to speaking and breathing activities as well
as volitional cognitive tasks challenges interpretations of fNIRS
signals. In this paper, we attempt to address the issue of global
systemic artifact using a spatial component removal method21

and using the deoxyhemoglobin (deoxyHb) signal, which
may be less susceptible to global systemic components as
well as local variations within and across subjects. However,
both deoxyHb and oxyHb signals are shown for illustrative
purposes.

The global systemic artifact in fNIRS is often addressed by
using short channel recording,22,23 which is assumed to be only
sensitive to systemic components that can be removed from the
data. This approach is a method of choice for region-of-interest
(ROI) studies that do not employ full head coverage. However,
since short channel separation relies on the temporal character-
istics of the waveform of the systemic artifact, this method is
challenged by the fact that these artifacts can have similar*Address all Correspondence to Joy Hirsch, E-mail: joy.hirsch@yale.edu
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waveforms to the task-related fNIRS signal.16,21,22 Thus, a
regression method using temporal domain information from
the short channels may remove both the global effects as
well as the spatially localized task-related neuronal signals,
reducing sensitivity to main effects.

To address this problem, we previously reported the results of
a principal component analysis (PCA) spatial filter that was used
to remove global components from oxyhemoglobin (oxyHb)
and deoxyHb signals during a finger-thumb tapping task,
with optode coverage that was distributed over most of the
head.21 The effects of global systemic artifacts within the
oxyHb signal were more pronounced relative to the deoxyHb
signal. However, following the application of the PCA filter,
the oxyHb signal also showed expected spatial specificity as
did deoxyHb signals.

In this study, we applied the previously developed PCA spa-
tial filter to fNIRS signals recorded during an overt picture-nam-
ing task, which was similar to the classic Boston Naming Test.24

In addition, we compared recorded fNIRS signals with fMRI
data previously acquired during silent speech25 to evaluate the
spatial correlation of results between these two methods using
similar tasks and paradigms. Tasks that elicit hemodynamic sig-
nals with well-defined functional patterns, such as finger-thumb
tapping or flashing checkerboard viewing, have typically been
used to develop and verify fNIRS recording and systemic arti-
fact removal techniques. Spatial patterns generated by simple
language tasks, such as picture naming and description, can
also be compared to meta-analyses of functional imaging
results. Figure 1 shows the results of a Neurosynth forward
inference map generated from a meta-analysis of 6983 studies
using the search term “Broca.” Neurosynth is an online meta-
analysis tool that uses references to specific terms in many pub-
lished studies to generate activity maps.8 To generate the for-
ward inference map, a statistical analysis is performed using
the coordinates reported in studies that do and do not reference
Broca’s region.

We employed picture naming and description in order to con-
firm well-known, previously verified, functional results that
serve as fiducial markers for verification of the spatial filter tech-
nique. We aim to compare results from oxyHb and deoxyHb
signals and two signal processing methods (with and without
spatial filtering) to validate mapping procedures associated
with spoken language using fNIRS.

2 Methods

2.1 Participants

A total of 22 individuals (14 female, mean age ¼ 24.5� 7.8,
ranging from 18 to 55 years) participated in the experiment.
All were fluent English speakers but language history and later-
alization was not obtained for this study. All but two participants

were right-handed, as determined by the Edinburgh Handedness
Inventory.26 No participants were excluded from the experiment.
Written informed consent was obtained from each participant in
accordance with guidelines approved by Yale University Human
Investigations Committee (HIC #1501015178). All data were
obtained from the Brain Function Laboratory at Yale School
of Medicine, New Haven, Connecticut, and each person was
compensated for their participation in the study.

2.2 Functional NIRS Signal Acquisition

fNIRS signals were acquired using a LABNIRS system
(Shimadzu Corp., Kyoto, Japan). Thirty emitter and 29 detector
optodes were positioned 3 cm apart, providing a grid of 98
acquisition channels [Fig. 2(a)]. Each emitter optode connected
to laser diodes at three wavelengths (780, 805, and 830 nm) used
to measure changes in concentration of deoxyHb and oxyHb.
Signals were acquired every 0.093 s. For analysis, signals
were down-sampled to 0.93 samples∕s by averaging 10 data
points into one value.

