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1 Introduction
The near-infrared and mid-infrared wavelengths offer intrin-
sic advantages in remote sensing and Lidar operations. The
overtone and fundamental rovibrational spectra of gas mol-
ecules are in this region, offering the opportunity to optically
measure the concentration of trace gases. Unfortunately, sen-
sitive infrared photodetectors in this region are limited and
most of them have to be operated at cryogenic temperatures.
By contrast, silicon avalanche photodiodes (Si APD) and sin-
gle-photon counting modules can operate at room tempera-
ture with very high detection efficiencies. By using nonlinear
frequency upconversion, the infrared radiation can be con-
verted into visible/near-infrared signals and then detected
by the sensitive silicon photodetectors.

Lasers operating at a 2-μm wavelength offer many meas-
urement capabilities in remote sensing applications. The
ground testing of a 2-μm Doppler aerosol wind Lidar system
has been demonstrated in its early years of development, and
the first flight of the system was also demonstrated by meas-
uring the wind speeds inside a hurricane in 2010.1 The wave-
length of this laser also matches one absorption band of CO2,
which means this Lidar system can be used to monitor the
concentration of CO2 in the atmosphere.2 Recently, air borne
Lidar measurement of the CO2 concentration has been dem-
onstrated by a 2-μm pulsed integrated path differential
absorption (IPDA) Lidar developed at the Remote Sensing
Branch at NASA Langley Research Center (LaRC). The sig-
nal of an IPDA Lidar is inversely proportional to the square
of the distance between the Lidar instrument and the Earth’s
surface. In the vision to develop a space-borne Lidar to mea-
sure global CO2 concentration, the distance from the satellite
to the surface of earth increases ∼40 times comparing to that
of an air-borne Lidar, resulting in an ∼1600 times weaker
signal. It is impossible to increase the laser power up to
this order and maintain the same signal to noise ratio.

However, we can improve the signal detection performance
to measure such a weak signal more efficiently. Currently,
the detector in the 2-μm Lidar system is a Hamamatsu
long wavelength type InGaAs PIN detector with a high-
noise equivalent power (noise current/photosensitivity) in
the 2-μm region. It is not comparable to the high detection
efficiency and low dark current of the Si detector in the vis-
ible region. Our approach is to develop a periodically poled
lithium niobate (PPLN) based frequency upconversion
device to efficiently convert the infrared signals (2.055 μm)
into visible signals (0.7 μm) with the sum frequency tech-
nique. Then the 0.7 μm signal can be effectively detected
by a high-efficiency Si detector.

Table 1 shows the performance comparison of a photo-
multiplier tube (PMT), a Si single-photon avalanche diode
(SPAD), and an InGaAs SPAD. The Si SPAD can be oper-
ated near room temperature and its figure of merit (ratio of
the detection efficiency to the product of the dark count rate
and the time resolution, η∕Dδt) is 200 times better than that
of the InGaAs SPAD. The detection efficiency peak of the
visible-near infrared PMT reaches 40% at 0.5 μm, but
quickly drops down to 15% at 0.7 μm. Thus, the Si SPAD
is the best choice for 0.7 μm detection.

Lithium niobate (LiNbO3) has piezoelectric, ferroelectric,
electro-optic, and nonlinear optical properties; the ferroelec-
tric property in particular makes it possible to flip the orien-
tation of the electric dipole moment of the crystal within an
electrical field applied region. Periodic reversal of the crystal
domain structure produced by poling with the correct period
can be used to achieve the quasiphase matching condition.4–7

This makes PPLN a highly efficient medium for nonlinear
wavelength conversion processes. It has been demonstrated
that PPLN can be used for frequency doubling, difference
frequency generation, sum frequency generation, optical
parametric oscillation, and other nonlinear processes.8–16

In these processes, photon energy and momentum must be
conserved. The upconversion process uses the properties of
sum frequency generation to combine two input photons at
λ1 and λ2 to generate an output photon at λoutput with
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1∕λoutput ¼ 1∕λ1 þ 1∕λ2. For λ1 and λ2, the one with the
weaker power is called the probe laser and the one with
higher power is called the pump laser.

The refractive index inside an optical material is depen-
dent on the frequency of light. Thus, the phase relation
between two photons of different frequencies will vary as
the photons propagate through the material unless the crystal
is phase matched for those frequencies. For efficient nonlin-
ear conversion, it is necessary to have a maintained phase
relation between the input and generated photons throughout
the whole crystal. By inverting the crystal electrical dipole
orientation at the moment when photons are going to out of
phase, PPLN can avoid the photons slipping out of phase
with each other. As a result, the number of generated photons
will increase as the light propagates through the PPLN and
will reach a high conversion efficiency. This technique is
called quasiphase matching.

