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Abstract

Significance: Optical neuroimaging has become a well-established clinical and research tool to
monitor cortical activations in the human brain. It is notable that outcomes of functional near-
infrared spectroscopy (fNIRS) studies depend heavily on the data processing pipeline and clas-
sification model employed. Recently, deep learning (DL) methodologies have demonstrated fast
and accurate performances in data processing and classification tasks across many biomedical
fields.

Aim: We aim to review the emerging DL applications in fNIRS studies.

Approach: We first introduce some of the commonly used DL techniques. Then, the review
summarizes current DL work in some of the most active areas of this field, including brain—
computer interface, neuro-impairment diagnosis, and neuroscience discovery.

Results: Of the 63 papers considered in this review, 32 report a comparative study of DL tech-
niques to traditional machine learning techniques where 26 have been shown outperforming the
latter in terms of the classification accuracy. In addition, eight studies also utilize DL to reduce
the amount of preprocessing typically done with fNIRS data or increase the amount of data via
data augmentation.

Conclusions: The application of DL techniques to fNIRS studies has shown to mitigate many of
the hurdles present in fNIRS studies such as lengthy data preprocessing or small sample sizes
while achieving comparable or improved classification accuracy.
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1 Introduction

Over the last two decades, functional near-infrared spectroscopy (fNIRS) has become a well-
established neuroimaging modality to monitor brain activity." The ability of fNIRS to quantify
cortical tissue hemodynamics over a long time, with relative high-spatial sampling and temporal
resolution, has enabled its adoption in numerous clinical settings.>® fNIRS offers the unique
advantage to be employed in freely mobile subjects with less restrictions than electroencepha-
lography (EEG) or functional magnetic resonance imaging (fMRI). This permits the deployment
of fNIRS in naturalistic scenarios and in patient populations that are typically not considered
suitable for EEG or fMRI imaging.* Still, fNIRS faces numerous challenges for increased clini-
cal adoption due to experimental settings,” variations in statistical results,® etc. Of importance,
current trends in fNIRS aim to improve spatial resolution via increased spatial sampling, improve
cortical sensitivity using data processing to remove unwanted physiological noise, improve
quantification by anatomical coregistration, and increase robustness via artifact identification
and removal.” Current algorithmic implementations, however, require a high level of expertise
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to set up parameters that can be system- and/or application-specific but also greatly impact the
interpretability of the processed data. Moreover, the computational cost of these methods does
not lend itself to bedside implementations. Following a ubiquitous trend in the field of data
processing and analysis, new approaches leveraging developments in deep learning (DL) have
been recently proposed to help overcome these caveats to a large extent.

The successes of DL methodologies across all biomedical engineering fields promise the
development of dedicated data-driven, model-free data processing tools with robust perfor-
mances, user-friendly employability, and real-time capabilities. DL. methods are increasingly
utilized across the biomedical imaging field, including biomedical optics® and neuroimaging
modalities including fMRI, magnetoencephalography (MEG), and EEG.? Following this trend,
DL methodologies have also been recently used for fNIRS applications. In this review, we pro-
vide a summary of these current efforts. First, we introduce the basic concepts of DL including
training and design considerations. Second, we provide a synthetic summary of the different
studies reporting DL models in fNIRS applications. This section is divided into subfield, namely
brain—computer interface (BCI), clinical diagnostic, and analysis of cortical activity. We then
provide a short discussion and future outlook section.

2 Deep Learning Methodology

DL can be viewed as black-box version of parametric machine learning techniques. Traditional
machine learning techniques might make several assumptions about raw data distributions. Most
notable is that data can be mapped to distinct classes (categorical data) or a regression line
(continuous data) by a suitable transformation of input data. In parametric methods, weights
are used to reduce multidimensional input data into separable space. These weights are learned
by minimizing the objective function, trying to reduce error in prediction of score. With the
introduction of hidden layers between input and output space, it is argued'” that several abstrac-
tions can be learned that help in better distinction. These models are termed artificial neural
networks (ANNSs).

Inspired by biological neurons, ANNs generate a map between the input training data (x) and
the output (y) using simple nonlinear operations performed at nodes, or “neurons,” that form a
computational graph.!! The weights (®) of the edges of the graph are updated, i.e., “trained” by
minimizing a loss function L(y, ¥) that measures the difference between the model output (3) and
the true output (y). Network training is accomplished efficiently using the chain rule of differ-
entiation in an algorithm known as backpropagation using gradient descent.'” The number of
nodes in each layer of the graph defines the width of the network, whereas the number of layers
defines its depth.

A deep network is one with sufficient depth, though there is no consensus on how deep the
network has to be considered a “deep neural network.” (DNN) The entire network can be viewed
as a differentiable function that learns a relationship between the input and the output using
multiple levels of function composition, with the initial layers learning low-level features of the
input, and the deeper layers extracting higher-level features. The advent of high-performance
computing and the availability of large-scale data are fueling the current rapid advances in DL.

2.1 Deep Learning Architectures

DL derives its versatility from the available cell/nodal operations. These operations include
linear transformations, filters, and gates that have been inspired by other domain-specific tools,
which compute abstract features in the hidden layers. In general, the choice of these operations
defines the application of a network. The three most commonly used types of networks used in
fNIRS studies are shown in Fig. 1.

Dense networks such as multilayer perceptrons (MLPs) use linear transformation as cell
operations and are synonymous to ANNs. Convolutional neural networks (CNNs) use convo-
lution operations, where a fixed-size filter is used for convolution over the input image or
feature map. These are shown to be highly capable of recognizing digits,'* objects,'* and images
in general. Similarly, long-short-term-memory (LSTM) networks can be unfurled in the time
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Fig. 1 lllustrations of the three most common classes of network architectures used in the
reviewed articles are shown in the figure above. (a) An MLP has all nodes fully connected.
(b) A convolutional NN (CNN) with a kernel size 2 x 2, with subsequent pooling layers. (c) An
LSTM architecture where final hidden states are used. For illustrative purposes, the output
layer is constructed for binary classification problems.

domain to learn time series data, including handwriting® and semantics for language
translation.'® LSTM cells use gates to maintain a cell-state memory.'” Appropriate data are
passed through the cells in successive timesteps, avoiding the vanishing gradient problem
(see Sec. 1.2.1) for long time series data.'®

A fundamental attribute of neural networks is introducing nonlinearities using so-called
“activation functions”—based on the idea of the firing of biological neurons. The most common
types of activation functions are listed in Table 1. The sigmoid function compresses values in
the range of 0 and 1, activating large positive values while zeroing out large negative ones. The
sigmoid function can also be used at the output for binary classifiers, for example, in Refs. 19
and 20. Dolmans et al.?! used the sigmoid output for seven-class classification, although the
softmax activation is widely used for multiclass classification. The softmax activation uses
exponentiation followed by normalization to assign probabilities to the outputs. Higher softmax
outputs at the output layer may be interpreted as confidence in the prediction.”?
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Table 1 Activated outputs of input “x” from each of the activation functions is
shown in the table. Also shown are the bounds/range of activated values.