2.3 Task and Paradigm

To investigate cortical activity during language production
acquired by fNIRS, we used an overt picture-naming task
that was similar to the object-naming tasks commonly used
in fMRI for neurosurgical planning applications.7 Participants
were instructed to name and give a short description of each
picture, which was presented for 3 s. A 15-s task block (five
pictures) alternated with a 15-s rest block [Fig. 2(b)]. Each
run consisted of six task/rest cycles, and two runs were per-
formed for a total of 6 min.

2.4 Optode Localization and Definition of Region
of Interest

The locations of emitters and receivers, along with standard 10
to 20 (Ref. 27) landmarks, including inion, nasion, Cz, T3, and
T4, were determined using a Patriot three-dimensional (3-D)
digitizer (Polhemus, Vermont). The Montreal Neurological
Institute (MNI) coordinates for each recording channel and
the corresponding anatomical locations of these channels
were determined with the statistical parametric mapping pack-
age, NIRS-SPM.28 The native form of fNIRS data is channel-
based since signals are recorded through channels and not indi-
vidual voxels, which are interpolated between channel locations.
Due to individual anatomical variations (e.g., head size and
shape), the channel locations (represented by MNI coordinates)

Fig. 1 Neural activity determined by Neurosynth (meta-analysis of
6983 studies identified by the search term “Broca”) serves to identify
one determination of the fiducial location of Broca’s area, the ROI for
this investigation.

Fig. 2 (a) 98-channel layout, covering frontal, temporal, and parietal
lobes. The white outline in (a) represents the field of view reliably
covered for all subjects in the fNIRS recordings. (b) Task paradigm:
in each task block, five pictures were presented for 3 s each, which
was followed by a 15-s rest block. Each run consisted of six task/rest
cycles.
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are not necessarily identical across participants (Fig. 3). To cor-
rect for these variations, we projected the data from each par-
ticipant onto regions that represent the median channel locations
for the group (Table 1 in Appendix A).

2.5 Functional NIRS Data Preprocessing

Temporal baseline drift was removed with the wavelet detrend-
ing algorithm procedure provided in NIRS-SPM.28 Global com-
ponents were removed using the PCA spatial filter algorithm
reported previously.21 The value of the width at half-maximum
of the spatial filter was set at 46 deg rather than 50 deg. See
Appendix B for a detailed explanation on the optimization of
this parameter. Beta values (i.e., the amplitude of neural activity
defined as the scale of best fit hemodynamic response function)
were projected into MNI standard brain space (2 × 2 × 2 mm3).
Transforming fNIRS data into a 3-D volume is done with tri-
angulation-based linear interpolation (using the grid data com-
mand in MATLAB). For voxels located directly on a channel,
the spatial smoothing range was zero. For a voxel at the center of
a triangular pyramid, the smoothing value was the mean of sur-
rounding channels. In general, the range of spatial smoothing
was less than 1.5 cm, half the distance between two channels.
No additional smoothing was applied.

2.6 Voxel-Wise Analysis

First-level (single subject) and second-level (group) general lin-
ear model analyses were performed using SPM8.29 Beta values
(i.e., hemodynamic signal amplitude as fit to the hemodynamic
response function) were projected into MNI standard brain
space using linear interpolation. Any voxel located farther
than 18 mm away from the brain surface was excluded. In
order to compare the effect of the task on the deoxyHb and
the oxyHb signals, we have adopted a convention of inverting
the polarity of the deoxyHb signals for the group analyses so
that both oxyHb and deoxyHb data show the same polarity
in terms of representing neural activity. A reduction in

deoxyHb concentration and an increase in oxyHb concentration
both correspond to “positive” fNIRS activity as represented by
the figures and the reverse was true for “negative” activity.
Results for the contrast, object naming versus rest, were ren-
dered at threshold level p < 0.05 corrected by a false discovery
rate (FDR).30

3 Results

3.1 Deoxyhemoglobin

We report results from both the deoxyHb and oxyHb signals that
were processed (1) to remove global components (“clean”
results) and (2) to show the unmodified signals (“raw” results).
Figures 4(a) and 4(c) show the uncorrected results at a lenient
threshold to illustrate the overall pattern of activity. The clean
deoxyHb (upper left) data shows positive (red-yellow) activity
covering left pars triangularis, premotor, and supplementary
areas. While raw deoxyHb data show distributed activity cover-
ing most of the entire recorded area, data from deoxyHb signals
with the application of the spatial filter were corrected for multi-
ple comparison error using FDR (p < 0.05),30 and are shown in
Figs. 5(a) and 5(b) and Table 3 (Appendix C).