The sum frequency generation to convert a near-IR signal
into the visible region can be achieved either by using a bulk
PPLN chip or using a PPLN waveguide. Most previous work
of upconversion has focused on converting 1.55 μm of the
communication wavelength into visible light. The upconver-
sion efficiency in the near-IR region achieved 74% to
99%.11–13 Farther into the mid-IR region, the low transmis-
sion of the mid-IR inside PPLN and the blackbody radiation
in the same spatial region cause low upconversion effi-
ciency.14,15 In this paper, the upconversion of a 2.055 μm
probe beam with a 1.064 μm pump laser into a 0.7 μm signal
was demonstrated at LaRC and 93% intrinsic conversion
efficiency was achieved by using bulk PPLN.

PPLN waveguides have a narrow channel along the gra-
ting of the PPLN; all the laser beams are confined in this
channel over the whole length of the waveguide. The energy
density in a waveguide will be much higher and more uni-
form than the bulk PPLN and the nonlinear mixing efficiency
in the waveguide is also better than that of the bulk PPLN.
Ideally, the upconversion efficiency can reach 100% in a
waveguide PPLN. However, there are also limitations on
the detection efficiency using a waveguide PPLN. Shentu
et.al.16 studied the upconversion of 1.95 μm by using a wave-
guide. The intrinsic upconversion efficiency was 99.6%, but
the inefficient coupling lowered the detection efficiency
to 10%.

2 Experimental Setup
The schematic of the experimental setup for intracavity
upconversion is shown in Fig. 1. The cavity is composed of
four mirrors, M1 to M4. M1 is a flat mirror with an anti-
reflection coating at 0.808 μm on both surfaces and a

high-reflection coating at 1.064 μm on the inner surface.
M2 is a 98% reflection output coupler for 1.064 μm. M3
and M4 are concave mirrors, each with a radius-of-curvature
of 150 mm, a high-reflection coating at 1.064 μm and a high-
transmission coating at 0.7 and 2 μm on both sides. One peri-
odically poled 5 mol% MgO-doped congruent LiNbO3 crys-
tal purchased from HC Photonics Corp. (Hsinchu City,
Taiwan) was used in this study. It consists of eight gratings
with grating periods ranging from 16.06 μm up to 16.34 μm;
most of data are taken from the 16.14 μm grating. This 50-
mm long PPLN crystal is located inside a Teflon oven, which
is mounted on top of a y, z, tilt, and rotation multiaxis stage.

A continuous-wave (CW) Coherent FAP 0.808 μm diode
laser is used to pump a 10-mm long 1% doped Nd:YAG rod
in the cavity to generate the 1064-nm beam. The intracavity
pumping design significantly increases the system efficiency.
One mirror (the same as M1) is mounted between the diode
laser and the 0.808 μm collimating lens at the opposite angle
from M1 for astigmatism correction. A fused silica plate is
inserted between M1 and M2 at the Brewster angle to adjust
the polarization of the intracavity beam. One 1064 nm HR
mirror is mounted at the back of the M2 mirror to reflect the
1.064 μm beam back into the cavity to block one circulation
direction. The 1.064 μm light travels unidirectionally inside
the resonator and from left to right through the PPLN. The
leakage of 1.064 μm light through M2 was used to monitor
the circulating pump power with a coherent field master
power meter. The mirrors M3 and M4 serve as the output
(input) for the 0.7 μm (2 μm) laser. A 2-μm DFB laser
from EM4, Inc. (Bedford, Massachusetts) was also aligned
through PPLN and the power was measured at the back of
the M4 mirror using a Thorlabs (Newton, New Jersey) power

Table 1 The comparison of single-photon detectors.3

Detector type
Operation

temperature (K)
Detection efficiency

η(%), wavelength λ (nm)
Timing jitter

δt (ns)
Dark count rate
(ungated) D (1∕s)

Figure
of merit

Max count
rate (106∕s)

PMT (infrared) 200 2% at 1550 nm 0.3 200,000 3.3 × 102 10

PMT (visible-near infrared) 300 40% at 500 nm 0.3 100 1.3 × 107 10

Si SPAD 250 65% at 650 nm 0.4 25 6.5 × 107 10

InGaAs SPAD 200 10% at 1550 nm 0.37 91 3.0 × 105 0.01

SPCMMultichannel 
scaler

Scope

Power
meter

700 nm
Pass filter

2 µm
Laser

MgO:PPLN

M3M4

M1

M2

YAG HR@1064
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nm 

HR@1064
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Fig. 1 Schematic of the upconversion experimental setup.
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meter equipped with a S302S sensor. Two lenses, both with a
150-mm focus length, were used to focus the probe laser
beam into the cavity.