Activation function Output values Bounds
Sigmoid T (©.1)
Softmax f:;"/ (0,1)
RelLU max(0, x) [0, )
Leaky-RelLU if x <0, axelse x (=00, )
ELU if x<0, a(e¥—1)elsex (—a, )

The rectified linear unit (ReLU) activation is most widely used for the hidden nodes since it is
computationally inexpensive and helps resolve the vanishing gradient problem.?* It has proven to
be efficient and effective for CNNs. It deactivates all nodes with negative outputs, which,
although effective, deactivates those nodes throughout the training. This issue, also known as
dead-ReL.U problem, is solved by a recent activation function called exponential linear unit
(ELU), which has also been used by Mirbagheri et al.,'” Saadati et al.,?? Ortega and Faisal,?*
whereas some also used another variant called leaky ReLU.>>*

The final ingredient of neural networks is the loss function, which depends upon the output
type. For classification tasks, the cross-entropy loss function’’ measures the difference
in the probability distributions between ground truths and network predictions. Multiclass
classifications?® ! use categorical cross-entropy as the loss function, whereas binary classifica-
tion problems use binary cross-entropy. For regression®” or reconstruction®® problems, the mean
squared error loss function is used. These loss functions may be modified to implement con-
straints or regularization, e.g., a linear combination of MSE, variance, and two other metrics for
a denoising autoencoder (DAE) in Ref. 34.

2.2 Practical Considerations in Deep Learning

2.2.1 Training deep networks

After deciding on functions and architecture suitable to the problem, it is important to understand
the underlying considerations involved to help the network learn the input—output map.
It is common to normalize or scale the input to keep the parameters within tractable bounds.
Two common methods include minmax scaling, where data are scaled between O and 1, and
standardization, where data are scaled to have zero mean and unit variance. Though some
networks have been shown to learn well without normalization™ if the input data do not have
a vast range, scaling is recommended to help convergence. Weight initialization also aids in
convergence.*® Techniques include the He and Glorot®® initializations, where weights are drawn
randomly from a normal or uniform distribution with predefined statistical moments. Moreover,
dropout®” is usually introduced between layers to randomly switch off a certain fraction of nodes
so the network does not overfit the training data.

Gradient updates during backpropagation can either explode® or vanish if depth is too
large;** ReLU and LSTM cells were developed primarily to overcome this problem. In addition,
skip connections between deep layers help in propagating gradients backward, avoiding vanish-
ing gradients.” These can be additive, e.g., ResNet,* or augmentative, e.g., UNet.*’ On the other
hand, gradient clipping and use of the SELU*® activation function have been proposed to solve
the exploding gradient problem.

Deep networks have multiple hyperparameters that are not actively learned or updated during
training but set based on the literature or using a systematic search process. Weights are suc-
cessively updated backward from the output layer by computing the mean gradients from a batch
of samples. This batch size is a hyperparameter, commonly set to 32, although it depends on
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the architecture and hardware capabilities. Larger batch sizes demand more computation and
memory for a single iteration, whereas smaller sizes imply slower convergence, e.g.,
Fernandez Rojas et al.*! used 64 batches in each update, whereas Wickramaratne and Mahmud*?
used a batch size of 8. Another critical hyperparameter that controls the convergence rate is the
learning rate that multiplies the loss-gradient in the gradient descent algorithm. Learning rate is
usually set to values of the order of 1072 at the start, and it can be decreased further for fine-
tuning. For example, Ortega and Faisal** used an initial learning rate of 0.03, which decays at
a factor of 0.9 after each epoch. An epoch is a point at which all nonoverlapping batches in the
dataset have been exhausted for training. The number of epochs, also another hyperparameter, is
decided strictly based on when the network begins to converge. The most common optimizer
algorithm for gradient descent is Adam,* which uses an adaptive learning rate aided by momen-
tum that helps network parameters to converge efficiently. Other algorithms also used in fNIRS
applications are SGD** and RMSprop.*

A notorious problem with training DNNs is the change in the distribution of inputs in every
layer, which calls for careful initialization of weights, learning rate schedule, and dropout.
Toffe and Szegedy® introduced a technique called batch-normalization that helps mitigate this
problem termed as “internal covariance shift.” Batch normalization reduced training steps by a
factor of 14 times in the original study while requiring less stringent conditions of initialization
and learning rates. Hence, during batch training in CNN, it is often recommended to use batch
normalization layers after each convolution.'*-**

Most biomedical applications have a limited number of subjects and limited training data (see
Table 2 for a summary of the data set characteristics, including number of participants, number of
channels, and cortical areas monitored for all studies summarized herein). Hence, it is essential to
take proper measures to avoid using a large network with a small dataset to prevent overfitting.
The network will reduce the training error but lose the ability to generalize to unseen datasets.
To mitigate this, it is good to start with the simplest network possible, have fewer weights, and
iteratively improve the networks by adding the number of layers/nodes. Furthermore, overfitting
can be avoided by regularizing weights (which adds a regularization loss to overall loss func-
tion), adding dropout layers, etc.

Since fNIRS data are sequential time series data, studies where segments of obtained data,
such as resting state,*®*’ are sufficient for analysis utilize a sliding window approach. Here,
a fixed-length data segment is extracted at fixed intervals, allowing the overlap between
subsequent windows. This is not applicable if the entire trial duration has to be analyzed,
in which case each trial will have to be a single sample.

2.2.2 Model evaluation

Although various modeling tools are available for the analysis of collected data in psychological
and behavioral science, there is a growing concern about reproducibility of results using the
settings reported in studies.”’ Although direct replication or even conceptual replication®” might
not be possible for many neuroimaging studies involving human subjects, studies now rely
on simulated replication as the next best approach.”® This entails partitioning the data into a
number of subsets and assessing model performance on each of the subsets after it is trained
with the rest of the data. Performance metrics on n-subsets, a.k.a test sets, are averaged to get
the mean performance metric, which is representative of the expected model performance on
any unseen subset of data. Since the test set is “held out” from training, this method, also known
as “cross-validation” (CV), can be deemed as a crude measure of the generalizability of the
model.”?