3.2 Oxyhemoglobin Results

Uncorrected and lenient results obtained from the oxyHb signals
with and without the spatial filter are shown in Figs. 4(b) and
4(d) to illustrate the general distribution patterns. Both the clean
and raw signals show a large cluster of negative activity cover-
ing most of the recording area. Negative activity indicates that
the oxygen concentration was higher during baseline (resting)
epochs compared to speaking epochs. Thresholded and cor-
rected results from the spatially filtered oxyHb signal [Fig. 5(b)]
showed a cluster of negative activity in dorsolateral prefrontal
cortex with peak MNI coordinate (−18, 46, 36) (p ≤ 0.05,
FDR, t ¼ −4.00). Corrected results from the raw oxyHb signal
[Fig. 5(a)] showed a single cluster of negative activity in the
frontopolar area with peak MNI coordinate (4, 60, 32)
(p ≤ 0.05, FDR, t ¼ −3.91, n of voxels ¼ 36).

Fig. 3 Channel location variability. Variability of channel locations
across different participants is shown with a top-down projection
view of all channels and subjects. Each circle is centered on the
group median location of a channel. Each dot indicates the location
of a channel for an individual participant. Locations for three exemplar
channels, 14, 43, and 71, are shown in red. For example, each of the
red dots around channel 71 represents the location of channel 71 for
each individual participant.

Fig. 4 fNIRS results. fNIRS activity is shown with and without the
global component removed at a lenient uncorrected threshold of
p < 0.1. The contrast is overt picture naming over a rest period for all
panels. Both deoxyHb and oxyHb results are represented in left and
right columns, respectively. Clean, global-mean removed, and raw
signals are shown in top and bottom rows, respectively. All conditions
include left sagittal and dorsal views. Red-yellow indicates
picture naming > rest and blue-green indicates rest > picture naming.
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3.3 Event Triggered Average Results

Figure 6(a) shows the event-triggered average plot for each
channel from a representative subject prior to general linear
modeling analyses. Following the fNIRS data presentation con-
vention as stated above, both an upward oxyHb signal (red) and
a downward deoxyHb signal (blue) indicate positive neural
activity. A global component is clearly visible in all of the chan-
nels and is especially noticeable in the oxyHb (“w-shaped” sig-
nal). The oxyHb signal shows a decrease (negative activity)
in almost all channels consistent with the raw data shown in
Fig. 4(d). The deoxyHb signal shows a decrease (positive

activity) in almost all channels, consistent with the raw data
shown in Fig. 4(b). Figures 6(b)–6(d) show data from three
channels [outlined in Fig. 6(a)] in three individual subjects
that are enlarged to show additional local variation in the tem-
poral aspects of the oxyHb signal contrasted with the deoxyHb
signal.

3.4 Comparison of Functional NIRS, Neurosynth,
and Functional Magnetic Resonance Imaging
Results

An independent fMRI dataset based on a similar task and para-
digm is presented here for comparison with the fNIRS

Fig. 6 Event-triggered data prior to spatial filtering. (a) Event-trig-
gered average plot showing all 98 channels in a representative sub-
ject. Data were averaged over the six 30-s task blocks. Red lines
show oxyHb; blue lines show deoxyHb. (b)–(d) Data from three chan-
nels are enlarged with axis shown (same axis for all channels) from
three individual subjects indicating variation in relative hemoglobin
change profiles.

Fig. 7 (a) fMRI activity for silent picture-naming task.25 (b) Voxel-wise
analysis showing fNIRS activity for the overt picture-naming task mea-
sured with deoxyHb data after global component removal (p < 0.05,
corrected for multiple comparisons using FDR). The black lines delin-
eate the voxels covered by all subjects in the fNIRS recording.

Fig. 5 FDR corrected fNIRS results. fNIRS activity is shown with and
without the global component removed at a corrected threshold of
p < 0.05, (FDR). The contrast is overt picture naming over rest period
for all panels. Both deoxyHb and oxyHb results are represented in left
and right columns, respectively. Clean, global-mean removed, and
raw signals are shown in top and bottom rows, respectively. Views
and color conventions are as described for Fig. 4.