3 Results and Discussions
When the power of the 2-μm laser is in the mW range, the
generated 0.7 μm signal will also be in the same range. It can
easily be detected by a power meter. To measure this 700 nm
signal, a CaF2 dispersion prism was used to separate the
0.7-μm light from the other wavelengths (1.064, 0.532,
0.808 and 2.055 μm) and was measured with a Newport
818-SI (Irvine, California) power meter at the back of the
first aperture. A laser line filter (700� 8 nm) was mounted
in front of the detector to avoid any other light getting into
the detector. The signal of 0.532 μm came from the second
harmonic generation (SHG) of the strong intracavity
1.064 μm laser beam in the PPLN. Even though the grating
spacing on PPLN is far away from the SHG optimization
grating period, a 0.75% of SHG efficiency was observed
in front of the second prism but was not measurable after
the second filter. The solitary function of the 0.808 μm
laser is to pump the YAG crystal to generate a 1.064 μm
laser beam in the cavity; it is supposed to leak out through
M2, but the weak reflection at each mirror still lets part of the
0.808 μm signal (0.146 fW) leak through and can only be
detected by single-photon counting module.

The temperature dependence of the upconversion (Fig. 2)
was measured at a fixed 2 μm signal. The shifting of the peak
of the temperature tuning curves from 52.7°C at low pump
power to 52.4°C at high power indicates some extra heating
inside the PPLN at the high-pump laser power. The optical
absorption coefficient of 5 mol% MgO-doped LiNbO3 is
0.004∕cm at 1.064 μm, so 2% of the pump laser energy
might be turned into heat inside the 50 mm PPLN. The ther-
mal capacity of lithium niboate is 1 × 10−2 cal cm−1 s−1 k−1.
There will be 0.6 W 1.064 μm power absorbed by the PPLN
at a 30 W pump laser power, which will increase the whole
PPLN temperature by 0.36 deg. This number agrees with the
experimental result of 0.4 deg.

All eight gratings on the PPLN chip were examined under
the same conditions. The channel with the 16.14 μm spacing
gave the best results, which are close to the calculated

16.15 μm ideal spacing at this temperature. The measured
temperature bandwidth is only 1.63°C as can be seen
in Fig. 2.

The power dependence of the 0.7 μm signal on upcon-
verting the 2 μm signal was studied at constant 25 W pump
laser power. The result is plotted on a log–log graph and is
shown in Fig. 3. By power laws, the slope of the plot in the
log–log graph should be close to 1 for linear dependence.
The progression analysis shows y ¼ −0.2035þ 0.98289x
with a coefficient of determination R2 equal to 0.990 by the
least square linear fitting. The slope of the fitting 0.983
indicates that the 0.7 μm signal strength is linearly
dependent on the 2 μm laser power.

Figure 4 shows the results of pump power dependance
and the upconversion efficiency for a fixed 2 μm signal at
1.308 mW. The temperature setting of the PPLN was
52.3°C. The solid squares on the graph are the overall system
detection efficiency, and the solid circles are the data after
correction of the system transmission. The signal loss
comes from the reflection from the coating on the M4 mirror
and absorption in the prism and band pass filter. The intrinsic
upconversion efficiency of PPLN can be as high as 93%
when the pump laser power is over 34 W. The overall detec-
tion efficiency is 60%.

Fig. 2 Temperature turning curve at different pump laser power.
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When the 2-μm laser was attenuated to the pico watt level
or even lower, then the 0.7 μm signal was too weak to be
measured by the power meter. A single-photon counting
module (SPCM) AQRH-14 from Excelitas (Waltham,
Massachusetts) was used to detect this weak 0.7 μm signal
in the single-photon counting region, and the output of
the SPCM was sent to a Stanford Research Systems
SR430-multichannel scaler/average for data acquisition and
processing.

The overall detection efficiency is the ratio of the photon
counting rate at λoutput to the photon counting rate of the
probe laser. In this 2 μm upconversion case, that is the pho-
ton counting rate of 0.7 μm divided by the photon counting
rate of 2 μm. Due to the losses through the optics of the
prism, optical filter, and mirrors that the 0.7 μm signal pho-
tons experienced on the way to the detector, and with the

limited quantum efficiency of the detector, the signal photon
rate detected by the detector will be weaker than the signal
photon rate generated by the nonlinear crystal. The intrinsic
upconversion efficiency can be calculated from the overall
detection efficiency, signal power loss, and detector quantum
efficiency.

The 2-μm laser output was 0.185 mW before it was
attenuated with optical fiber couplers or IR neutral density
(ND) filters. The fiber of each coupler was wound around
a 1″ diameter cylinder to reduce the transmission through
each fiber coupler to 1% on average, which can be measured
by the power meter. Five fiber couplers connected in series
can reduce the laser power by the 10th order without affect-
ing the 2-μm beam path as long as the position of the fiber
collimator was fixed. When using IR ND filters from
Newport, the transmission of each piece was carefully cali-
brated by a Perkin Elmer (Santa Clara, California) IR spec-
trometer at 2.055 μm. Use of the ND filters required precise
alignment upon insertion into the 2-μm beam because the
ND filters can affect the 2-μm beam path, which reduces
upconversion efficiency if not properly accounted for.