The type of subsets chosen depends on experimental settings, research question, or the lim-
itations of the dataset. The subsets selected can either be a shuffled subset of trials, one single
trial, or, if available, trials of each participant subject. These CV schemes are called k-fold CV,
leave-one-user-out (LOUQ) CV, and leave-one-subject-out (LOSO) CV. Leave-one-super-
trial-out is another available rigorous CV technique.”* Many of the reviewed papers carry out
a 10-fold CV, whereas a few execute LOSO CV.*** The most common metrics used for
evaluation are accuracy, specificity, and sensitivity.
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Fig. 2 Extraction of samples to be used for training NNs. Time-series data denoting hemodynamic
concentration changes are obtained from the raw data after initial analysis and changed to appro-
priate formats (shown in right in the form of dimensions of input data samples), based on chosen
architecture. N, Ns, number of samples; T, Tw, number of timepoints; ng,, number of channels;
h, w, height and width of spatial map images; ngat, Nnumber of statistical moments/features.

2.2.3 Inputs to deep networks

After the preprocessing steps (see Sec. 2.1), changes in oxy (AHbO) and deoxy (AHbR) hemo-
globin, as well as total change (AHbT) are obtained in time-series format. From these, data
samples are segmented based on task settings. Data are segmented trialwise for task-based
experiments, and for resting state data or long trials, data are segmented using sliding windows
as mentioned previously.

Many studies opt for the discrete probability distribution of concentration changes and
extract statistical features such as mean, slope, variance, skewness, kurtosis, max, and range
in the form of manual features. In other cases, where the network is allowed to learn and extract
features itself, the data are fed in the forms of either spatial maps>*2*° or time series themselves.
In some studies, segments of data are converted to other forms such as Gramian angular fields*>
or spectrogram maps.’® A schematic in Fig. 2 summarizes the sample extraction procedure
employed in the studies. While the general trends and techniques used for DL fNIRS studies
have been examined, the applications and some application-dependent techniques are further
discussed in the next section.

3 DL Applications in fNIRS

In this section of the review paper, we summarize and discuss the key findings of the literature
search as well as how the techniques discussed above are currently being used. To properly
understand the scope of this review, the literature search methodology is first described. The
primary method of searching for relevant articles was via the PubMed search engine. Papers
published between 2015 and May 2022 in which DL was used in conjunction with fNIRS data
were considered for this review. Due to very few fNIRS papers being published using DL prior to
2015, the search was restricted to this time frame. Using the terms “deep learning” and “fNIRS”
resulted in 35 results, 29 of which were relevant, while the terms “deep learning” and “NIRS”
only produced 12 articles, none of which were both relevant and absent from the previous search.
When searching the terms “neural network™ and “fNIRS,” 146 results were found, with many
using the term neural network to refer to the neuroscience phenomenon being studied through
the use of DL. As a result only three additional relevant papers were found via this search. In
addition to this, using the same search terms in Google Scholar produced tens of thousands of
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results, many of which were not relevant. Due to the impracticality of a comprehensive search of
these results, the search was truncated after multiple pages of results yielded no relevant articles.
From this Google Scholar search, an additional 25 articles were found, yielding a total of
63 articles that were considered in this review.

In recent years, the use of DL techniques in fNIRS studies has increased, and due to the
versatility of fNIRS, DL has been applied to many different applications of fNIRS. While some
of the studies that used DL used it for feature extraction or data augmentation, in most of the
papers considered, DL was used as a classifier. As a result, those studies in which DL were used
as a classifier are further subdivided into categories based on the application of fNIRS in the
study. A comprehensive summary of the applications and DL architecture employed is Table 3,
while the details of the experimental setups for the fNIRS studies are summarized in Table 2.
Because fNIRS is of interest in studies on BCI, many of the studies found used DL classifiers for
the classification of tasks for BCI applications. Other studies have used DL techniques as diag-
nostic tools, to detect various physiological and mental pathologies based on cortical activity.
Finally, some studies, such as those using DL techniques to assess skill level and functional
connectivity, were not common enough to be placed into a category of their own; however, these
papers all focused on the analyses of cortical activity using DL techniques, and as such are
grouped together. Figure 3 shows provided for visualization of the number of papers collected
from each category for the given year. While some of the papers mentioned may fall within
multiple categories, additional context from the paper such as the primary focus of the paper
assisted in determining how the paper was categorized. This did not stop relevant papers from
being discussed in more than one subcategory.

3.1 Preprocessing

Like most noninvasive neuroimaging modalities, raw fNIRS signals typically contain con-
founding physiological signals and other noise that originate from outside of the cerebral cortex,
such as the hemodynamics of the scalp and changes in blood pressure and heart rate.”> Most
studies use some method of preprocessing to try to address this. While many of the papers pre-
sented here use band pass filtering or butterworth filtering, various other methods are employed
throughout the literature. Independent component analysis (ICA) denoising,'> wavelet filter-
ing,” and correlation-based signal improvement filtering®' are all methods used to remove some
of the undesired physiological trends in fNIRS signals. Another recommended method is short
separation regression, a method in which signals with only confounding physiological signals
are simultaneously collected alongside fNIRS signals and the trends in these signals are removed
from the fNIRS data.”® Other algorithms such as Savitsky—Golay filtering®’ and temporal deriva-
tive distribution repair”® are methods used to correct motion artifacts and baseline drifts in fNIRS
signals. Many of these techniques are commonly used in fNIRS studies to improve the quality of
the signal as well as ensure that the signal being assessed originates from the brain. Other rec-
ommended techniques involve prewhitening the data or decorrelating via PCA to remove any
correlation between fNIRS signals prior to analysis,”® further facilitating the analysis of signals
originating in a region of interest.

3.2 Feature Extraction and Data Augmentation

One of the most notable problems with fNIRS data is the extensive manual feature extraction and
artifact removal typically required for data to be analyzed, preventing many fNIRS studies from
being applied in real time. As a result, more effective methods of preprocessing fNIRS data are
being explored. One of the most promising benefits of DL is the ability to quickly and auto-
matically learn and extract relevant features in fNIRS data. Some studies have already explored
this benefit of DL. Tanveer et al.”’ reported the use of a DNN to extract the features that were fed
to a K-nearest neighbors (KNN) classifier to detect the drowsiness of subjects during a virtual
driving task. Using the features extracted from the DNN, the KNN was able to achieve a clas-
sification accuracy of 83.3%. Despite feature extraction typically being computationally expen-
sive, even taking hours with a powerful GPU, the DNN exhibited a mean computation time of
0.024 s for 10 s time windows, a speed that would allow for feature extraction of a 30-min signal
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Fig. 3 Distribution of the 63 papers reviewed in this article by year and color coded by application
field.

to take <5 s with a NVidia 1060 GTX GPU. On top of computational speed, the ability of DL to
automatically learn and extract features may reduce bias and errors during feature extraction,
allowing for an increase in classification accuracy. One study by Liu et al.”> used an echo state
network autoencoder (ESN AE) to extract the features that were fed to an MLP, achieving a
four-class classification accuracy of 52.45%, outperforming the accuracy of the convolutional
autoencoder (CAE) + CNN and manually extracted features fed to an MLP, which achieved
accuracies of 47.21% and 37.94%, respectively.