Fig. 8 (a) fMRI activity for silent picture-naming task.25 (b) fMRI activ-
ity for Neurosynth data (search terms: “Broca”). (c) Voxel-wise fNIRS
activity for the overt picture-naming task measured with deoxyHb sig-
nal after global component removal (p < 0.05, FDR corrected).
(d) Synthesis of activation data during speech tasks from (a) to (c).
The white line surrounds the area of fNIRS coverage (all subjects)
and the black circle shows the cluster of fNIRS activity within the
area of overlap between all three methods.
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findings7,25 [Fig. 7(a)]. Although the task completed during
acquisition of these fMRI images was covert (silent) naming
rather than our overt (spoken) picture naming, the activity
around Broca’s region is expected to be similar and serves as
a second fiducial marker for the findings of this study.
Figure 7(b) shows the neural activity measured with fNIRS
deoxyHb data after global component removal. Within the cov-
erage of the fNIRS channels, activity around Broca’s region
overlays the activity shown in the fMRI data. Note that the
optode coverage [Fig. 2(a)] does not include the most lateral
ventral regions observed in either the fMRI data [Fig. 7(a)]
or the Neurosynth marker (Fig. 1). The fNIRS data [Fig. 7(b),
dorsal view] show increased activity near the supplementary
motor area (SMA) as compared to the fMRI data [Fig. 7(a), dor-
sal view]. This is as expected for an overt speaking task where
the supplementary motor system is actively engaged during
speech articulation.

The result obtained from the spatially filtered deoxyHb sig-
nals was compared with the fMRI data set, Fig. 1(a), and the
Neurosynth map of Broca’s area (Fig. 1). Figure 8 shows the
fMRI activity during covert speaking [Fig. 8(a)], the Neurosynth
map of Broca’s area [Fig. 8(b)], and the present fNIRS result
[Fig. 8(d)]. The overlap of all three is shown within the open
circle in Fig. 8(c), illustrating a common area of activity.
Note that since SPM group analysis is limited to the channels
that are present for all subjects, the fNIRS coverage shown in
Fig. 8 (the white boundary) is smaller than the individual cover-
age shown as median channel locations in Fig. 2(a). As shown in
Fig. 8, the coverage in common across all subjects does not
include the most ventral regions observed in either the fMRI
data [Fig. 8(a)] or the Neurosynth marker [Fig. 8(b)].

4 Discussion
Previously, we have shown that global component removal
during preprocessing using spatial filtering reveals activity con-
sistent with expected cortical activity for finger tapping tasks.21

Here, we extend these findings to include overt speaking and
determine that this spatial filter can be applied for deoxyHb sig-
nals, revealing expected cortical activity in areas of the brain
specialized for speech production. Specifically, “clean”
deoxyHb signals yielded activity localized to left frontal regions
included in Broca’s region, and pre- and supplementary motor
cortex consistent with a previous fMRI study using a
similar task and paradigm with silent speech25 as well as the
Neurosynth meta-analysis using a wide range of silent language
tasks performed during scanning with fMRI. Both are consistent
with well-described findings from intraoperative stimulation.

Although the deoxyHb signals with global component
removal show specific activity in Broca’s region and the
SMA [Fig. 5(a)], the unfiltered deoxyHb data show widespread
global component [Figs. 5(c)] during the picture-naming task.
This is different from our previous findings based on finger
thumb tapping, which suggested that global components in
the deoxyHb were not significant.21 The current results imply
that the global component in the deoxyHb signal is more appar-
ent in some tasks than others, suggesting that global component
removal is generally beneficial to an analysis pipeline to maxi-
mize the likelihood of reflecting neural activity.

The coupling between neurological and physiological proc-
esses that underlie changes in oxyHb and deoxyHb concentra-
tions in the brain during cognitive and motor tasks is an active
topic of investigation. The anticorrelation between these two