The contribution of the displayed counting rate from each
laser was shown in Table 2. It shows the measured counts at
four different conditions, no lasers turned on (dark count),
2 μm probe laser on only, 0.808 μm pump laser on only,
and both probe and pump lasers on to generate the
0.7-μm signal. The SPCM we used has higher dark count
rates than a normal SPCM due to its age. The 2 μm laser
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Fig. 5 Photon counting signals on Stanford Research SR430 (a) no laser, (b) 2 μm laser only,
(c) 0.808 μm laser only, (d) both lasers on.

Table 2 The displayed counting rate on counter.

Dark
count

2 μm
laser

0.808
μm laser

Both
lasers

Count rate
(with dark count)

2.404 K 2.371 K 2.982 K 67.866 K

True count rate 0 0.594 K 65.478 K
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alone did not add to the measured count rates, since the
working spectral range of the silicon detector does not extend
to the 2-μmwavelength. Thus, the measured count is still the
dark count if only the 2 μm laser is turned on. In the case of
only the 0.808 μm pump laser being turned on, the counting
rate is increased by 0.594 K, which can be treated as system
background. The background noise is confirmed from the
0.808 μm photons and not from the 1.064 μm. In an effort
to reduce the background induced by the 0.808 μm laser,
two 0.7 μm laser line pass filters were used to block the
0.808 μm. Since the background noise wavelength is so
close to the signal wavelength, it is not easy to completely
separate them. However, the 0.808 μm induced background
can be subtracted in the signal processing. Examples of the
contribution from each laser on SR430 are shown in Fig. 5.
The y axis represents the number of counts and x axis rep-
resents the time; it shows no more than one count in each
time bin (320 ns bin width). It indicates the measurement
is in the “single-photon counting” region.

The 0.7 μm signal dependence on the 2-μm laser power
was also characterized at this extremely low 2 μm power
(sub pW). Figure 6 shows the relationship of the 0.7 μm sig-
nal at various 2 μm signals by arranging the IR ND filters.
The progression equation y ¼ 4.6267þ 0.96337x with
R2 ¼ 0.9908 was obtained by linear fitting. The 0.963

slope in the log–log plot indicates the linear dependence of
the 0.7 μm signal on the sub pW range 2-μm power.

Figure 7 shows the power dependence of the 0.7 μm sig-
nal on the YAG laser power at a fixed 2-μm signal; saturation
is observed at a 9W YAG laser power.

The generated 0.7 μm has to pass through the M3 mirror
before it can be detected. The M3 mirror is a concave mirror
used for focusing the 1.064 μm laser beam into the PPLN,
but it acts as a diverging lens for the transmitted 0.7 μm
beam. The 0.7 μm beam passes through M3 at non-normal
incidence which causes the output beam to have an elliptical
shape. The beam size on the detector surface was measured
with the knife edge method; the full width at half maximum
along the x and y directions is 76.3 and 130.3 μm, respec-
tively. The diameter of the detector active area is only
180 μm. Since the 700 nm partially overfills the active detec-
tor area, 89% of the photons are actually incident on the
active detector area. The total detection efficiency of
0.7 μm of the SPCM system (also including prisms, mirrors,
700-nm pass filters and the quantum efficiency of SPCM)
will be 24.02%. The initial 2-μm power is 0.1855 mW
and is attenuated by a factor of 1.27 × 10−9 by the IR ND
filters. Thus, the incoming 2-μm photons are at
2.44 × 105 photons∕s. The detected counting rate of
0.7 μm is 55;000 photons∕s on the counter. So the intrinsic
upconversion efficiency at a 9 W YAG power is 94% in
the single-photon counting region, with an overall detection
efficiency of 22.58%.

4 Conclusion
In conclusion, upconversion detection by using bulk PPLN is
a promising technique to extend the use of well-developed
silicon detectors into remote sensing applications. We
have demonstrated the upconversion detection of a 2-μm sig-
nal for the first time using the PPLN converter technique.
A high-intrinsic conversion efficiency of η ¼ 93 to 94% of
the bulk PPLN was achieved for the mW level and pW level
of the probe laser and the overall detection efficiencies are
59.97% and 22.58%, respectively. This is limited by propa-
gation losses of the optics, especially the 0.7 μm laser line
pass filter. The linearity of the 0.7 μm signal on the probe
laser (2 μm) was demonstrated at both the mW and pW lev-
els, showing that the 0.7 μm signal size is directly related to
the probe photons over a wide probe power range. The good
signal to noise ratio in the single-photon counting region also
indicated potential applications in quantum optics.
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