While there have been other papers interested in using DL to extract features to feed into
another classifier, there have also been papers that take raw fNIRS data and use the same neural
network for feature extraction and classification. Despite end-to-end neural networks being seen
as a more ideal solution than manual feature extraction, difficulties with low generalizability
make them less commonly used. One study by Dargazany et al.”> used an MLP (with two hidden
layers) with raw EEG, body motion and fNIRS data to achieve a reported classification accuracy
of 78% to 80% on a motor task with four classes, despite no denoising or preprocessing of data
being done. Another study by Fernandez Rojas et al.*' used raw fNIRS data as the input for
an LSTM network, achieving a classification accuracy of 90.6%. To assess generalizability,
a 10-fold CV was used, with the classifier achieving an accuracy of 93.1%. Both studies have
provided evidence toward the claim that DL techniques are capable of removing the need for
manually extracted features from fNIRS data, further progressing toward the real-time end-to-
end BCI. Despite the fact that the previously mentioned studies were able to achieve high accu-
racies without denoising or motion artifact removal, some studies are performed when a subject’s
head is in motion. In such studies, fNIRS data can be heavily compromised by specific artifacts
in the raw data that could bias any classification task. While many algorithms are used to try to
remove motion artifacts, Lee et al. attempted to use a CNN to recognize and remove motion
artifacts without relying on the parameters that must be defined to use many of the popular
motion artifact removal algorithms.> In this study, the raw fNIRS time series and the estimated
canonical response were used as inputs to the network and the resulting CNR of the DL output
was 0.63, outperforming wavelet denoising, which achieved a mean CNR of 0.36. Another
study done by Gao et al.** used subjects who were performing a precision cutting surgical task
based on the fundamentals of laparoscopic surgery (FLS) program, which required a large
range of motion. With a DAE and the process shown in Fig. 4, 93% motion artifact removal
in simulated data and 100% artifact removal in real data were reported, outperforming all
comparable artifact removal techniques, including wavelet filtering and principal component
analysis. Another study to look at DL for the removal of motion artifacts, Kim et al.>*
compared a CNN to the performance of wavelet denoising and an autoregressive denoising
method. Using simulated data in a manner similar to Gao et al. to determine the ground truth,
Kim et al. found that the CNN resulted in a mean square error (MSE) of ~0.004 to 0.005, while
the next best method, the combination of wavelet and autoregressive denoising, resulted in an
MSE of ~0.009. Despite these studies all using different metrics to measure the effectiveness
of the network, there is clearly an interest in finding an effective method of removing motion
artifacts from fNIRS data.
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Fig. 4 The illustration of the fNIRS data simulation process and the designed DAE model. (a) The
green lines are the experimental fNIRS data, including noisy HRF and resting fNIRS data, while
the blue and red lines are simulated ones. (b) DAE model: The input data of the DAE model are the
simulated noisy HRF, and the output is the corresponding clean HRF without noise. The DAE
model incorporates nine convolutional layers, followed by max-pooling layers in the first four layers
and upsampling layers in the next four layers, with one convolutional layer before the output. The
parameters are labeled in parentheses for each convolutional layer, in the order of kernel size,
stride, input channel size, and kernel number. (c), (d) number of residual motion artifacts for the
simulated and experimental data sets, respectively. Adapted from Ref. 34.
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It is clear that DL techniques have shown promise for the ability to process and extract fea-
tures from fNIRS data, but due to a lack of large variety of open-source fNIRS datasets, there has
been a recent interest in using DL to generate more fNIRS data for training models. Data aug-
mentation is a technique in which new data are generated to reduce the need for large labeled
datasets for many machine learning and DL algorithms that require a lot of labeled data. To be
useful, this generated data must not be identical to any of the training data, but must also be
realistic, i.e., it must remain within the distribution of the original dataset.”>® While this is a chal-
lenge, some DL techniques such as generative adversarial networks (GANs), have been used to
accomplish this. Wickramaratne and Mahmud®® have used a GAN to augment their fNIRS data-
set to increase the classification accuracy of finger- and foot-tapping tasks. Without augmented
data, a classification of 70.4% was achieved with an SVM classifier, and a CNN classifier
achieved an accuracy of 80% when trained only on real data. Using a GAN to generate training
data, the accuracy of the CNN classifier increased to 96.67% when trained on real data as well as
110% generated data. Similarly, Woo et al.’® used a GAN to produce activation t-maps, which,
when used to augment the training dataset of a CNN, increased the classification accuracy of a
finger tapping task from 92% to 97%, showing that a network that is already performing well
may benefit from data augmentation. While the previous studies have used GANSs to generate an
image representation of fNIRS data, only one study directly used a GAN to augment the dataset
with raw time series fNIRS data. Nagasawa et al.”® used a GAN to generate fNIRS time series
data to increase the classification accuracy of motor tasks, as shown in Fig. 5. They reported that
when augmenting the 16 original datasets with 100 generated datasets, the accuracy of the SVM
classifier increased from around 0.4 to 0.733 while the accuracy of the neural network classifier
increased from around 0.4 to 0.746. While still a relatively recent development in fNIRS studies,
generated datasets using GANS have demonstrated the ability to increase the classification accu-
racy of commonly used classifiers such as CNN or SVM classifiers, once again demonstrating
the versatility of DL techniques in fNIRS research.