signals that is typically observed during task-rest cycles is
believed to reflect (1) increases in blood flow related to neutrally
active tissue and serves as a proxy for task-specific neural activ-
ity that underlies cognitive function; (2) increases in blood flow
related to systemic physiological factors; and (3) relative
decreases in deoxyHb concentrations also related to neurovas-
cular coupling and serves as a proxy for neural activity, respec-
tively. Multiple systemic physiological factors not directly
related to the neurovascular coupling have been described.
18 For example, variations in partial pressure of end-tidal carbon
dioxide (PetCO2) associated with respiration have been
observed during speech production and shown to decrease
with similar tasks performed with only internal and cognitive
responses.20 Other nonneural physiological factors, such as
heart rate, blood pressure, respiration rate, and concentration
of CO2, have also been shown to influence blood oxygen con-
centrations as measured by fNIRS (Refs. 18, 31 and 32). It is
widely understood that these factors are modulated by subject
characteristics, such as age, gender, fitness, body size, time from
exercise, medications, anxiety levels, and further complicate
computational approaches to separate neural and systemic com-
ponents in both oxyHb and deoxyHb signals. Furthermore,
assumptions of equal variance across whole brains of individual
subjects may also be violated by both individual differences and
task demands.33 To the extent that these sources of variation are
systemic in origin, they would be expected to differentially
affect the oxyHb and deoxyHb signals. For example, the task
related increase in the oxyHb signal is attributed to both neural
and systemic physiological factors, whereas the task-related
decrease in the deoxyHb signal is primarily attributed to neuro-
vascular coupling.

The paradoxical group observation in the unthresholded,
averaged raw oxyHb signals [Fig. 4(d)], showing both the
absence of signal in the ROI, Broca’s Area, and the negative
group average in frontal areas is consistent with the hypothesis
that systemic factors such as end-tidal carbon dioxide may have
resulted in a negative signal. Regional differences in systemic
factors were also present, as illustrated by the difference
between the oxyHb signal in the three channels in Figs. 6(b)–
6(d). These localized systemic effects may have prevented the
spatial filter from adequately removing this global negative sig-
nal, as shown by the group-averaged result in Fig. 5(b). When
the oxyHb was subjected to a threshold and multiple compar-
isons correction, individual differences in systemic factors
may have washed out a group effect. However, the widely dis-
tributed group signal for the simultaneously acquired raw
deoxyHb data, Fig. 4(c), suggests that the deoxyHb signal
may be less affected by these sources of variation than the
oxyHb signal for a speaking task. This suggestion and observa-
tion is an important topic for future research and the develop-
ment of computational and experimental approaches as fNIRS
emerges as a method of choice for studies of cognitive processes
in natural conditions.

5 Limitations
The finding that group data for the oxyHb signal during the
overt speaking did not reveal canonical regions associated
with Broca’s area, i.e., left pre- and supplementary motor cortex
and left pars opercularis, was unexpected. Although increased
individual variability of systemic factors associated with breath-
ing that occur during a speaking task as well as individually spe-
cific regional brain differences may contribute, there are other
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possible contributing factors. The movement of head, mouth,
and the temporalis muscle during overt speech creates particu-
larly challenging circumstances for an imaging study. These
findings suggest that future investigations of speech functions
would benefit from movement extraction algorithms, and, in
particular, the oxyHb signal may benefit from simultaneous
measurements of PetCO2, as previously suggested by
Scholkmann et al.20 Algorithms that employ physiological
regressors to further refine the separation between neural and
systemic effects, in addition to PetCO2, such as heart rate,
blood pressure, and respiration,18 may also be particularly ben-
eficial to the oxyHb signal. Additionally, while traditional short
channel regression techniques in the temporal domain may also
remove cortical responses, newer techniques that only regress
data that only has a positive (nonstandard) correlation between
oxyHb and deoxyHb have been suggested and may further
increase signal to noise in the oxyHb recordings.33

An additional limitation of the study was the variability of
detector locations in the inferior aspect of the left frontal
lobe. This was due to the effects of variability of channel loca-
tion in that area resulting from variations in head and cap size.
As the field of view indicates (Fig. 3), the inferior aspects of
Broca’s area were not reliably sampled. This is a potential pitfall
that can be avoided in future investigations with cap sizes
designed to fit various head sizes.

6 Conclusion
In this study, we compared fNIRS activity from an overt pic-
ture-naming task to both a Neurosynth activity map and fMRI
activity during a silent picture-naming task.25 Spatial filtering
of global components from the fNIRS deoxyHb signal yielded
results similar to those obtained with fMRI. Even after spatial
filtering, fNIRS oxyHb signals did not show expected activity
patterns related to picture naming. One possible explanation is
that the oxyHb signal is more sensitive to modulation by sys-
temic sources. The deoxyHb yielded activity patterns similar to
fMRI and Neurosynth results only after global component
removal was applied. This study is the first to our knowledge
to show the benefits of systemic artifact removal on fNIRS sig-
nals recorded during a task involving spoken language to
eliminate neural responses from Broca’s area. Findings suggest
that fNIRS may be used to study spoken language outside the
confines of an fMRI scanner and thereby extends the applica-
tions of fNIRS to neuroimaging in natural and freely moving
conditions.