3.3 Brain-Computer Interface

One of the most promising applications for fNIRS research is BCI. Many studies on BCI use
traditional machine learning or DL techniques to identify a certain task based on cortical acti-
vation. Hennrich et al.’” used a DNN to classify when subjects were performing mental arith-
metic, word generation, mental rotation of an object and relaxation. The reported accuracy of
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the DNN with two hidden layers was 64.1%, which is comparable to the 65.7% accuracy of the
shrinkage LDA despite the LDA using custom-built features while the input for the DNN was
denoised and normalized fNIRS data. Kwon and Im>® used similar inputs for their CNN,
denoised and baseline corrected AHbR and AHbO, data, to classify mental arithmetic from
an idle fixation task. This CNN achieved a classification accuracy of 71.20%, which surpassed
the 65.74% accuracy of the shrinkage LDA classifier that used feature vectors as inputs.
Wickramaratne and Mahmud** also used a CNN to classify mental arithmetic from an idle
fixation task in 2021. Like Kwon and Im, a shrinkage LDA with feature vectors was used
as the input. Unlike the previous study however, the inputs for the CNN were Gramian angular
summation fields (GASF), which are a type of image that is constructed from time series data
that maintains some temporal correlation between points. With this CNN and GASF inputs, a
classification accuracy of 87.14% was achieved, once again outperforming the shrinkage LDA,
which achieved an accuracy of 66.08%. Similarly, Ho et al.*® also used a two-dimensional (2D)
representation of fNIRS data to try and discriminate between differing levels of mental workload.
In this study, Ho et al. found that using a CNN with spectrograms generated from fNIRS data
achieved a classification accuracy of 82.77%. This was outperformed by a deep belief network,
which is a type of network similar to an MLP. The deep belief network, using manually extracted
features from the HbR and HbO, signals achieved an accuracy of 84.26%. In a similar mental
workload task, Asgher et al.®” found that using an LSTM with similarly extracted features from
HbR and HbO, time signals resulted in a mental workload classification accuracy of 89.31%.
While many of the studies presented compared the performance of DL techniques to that of
traditional machine learning or other algorithms, Naseer et al.*' compared the classification accu-
racy of an MLP to that of a kNN, Naive Bayes, SVM, LDA, and QDA algorithm. On a two-class
mental workload task, the MLP achieved an accuracy of 96% while the QDA, Naive Bayes, and
SVM classifiers all achieved similar accuracies of about 95% and the LDA and kNN algorithms
performed much worse, with accuracies of 80% and 65%, respectively. All classifiers in this
study used manually extracted features such as skewness and kurtosis of the fNIRS as inputs
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Fig. 5 Framework of GAN and data augmentation. (a) The generator creates the data from the
random variables z, and the critic evaluates the generated and original (measured) data. (b) After
the training process, the data generated by the generator (referred to as generated data) are com-
bined with the original fNIRS data as augmented data. (c) Trial-averaged waveforms for the four
tasks considered in a CV hold. The red lines denote measured original data and the blue lines
denote generated data using WGANs. The shaded area represents 95% confidence intervals.
Adapted from Ref. 26.
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into the algorithms. Hakimi et al.®* also used manually extracted features from fNIRS time series
to perform two-class classification between stress and relaxation states and with a CNN,
achieved an accuracy of 98.69%, further reinforcing that DL can give very high classification
accuracies with mental workload tasks.

While the classification of mental tasks such as arithmetic or word generation is commonly
used, many forms of BCI are designed to help those who have restricted or reduced motor func-
tion. Because of this, another popular type of experiment found in BCI studies involves execut-
ing motor tasks. Trakoolwilaiwan et al.” were able to achieve an accuracy of 92.68% with a
CNN in a three-class test to distinguish the finger tapping of the left hand, right hand, and both
hands at rest despite the CNN being used as both a feature extractor and classifier. The CNN
outperformed the SVM and ANN classifiers, which reported accuracies of 86.19% and 89.35%,
respectively, which were given the extracted feature inputs commonly used in BCI fNIRS studies
(signal mean, variance, kurtosis, skewness, peak, and slope). Since much of the interest in BCI
applications involve aiding those who lack the ability to move, some studies focus not on the
cortical activations of movement but rather on the cortical activations of imagining movement.
In one of these motor imagery studies, Janani et al.** had subjects perform a hand clenching or
foot tapping task, and shortly after, imagine themselves performing the same task. Two different
types of input images were used to see from which method a CNN classifier would more effec-
tively extract features. The first type of input image turned all of the data points within a 20-s
window into an M X N matrix, where M is the number of data points and N is the number of
channels. The second type of input used a short-time Fourier transform to turn the one-dimen-
sional data into 2D time-frequency maps of each channel that were stacked on top of each other
to form an input image. One study by Erdogan et al.*® similarly performed classification between
motor imagery versus motor execution using an MLP with a classification accuracy of 96.3%
between finger tapping and rest and 80.1% accuracy between finger tapping and imagined finger
tapping when using manually extracted features from fNIRS data. Hamid et al.** attempted to
distinguish between a treadmill walking task and rest using bandpass filtered fNIRS data and an
LSTM. The LSTM achieved an accuracy of 78.97%. When compared with traditional classifiers
that had statistical features manually extracted, the kNN achieved the next best performance of
68.38% accuracy. The SVM and LDA were also outperformed by DL, achieving accuracies of
66.63% and 65.96%, respectively, despite using manually extracted features as inputs. This
demonstrates the ability for DL to perform well on fNIRS data without requiring the extensive
processing or feature extraction typically used in conjunction with other classifiers for fNIRS
data. For many of these BCI motor tasks, being used for prosthetics would be more applicable. In
these situations, more fine motor control using fNIRS would need to be assessed. Khan et al.®’
addressed this by performing six-class classification between rest and each finger on the right
hand of the subjects, achieving an accuracy of 60%. Ortega and Faisal** attempted to distinguish
between a left- and right-hand gripping task using a PCA to reduce dimensionality of the
denoised time series data before feeding the segmented time series into a CNN-based architec-
ture. The resulting accuracy of this study was 77%. To further investigate this, Ortega et al.™
used a CNN with attention and simultaneously recorded EEG signals to try to reconstruct the
grip force of each hand during the task. This resulted in an average fraction of variance accounted
for of 55% when reconstructing the discrete grip force profiles, demonstrating that not only can
the DL techniques distinguish which hand was performing a motor task, they also display
progress toward using fNIRS and EEG signals to determine the amount of force exerted during
that motor task. Ortega and Faisal®® then attempted to use this architecture to determine force
onset and which hand was providing more force. This resulted in a force onset detection of 85%
but only a hand disentanglement accuracy of 53%, showing that there is still progress to be made
toward the complex decoding and reconstruction of motor activities.

In the motor imagery tasks, the first input image method achieved an accuracy of 77.58%
using HbO, data, while the second method achieved an accuracy of 80.49% using HbO, data.
It could be noted that HbR and HbT were also tested but for both methods, HbO, showed con-
sistently higher results. While HbO, is commonly used in fNIRS studies due to higher SNR,
Yiicel et al.”” and Herold et al.”® reported that trends found in HbO, signals but not in HbR
signals may be due to higher sensitivity of HbO, to systemic signals not originating in the brain.
For this reason, it is generally recommended that both HbR and HbO, signals are assessed in
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fNIRS studies. Other traditional classifiers were also used and the closest results were achieved
by the metacognitive radial basis function network, which achieved a classification accuracy of
80.83%. Another study that focused on motor imagery, Ma et al.** used a type of time series data
that included a one-hot label as the input for the neural networks. Of the DL techniques used, the
fully connected network (FCN) and residual network (ResNet) achieved the highest average
accuracy of 98.6%. Of the traditional machine learning techniques tested, the SVM had the
highest classification accuracy of 94.7%. Interestingly enough, for the DL networks, the mean
classification accuracy achieved with HbO, + HbR + HbT data, 98.3%, was the same as the
accuracy when only HbR+HbT data were input, which was attributed to the feature extraction
capabilities of the DL techniques. This study also evaluated the accuracy of individual channels,
with single-channel classification accuracy ranging from 61.0% to 80.1% with the three highest
accuracy channels being found in the somatosensory motor cortex and primary motor cortex.

While many studies have found considerable success in distinguishing between certain tasks
using cortical activations, most studies use simple tasks in controlled environments and focus on
distinguishing tasks from each other and resting state. For a practical BCI, more complex tasks
and classification methods will need to be considered. Zhao et al.®” addressed this by having
participants perform a task in which they would pick up a table tennis ball with chopsticks
and lift it about 20 cm in the air, using their nondominant hand. An LSTM was used to try to
determine when the task was completed, and AHbO, data were used as the input, resulting in
an accuracy of 71.70%, outperforming the 66.6% accuracy of the SVM that was given mean,
variance, kurtosis, and skew features of the fNIRS data as inputs.

One commonly used technology for BCI studies is EEG, due to the high temporal resolution
and portability and noninvasiveness. Because it has a high temporal resolution but low spatial
resolution, it is common to combine EEG measurements with fNIRS, due to both being portable
and noninvasive. In a motor imagery study, Ghonchi et al.®® used fNIRS to augment the EEG
data being collected. Three types of DL networks were used as classifiers, a CNN for its capabil-
ity to extract special features, an LSTM for its ability to extract temporal features, and a recurrent
CNN (RCNN) for its ability to extract both temporal and spatial features. The RCNN achieved
the highest classification accuracy of 99.6% when both EEG and fNIRS data were used.
Interestingly, the accuracy of both the CNN and LSTM increased when fNIRS data were added,
jumping from 85% and 81% to 98.2% and 95.8%, respectively. This indicates that despite EEG
data having higher temporal resolution, fNIRS data still contribute both spatial and temporal
information. A 2016 study by Chiarelli et al.*” also found an increase in classification accuracy
when combining EEG and fNIRS data. When performing two-class classification on a motor
imagery task with an MLP, the average accuracies of EEG and fNIRS data alone were 73.38%
and 71.92%, respectively, but when using both modalities, accuracy increased to 83.28%, further
reinforcing that the simultaneous acquisition of EEG and fNIRS can provide more relevant infor-
mation than either modality on their own. Cooney et al.”’ found that when combining fNIRS and
EEG data, they were able to distinguish between multiple combinations of overt speech with a
CNN classifier, achieving an accuracy of 46.31%. When tested on imagined speech, the classifier
achieved an accuracy of 34.29%, which is also higher than the random chance value of 6.25% for
16 possible combinations, which shows promise in the use of EEG and fNIRS for assisting
patients who may be unable to verbally communicate. Sun et al.”' used a CNN to try to dis-
tinguish between rest mental arithmetic and motor imagery tasks using both EEG and fNIRS
data by generating tensors of the fused EEG and fNIRS data. For the motor imagery tasks, this
resulted in an accuracy of 77.53% and for the mental arithmetic tasks, this resulted in an accuracy
of 91.83%. Using the same dataset, Kwak et al.”> applied a branched CNN architecture that used
the fNIRS data to generate spatial feature maps, which were then fed to the EEG maps to try to
obtain higher spatial resolution than ordinary EEG and higher temporal resolution than fNIRS.
The resulting classification accuracies were 78.97% for motor imagery and 91.96% for mental
arithmetic tasks, which are only slight improvements over the tensor fusion methods of Sun et al.
Khalil et al.”® also used a fusion of fNIRS and EEG data to distinguish between rest and a mental
workload tasks. With a CNN, an accuracy of 68.94% was achieved when trained on data from 5
of the 26 participants. When training on 16 participants then performing transfer learning to an
additional five participants, accuracy increased to 94.52%, exemplifying not only how important
larger datasets are for DL but also how transfer learning can be used to address this. It may be of
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interest to explore the use of transfer learning from other fNIRS datasets, which use different
hardware systems, different tasks, or different fNIRS channel arrangements, since many studies
rely on collecting fNIRS data specific to their own applications. As a result, it would be impor-
tant to see if transfer learning can help extract meaningful features from fNIRS data independ-
ently of the part of the brain being recorded or the hardware being used. While many studies have
only recently begun looking to use fNIRS for real-time BCI applications, current studies in the
field have found use in DL techniques for increased classification accuracy and automatic feature
extraction.

3.4 Diagnostic Tools

One promising use of DL techniques with fNIRS is in clinical applications, most notably as a
diagnostic tool. Xu et al.*® recorded resting state fNIRS data from the bilateral frontal gyrus and
bilateral temporal lobe of children. Using a single channel in the left temporal lobe, a CGRNN
classifier was able to successfully classify autism spectrum disorder (ASD) in children with
92.2% accuracy, 85.0% sensitivity, and 99.4% specificity for 7 s of resting-state HbR data.
As shown in Fig. 6, multiple HbO, and HbR channels showed statistically significant differences
between the group with ASD and the control group. Xu et al.”* used a CNN classifier with
the attention layers and achieved an accuracy sensitivity and specificity of 93.3%, 90.6%, and
97.5%, respectively, using similar resting state data to classify between ASD and typically devel-
oping (TD) subjects. Xu et al.” further explored using fNIRS data to detect autism is subjects
and found that using a CNN+LSTM classifier and HbO, data, they were able to achieve a single-
channel accuracy, sensitivity and specificity of 95.7%, 97.1%, and 94.3%, respectively, for
the detection of ASD. Aside from autism, the use of fNIRS to diagnose other psychological
disorders has been studied. With an average classification accuracy of 96.2%, Ma et al.”® were
able to distinguish bipolar depression from major depressive disorder in adults during a verbal
fluency task using an LSTM. Wang et al.”’ managed to distinguish between healthy subjects and
those diagnosed with major depressive disorder with an accuracy of 83.3%. This was accom-
plished using long recording times of 150 min each from a relatively large sample size of
96 subjects. As can be seen in Table 2, this is a larger sample size than any of the other
fNIRS studies presented, which lends to confidence in the generalizability of this neural network
to new subjects. Chao et al.”® used a cascade forward neural network (a network similar to an
MLP) to perform and achieved an average classification accuracy of 99.94% between depressed
and healthy subjects when a fear stimulus was presented across 32 subjects. Chou et al.”’ used an
MLP network to classify between subjects with first episode schizophrenia and healthy subjects,
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a TD subject based on time-varying behavior of spontaneous hemodynamic fluctuations from
fNIRS. Adapted from Ref. 75.
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achieving a classification accuracy of 79.7% with only about 160 s of recorded data from each
subject.

EEG technology is commonly used in clinical settings, however, some studies have used
EEG alongside fNIRS for diagnostic studies. Sirpal et al.** used an LSTM architecture
and fNIRS data to detect seizures with 97.0% accuracy, and with EEG data, achieved 97.6%
accuracy, but with combined EEG and fNIRS data, accuracy increased to 98.3%, once again
displaying how hybrid EEG-fNIRS recordings can increase classification accuracy, even when
accuracy is already high. Rosas-Romero et al.*” also combined fNIRS and EEG signals to detect
epilepsy. Despite only having recordings from five subjects, a CNN was able to detect pre-ictal
segments fNIRS and EEG data with an average accuracy of 99.67% with fivefold CV.