Appendix A: Median Channel Locations
The median locations for each channel are listed in Table 1.

Table 1 Median channel locations for all subjects. The X , Y , and Z columns represent MNI coordinates. MNI coordinates were converted to
Talairach coordinates to generate anatomical areas. The last column lists the atlas-based probability that the XYZ coordinates are within that
anatomical location (only probabilities greater than 20% were listed here).

Channel X Y Z BA-anatomy Probability

1 −32 63 15 10-frontopolar area 1

2 −12 68 23 10-frontopolar area 1

3 15 68 24 10-frontopolar area 1

4 34 63 18 10-frontopolar area 1

5 −20 62 30 9-dorsolateral prefrontal cortex 0.3

10-frontopolar area 0.7

6 2 61 34 9-dorsolateral prefrontal cortex 0.49

10-frontopolar area 0.51

7 22 61 32 9-dorsolateral prefrontal cortex 0.42

10-frontopolar area 0.58

8 −11 57 42 9-dorsolateral prefrontal cortex 0.84

9 13 56 42 8-includes Frontal eye fields 0.21

9-dorsolateral prefrontal cortex 0.79

10 −19 48 47 8-includes frontal eye fields 0.69

9-dorsolateral prefrontal cortex 0.31

11 1 48 49 8-includes frontal eye fields 0.85

12 20 48 48 8-Includes frontal eye fields 0.81
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Table 1 (Continued).

Channel X Y Z BA-anatomy Probability

13 −44 40 33 9-dorsolateral prefrontal cortex 0.39

46-dorsolateral prefrontal cortex 0.6

14 −28 39 48 8-includes frontal eye fields 0.85

15 −11 41 56 8-includes frontal eye fields 0.95

16 13 41 57 8-includes frontal eye fields 0.92

17 26 39 50 8-includes frontal eye fields 1

9-dorsolateral prefrontal cortex 0.69

19 −51 29 32 46-dorsolateral prefrontal cortex 0.57

20 −39 28 49 8-includes frontal eye fields 0.94

21 −19 30 60 6-premotor and supplementary motor cortex 0.49

8-includes frontal eye fields 0.51

22 0 31 60 6-premotor and supplementary motor cortex 0.52

8-includes frontal eye fields 0.48

23 20 31 61 6-premotor and supplementary motor cortex 0.54

8-includes frontal eye fields 0.46

24 37 28 52 8-includes frontal eye fields 1

25 52 30 35 9-dorsolateral prefrontal cortex 0.6

46-dorsolateral prefrontal cortex 0.4

26 −60 16 7 44-pars opercularis, part of Broca’s area 0.41

45-pars triangularis Broca’s area 0.33

27 −57 18 29 9-dorsolateral prefrontal cortex 0.66

45-pars triangularis Broca’s area 0.23

28 −46 20 49 8-includes frontal eye fields 0.82

29 −31 20 61 6-premotor and supplementary motor cortex 0.53

8-includes frontal eye fields 0.47

30 −13 22 67 6-premotor and supplementary motor cortex 1

31 13 22 67 6-premotor and supplementary motor cortex 1

32 31 21 62 6-premotor and supplementary motor cortex 0.66

8-includes frontal eye fields 0.34

33 47 20 51 8-includes frontal eye fields 0.87

34 58 18 33 9-dorsolateral prefrontal cortex 0.85

35 62 16 11 45-pars triangularis Broca’s area 0.41

44-pars opercularis, part of Broca’s area 0.54

36 −65 −1 −5 21-middle temporal gyrus 0.64

22-superior temporal gyrus 0.35
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Table 1 (Continued).