Another use for fNIRS is to help detect mild cognitive impairment (MCI), the prodromal
stage of Alzheimer’s disease. Yang et al.®! employed three different strategies using CNNs to
detect MCI. Using an N-back, Stroop, and verbal fluency task (VFT), a CNN trained on con-
centrations changes of HbO, achieved accuracies ranging from 64.21% in the N-back task to
78.94% in the VFT. When using activation maps as the inputs for the CNN, the accuracy ranged
from 71.59% in the VFT to 90.62% in the N-back task. The final strategy employed, using
correlation maps as inputs showed lower accuracies than the activation maps, with the highest
accuracy being 85.58% for the N-back task. Yang et al.*’ used temporal feature maps as inputs for
the CNN classifier, resulting in average accuracies of 89.46%, 87.80%, and 90.37% with the
N-back, Stroop, and VFT, respectively. In another study done in 2021 by Yang and Hong,*
pretrained networks were used to distinguish between subjects with MCI and the healthy control
group. Using resting state fNIRS data, the network with the highest accuracy, VGG19, achieved
an accuracy of 97.01% when connectivity maps were used as the input, outperforming the con-
ventional machine learning techniques, with LDA classifier reporting the highest accuracy of
67.00%. Ho et al.** attempted to use fNIRS and DL techniques to distinguish not only between
healthy and prodromal Alzheimer’s afflicted subjects but also subjects with asymptomatic
Alzheimer’s disease and dementia due to Alzheimer’s disease. Not only did this study try to
distinguish between different stages of Alzheimer’s disease, the study used a notably large sam-
ple size of 140 participants, which was larger than any other study reported in this review as
shown in Table 2. The 86.8% accuracy of the CNN-LSTM network when fivefold cross-validated
not only shows the ability of the network to distinguish between a wide range of subjects with and
without Alzheimer’s disease but also shows the ability of this network to distinguish between
different stages of Alzheimer’s disease, making this a very promising tool for clinical use.

Yet another clinical application for fNIRS measurements with DL techniques was explored
by Fernandez Rojas et al.,*' where raw fNIRS data and an LSTM were used to distinguish
between high and low levels of pain as well as whether the pain was caused by a hot or cold
stimulus with an achieved accuracy of 90.6%. Being able to assess the intensity of pain as well as
the cause of it could be exceptionally useful in instances where patients are unable to commu-
nicate, such as with nonverbal patients. This further displays the usefulness of fNIRS with DL
techniques as a robust and accurate diagnostic tool.

3.5 Analysis of Cortical Activations

Outside of BCI and diagnostic tools, fNIRS data still have many uses. Understanding the func-
tional connectivity of the brain is an essential part of understanding the mechanisms behind
numerous neurological phenomena. As a result, there is an interest in using neuroimaging to
understand the functional connectivity of the brain. Behboodi et al.3* used fNIRS to record the
resting-state functional connectivity (RSFC) of the sensorimotor and motor regions of the brain.
In this study, four methods were used, seed-based, ICA, ANN, and CNN. Unlike the first two
methods, very limited preprocessing was used for the ANN and CNN, with both using filtered
HbO, data to form the connectivity maps. Each connectivity map was then compared with the
expected activation based on the physiological location of each detector, which was used as the
ground truth, using an ROC curve, as shown in Fig. 7, with the CNN achieving an area under the
curve (AUC) of the receiver operating characteristic curve (ROC curve) of 0.92, which outper-
formed the ANN, ICA, and seed-based methods with each reporting an AUC of 0.89, 0.88, and
0.79, respectively. Another study that investigated RSFC, Sirpal et al.,** collected EEG and
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fNIRS data and attempted to use the EEG data and an LSTM to recreate the fNIRS signals. Using
only the gamma bands of the EEG signal was found to have the lowest reconstruction error,
below 0.25. The reconstructed fNIRS signals were further validated by comparing the functional
connectivity of the signals constructed using only gamma bands and those using the full spec-
trum EEG signals with the functional connectivity of the experimental fNIRS data. Despite the
signals formed using gamma bands only having a lower reconstruction error, the root MSE of the
full spectrum EEG signals was consistently lower.

Other types of fNIRS studies have also been done that utilized DL. Some studies have ana-
lyzed the cortical activations of subjects to predict emotions. Bandara et al.*® used music videos
from the DEAP database” to classify the emotional valence and arousal of subjects using a CNN
+LSTM architecture and fNIRS data recorded from the prefrontal cortex. Using the subjects’
self-assessments as ground-truth, a classification accuracy of 77% was reported. Another study
collecting fNIRS signals from the prefrontal cortex, Qing et al.*’ used a CNN to determine the
preference levels of subjects toward various Pepsi and Coca-Cola ads, achieving an average
three-class classification accuracy of 87.9% for 30 s videos. 15 and 60 s videos showed similar
accuracies of 84.3% and 86.4%, respectively. Similarly, Ramirez et al.”’ attempted to decode
consumer preference toward 14 different products. With a CNN, Ramirez et al. were able to
distinguish between a strong like and strong dislike of the presented product with an accuracy
of 68.6% with fNIRS data, 77.98% with just EEG data, and 91.83% with combined fNIRS and
EEG data. Hiwa et al.®® studied the use of fNIRS and CNNGs for the identification of a subject’s
gender, achieving an accuracy of ~60% when using the filtered fNIRS data from only five
channels.

While most studies have focused on using cortical activations to classify when a specified
task is being completed, a few studies have begun looking into predicting the skill level of the
subject at a given task. Andreu-Perez et al.% classified the expertise of subjects watching 30 s
clips of the video game League of Legends using fNIRS data and facial expressions. The fully
connected deep neural network (FCDNN) and deep classifier autoencoder (DCAE) were com-
pared against many traditional machine learning techniques, including SVM and kNN in a three-
class test to determine the skill level of the subject watching. Using only fNIRS data, the DL
classifiers had the two highest accuracies of 89.84% and 90.70% for the FCDNN and DCAE,
respectively, while the most accurate machine learning technique, SVM, only achieved an accu-
racy of around 58.23%. When the predicted emotion scores were also included, the accuracy of
the FCDNN and DCAE improved to 91.44% and 91.43%, respectively. Most of the machine
learning techniques also saw minor or no improvements, with the SVM still achieving an
accuracy of 58.69%. The XGBoost classifier saw a large increase in accuracy when emotion
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(d) ROC curves for each model with corresponding AUC values in the legend. Adapted from
Refs. 100 and 32.

scores were added, increasing from 50.79% to 71.55%, which was still about 20% lower than
the accuracies of the DL techniques used. Another study by Gao et al.*” looked to predict the
surgical skill level of medical school students who were being assessed on tasks based on the
FLS protocols. In this study, subjects would perform an FLS precision cutting task while fNIRS
data were recorded from the prefrontal cortex. The subjects would be assessed and scored in
accordance with FLS procedures. A brain-NET architecture was used to predict the FLS scores
of each participant based on the features extracted from the recorded f{NIRS data. The brain-NET
model reported an ROC AUC of 0.91, outperforming the kernel partial least squares, random
forest, and support vector regression methods that were also tested when the dataset was
sufficiently large. Figure 8 shows the R? value of each methodology as the size of the dataset
increases. The ROC curve can also be seen along with a graphic of the experimental setup in
Fig. 8. From the wide range of studies published, there are many different applications of fNIRS
currently being researched, and the use of DL techniques has become of interest in recent years.