Channel X Y Z BA-anatomy Probability

37 −63 4 25 6-premotor and supplementary motor cortex 0.63

38 −54 7 45 6-premotor and supplementary motor cortex 0.57

8-includes frontal eye fields 0.21

9-dorsolateral prefrontal cortex 0.22

39 −41 12 60 6-premotor and supplementary motor cortex 0.73

8-includes frontal eye fields 0.27

40 −21 12 69 6-premotor and supplementary motor cortex 1

41 −1 11 70 6-premotor and supplementary motor cortex 1

42 21 10 71 6-premotor and supplementary motor cortex 1

43 40 10 61 6-premotor and supplementary motor cortex 0.86

44 55 7 48 6-premotor and supplementary motor cortex 0.67

8-includes frontal eye fields 0.22

45 65 5 28 6-premotor and supplementary motor cortex 0.6

9-dorsolateral prefrontal cortex 0.31

46 67 1 1 21-middle temporal gyrus 0.32

22-superior temporal gyrus 0.59

47 −67 −8 17 43-subcentral area 0.42

48 −62 −5 39 6-premotor and supplementary motor cortex 0.98

49 −49 −1 56 6-premotor and supplementary motor cortex 0.93

50 −31 1 68 6-premotor and supplementary motor cortex 1

51 −13 0 75 6-premotor and supplementary motor cortex 1

52 13 0 75 6-premotor and supplementary motor cortex 1

53 30 −2 70 6-premotor and supplementary motor cortex 1

54 49 −3 59 6-premotor and supplementary motor cortex 0.9

55 62 −5 43 6-premotor and supplementary motor cortex 0.95

56 69 −7 20 6-premotor and supplementary motor cortex 0.32

43-subcentral area 0.4

57 −70 −22 0 21-middle temporal gyrus 0.48

22-superior temporal gyrus 0.32

42-primary and auditory association cortex 0.2

58 −67 −19 29 2-primary somatosensory cortex 0.24

59 −59 −16 49 3-primary somatosensory cortex 0.23

6-premotor and supplementary motor cortex 0.36

60 −43 −13 65 6-premotor and supplementary motor cortex 0.72

61 −22 −12 75 6-premotor and supplementary motor cortex 1
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Table 1 (Continued).

Channel X Y Z BA-anatomy Probability

62 −2 −11 75 6-premotor and supplementary motor cortex 1

63 22 −12 76 6-premotor and supplementary motor cortex 1

64 42 −15 68 6-premotor and supplementary motor cortex 0.75

65 58 −18 53 3-primary somatosensory cortex 0.39

66 68 −20 33 1-primary somatosensory cortex 0.25

2-primary somatosensory cortex 0.22

67 72 −22 4 21-middle temporal gyrus 0.22

22-superior temporal gyrus 0.41

42-primary and auditory association cortex 0.37

68 −69 −33 14 22-superior temporal gyrus 0.57

40-supramarginal gyrus part of Wernicke’s area 0.09

42-primary and auditory association cortex 0.34

69 −65 −30 39 2-primary somatosensory cortex 0.21

40-supramarginal gyrus part of Wernicke’s area 0.61

70 −53 −26 59 1-primary somatosensory cortex 0.26

2-primary somatosensory cortex 0.39

3-primary somatosensory cortex 0.2

71 −35 −23 72 4-primary motor cortex 0.31

6-premotor and supplementary motor cortex 0.52

72 −13 −23 79 4-primary motor cortex 0.28

6-premotor and supplementary motor cortex 0.72

73 13 −24 79 4-primary motor cortex 0.24

6-premotor and supplementary motor cortex 0.76

74 33 −24 73 4-primary motor cortex 0.43

6-premotor and supplementary motor cortex 0.49

75 52 −27 62 1-primary somatosensory cortex 0.28

2-primary somatosensory cortex 0.23

3-primary somatosensory cortex 0.33

76 65 −31 44 2-primary somatosensory cortex 0.2

40-supramarginal gyrus part of Wernicke’s area 0.59

77 71 −34 18 22-superior temporal gyrus 0.44

40-supramarginal gyrus part of Wernicke’s area 0.29

42-primary and auditory association cortex 0.27

78 −68 −45 −3 21-middle temporal gyrus 0.79
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Table 1 (Continued).