4 Discussion and Future Outlook

Over the last two decades, machine learning has become increasingly popular for processing
neuroimaging data due to its benefit over traditional analysis methods.'”" Of importance,
ML methods enable fully processing spatiotemporal data sets and allow for inferencing at the
single subject/trial level. Among all ML approaches, DL is becoming increasingly utilized over
the last half decade with great promise.'**!% Following similar trends, DL models have found
increased utility in fNIRS applications, ranging from simplifying the data processing pipeline to
performing classification or prediction tasks. DL models are expected to outperform ML meth-
ods due to their potential to directly extract features from raw data (no need to perform prior
feature extraction) and learn complex features in a hierarchical manner. This seems to be further
supported by the findings of this review in which, out of the 32 papers reporting on a comparative
study of DL techniques to traditional machine learning techniques, 26 have been shown out-
performing the latter in terms of classification accuracy. Such trends have also been reported
over a large range of biomedical applications, but we cannot exclude a publication bias due
to the specific nature of the review topic. Still, the application of DL to fNIRS is in its very
early stages and faces many challenges.

First, the implementation of DL models is an expert field. The selection of the main archi-
tecture as well as the number of layers, the activation function, are still dependent on the user
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expertise but greatly influence the performance and applicability of any DL model. If this design
flexibility enables powerful implementations, it leads to a wide range of architecture and hyper-
parameters employed in the set of work reviewed herein. Hence, there is still not a consensus on
which architecture and hyperparameters are optimal for a specific problem and building on cur-
rent work requires some level of technical expertise to assess which implementation would be
optimal. This may be circumvented in the future with the advent of network automated designed
via neural architecture search methods,'* but these have not been yet applied to the field of
fNIRS. Moreover, following the principles of the no-free-lunch theorem, it is expected that prior
knowledge on the problem at hand should guide in the selection of the ML/DL algorithm. Hence,
beyond technical expertise in DL, ones need also to have a good grasp of the neurophysiology as
well as instrumentation characteristics used in the application to design optimal models.

This leads to another significant challenge, which is associated with the data-driven nature of
DL model training and validation. The lack of sufficient training data is a common challenge in
the application of DL methods in neuroimaging. This is even more challenging for fNIRS appli-
cations that are less ubiquitous than MRI or EEG, which benefit from publicly available reposi-
tory. As we are still far from being able to model the complexity of brain functions and dynamics,
the DL models can be trained only on experimental data conversely to many other fields in which
efficient in silico data generators are available.'% This is highlighted in Table 3, which shows that
almost all reviewed work depended on proprietary data and with relatively small number of
subjects. Moreover, in numerous scenarios, the data quality can be poor such that a subset
of the spatiotemporal data is missing or inadequate (for instance, compromised by motion arti-
facts, shallow physiological variations). As previously mentioned, data augmentation
approaches have been implemented successfully to alleviate this challenge. Another approach
is to leverage new developments in transfer learning that optimally refine well-trained networks
on large data sets to smaller one. But still, these methods are expected to work well within
homogeneous settings. As the field benefit from an increased number of fNIRS systems with
varying optode characteristics and associated electronics, the raw characteristics of the acquired
signals can greatly vary (SNR, CNR, sampling rate) and hence, limit generalizability. Another
issue for generalizability is that overfitting may be especially prevalent in fNIRS studies where
fNIRS data tend to be highly correlated.”® Moreover, in many instances, the data set is imbal-
anced for available classes. Hence, it is crucial for eliciting confidence in the results to report on
CV results. Herein, most reviewed work used k-fold CV, typically 5- or 10-fold CV. Still, in
many applications, the data set is comprised of multitrials per subject. Hence, it is important
to assess the potential bias associated with each subject. This can be performed using
LOUO CV and LOSO CYV, respectively. Still, such well-established methods were used only
in 8 of the 63 papers considered in this review.

Last, despite demonstrating high performances, the DL implementations reported herein are
suffering from the black-box issue. In other words, the extracted high-level features from the data
inputs that lead to high task performances during training and validation are not accessible and
hence, cannot be interpreted. However, in the last few years, various eXplainable Al (XAI) tools
such as class activation maps,'” Grad-CAMS,'"” and saliency maps'® have been proposed to
impart understandability and comprehensibility.'”” Such tools can, for instance, provide visual
map(s) that highlight the main data features leveraged for the model decision. Such a map can
then correlate the extracted features with known neurophysiology, specific application character-
istics (for instance, hand switching during surgery), and/or correlate with other biomarkers, such
as videos, gaze measurements, and motion tracking devices. For this reason, XAl tools are well-
poised to lead to the discovery of new spatiotemporal features that will advance our neuroscience
knowledge at large. This is exemplified by the recent report of differences in activation maps
between expert and novice surgeons while executing a certification task, with activation maps
obtained via a dot-attention method in a DL classifier model.!'’

5 Conclusion

We reviewed the most recent published work relevant to the application of DL techniques to
fNIRS. This literature review indicated that DL models were mainly sued for classification tasks
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based on fNIRS data and that in most of the cases, DL model prediction accuracy outperformed
traditional techniques, including established ML methods. Another subset of work reported on
developing DL models to reduce the amount of preprocessing typically done with fNIRS data or
increase the amount of data via data augmentation. In all cases, DL models provided very fast
inference computational times. These characteristics have a transformative power for the field of
fNIRS at large as they pave the way to fast and accurate data processing and/or classification
tasks. Of note, DL models, when validated and established, offer the unique potential for
real-time processing on the bedside at minimal computational cost. While the deployment of
DL models that are widely accepted by the community face numerous challenges, the findings
reviewed here provide evidence that DL will play an increased role in fNIRS data processing and
use for a wide range of bedside applications. Moreover, as an ever-increased number of studies
are made available to the community, it is expected that the next generation of DL models will
have the possibility to be tested and validated in various scenarios.
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