Channel X Y Z BA-anatomy Probability

79 −67 −43 24 22-superior temporal gyrus 0.37

40-supramarginal gyrus part of Wernicke’s area 0.63

80 −61 −40 46 40-supramarginal gyrus part of Wernicke’s area 0.98

81 −46 −35 64 1-primary somatosensory cortex 0.21

2-primary somatosensory cortex 0.33

40-supramarginal gyrus part of Wernicke’s area 0.31

82 −24 −36 75 3-primary somatosensory cortex 0.39

4-primary motor cortex 0.24

83 −1 −37 78 4-primary motor cortex 0.33

6-premotor and supplementary motor cortex 0.45

84 22 −38 77 3-primary somatosensory cortex 0.45

4-primary motor cortex 0.26

85 44 −37 66 2-primary somatosensory cortex 0.3

86 59 −42 50 40-supramarginal gyrus part of Wernicke’s area 1

87 67 −46 27 40-supramarginal gyrus part of Wernicke’s area 0.81

88 69 −47 −2 21-middle temporal gyrus 0.63

22-superior temporal gyrus 0.22

89 −64 −55 5 21-middle temporal gyrus 0.66

22-superior temporal gyrus 0.24

90 −62 −54 31 40-supramarginal gyrus part of Wernicke’s area 0.81

91 −53 −51 52 40-supramarginal gyrus part of Wernicke’s area 1

92 −36 −49 68 5-somatosensory association cortex 0.51

7-somatosensory association cortex 0.26

93 −14 −50 76 5-somatosensory association cortex 0.36

7-somatosensory association cortex 0.51

94 13 −50 76 5-somatosensory association cortex 0.37

7-somatosensory association cortex 0.5

95 33 −51 69 5-somatosensory association cortex 0.45

7-somatosensory association cortex 0.54

96 50 −54 55 40-supramarginal gyrus part of Wernicke’s area 0.93

97 60 −58 34 39-angular gyrus, part of Wernicke’s area 0.32

40-supramarginal gyrus part of Wernicke’s area 0.68

98 64 −60 7 21-middle temporal gyrus 0.45

22-superior temporal gyrus 0.21
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Appendix B: Optimization of the Global
Component Removal Method
The PCA global component removal method is essentially a spa-
tial high-pass Gaussian filter method.21 The following equation
described the Gaussian filter:

EQ-TARGET;temp:intralink-;x2;63;688G2−DðrÞ ¼ expð−distance2∕2σ2Þ;

where σ represents the width at half-maximum of the Gaussian
kernel. In the previous paper, we set the parameter σ as 50 deg
based on the observed extent of global component, noting that
this value should be greater than the width of the expected cort-
ical activation but smaller than the width of the global compo-
nents. To optimize this width, we used data from 22 participants

performing a right-handed finger-tapping task. Data were aver-
aged across 3 × 3 × 3 voxels (each voxel ¼ 2 mm3) in the left
motor cortex. We tested different values for σ and calculated the
peak T value for each σ, as shown in Table 2.

Using this procedure, we found that the value for the filter
parameter σ that optimized the peak T value of motor cortex
activity was 46 deg instead of the previously adopted value
of 50 deg. Because of this, we used a parameter value σ of
46 deg in this study.

Appendix C: Voxel-Wise and Channel-Wise
Results from Clean deoxyHb Signals
The results of the corrected voxel-wise analyses of the deoxyHb
(Table 3) and oxyHb (Table 4) signals with the spatial filter
(“clean”) are reported.
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Table 2 Peak T values for each angle (σ).

σ (deg) T

42.5 2.57

44.4 2.61

46.2 2.62

48.0 2.51

50.0 2.52

51.2 2.53

52.8 2.56

Table 3 Contrast comparisons (deoxyHb signals, clean, FDR corrected) for voxel-wise analysis.

Contrast
Contrast threshold
(FDR adjusted)

Peak Voxel
Anatomical regions

in cluster BAb
Anatomical
probabilityMINI Coordinatea t value

[Picture-naming > rest] p ¼ 0.05 −56 6 30 3.48 Pre- and supplementary motor cortex 6 0.70

Pars opercularis, part of Broca’s area 44 0.22

Primary motor cortex 4 0.04

Subcentral area 43 0.04

aCoordinates are based on the MNI system and (−) indicates left hemisphere.
bBA, Brodmann area.

Table 4 Contrast comparisons (oxyHb signals, clean, FDR corrected) for voxel-wise analysis.

Contrast
Contrast threshold
(FDR adjusted)

Peak Voxel
Anatomical regions

in cluster BAb
Anatomical
probabilityMINI Coordinatea t value

[Picture-naming > rest] p ¼ 0.05 −18 46 36 −4.00 Dorsolateral prefrontal cortex 9 0.70

Frontal eye fields 8 0.30

aCoordinates are based on the MNI system and (−) indicates left hemisphere.
bBA, Brodmann area.
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