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Abstract. This paper presents an algorithm for target detection and tracking by fusion of multispectral imagery.
In all spectral bands, we build a background model of the pixel intensities using a Gaussian mixture model, and
pixels not belonging to the model are classified as foreground pixels. Foreground pixels from the spectral bands
are weighted and summed into a single foreground map and filtered to give the fused foreground map.
Foreground pixels are grouped into target candidates and associated with targets from a tracking database
bymatching features from the scale-invariant feature transform. The performance of our algorithmwas evaluated
with a synthetically generated data set of visible, near-infrared, midwave infrared, and long-wave infrared video
sequences. With a fused combination of the spectral bands, the proposed algorithm lowers the false alarm rate
while maintaining high detection rates. All 12 vehicles were tracked throughout the sequence, with one instance
of a lost track that was later recovered. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Automatic detection and tracking of moving targets in full
motion video from aerial imaging systems such as unmanned
aerial vehicles (UAV) and satellites are of significant interest
in the defense and security communities.1–3 These aerial plat-
forms can remain undetected from prospective targets and
encompass a large surveillance area. Satellites have been
a primary “spy” tool for decades and continue to provide
for their respective nations, but their coverage is limited
by orbital mechanics, and is hence not always sufficiently
timely, nor can a satellite generally be launched on demand
to address a short-term tactical matter in the field. Vast
amounts of research have been invested in UAV surveillance,
and UAVs have been a significant resource for intelligence
gathering.1,4,5 Large areas, such as open waters or borders,
can be surveyed for intrusions, regions can be assessed for
building of weapon facilities, or urban areas can be checked
for potential threats.

The urban environment is of interest for this work. Urban
environments provide significant challenges to the problem
of automatically detecting and tracking moving vehicles.
These areas generally contain complicated clutter and a col-
lection of different targets, e.g., humans, buildings, roads,
and vehicles. Each of these different entities also varies
greatly in shape and size that challenge automatic target
detection and recognition algorithms. Trees, buildings, tun-
nels, and other formations result in object occlusions that
affect the appearance of the targets and sometimes com-
pletely block the targets from view for a few to several con-
secutive frames. Images in the visible spectrum (0.4 to

0.7 μm) provide reflected spectral information that creates
contrast between targets, and between targets and the back-
ground. The visible spectrum requires good illumination dur-
ing the daytime hours. Imaging in the long-wave infrared
(LWIR) band (8 to 14 μm) is dependent on the temperature
and thermal emissivity of the target, but is not dependent on
solar illumination, and thus provides nighttime imaging
capabilities. The effects of atmospheric aerosols also play
a role in these imaging modalities. For example, Mie scatter-
ing significantly hinders the performance of visible imaging
in the presence of fog aerosols.6 The wavelengths of the
midwave infrared (MWIR) and LWIR bands are longer
than the visible wavelength, making them less susceptible
to the attenuation due to Mie scattering, and thus provide
some immunity to the effects of fog and other aerosols on
image quality.6

The approach of multispectral detection and tracking
fuses information obtained from images in different spectral
bands to improve detection statistics. Various approaches
have been taken in algorithm development for detecting
and tracking using multispectral imagery where the fusion
framework takes place in three stages of the processing:
pixel level,7–11 feature level,12–14 and decision level.15

Fusion at the pixel level creates a single image that is a com-
position of the pixels in the multispectral images. It is often
used to create a single image that is interpreted by an oper-
ator.16,17 The combination of pixels into a single image is
difficult as there is not always a correlation of the pixel val-
ues from the different spectral images, and it has been found
that a mild anticorrelation exists between the visible and
LWIR bands.18 Feature-level fusion combines the by-product
of processing of individual spectral bands. These processing
products include numerous classifications of features, such
as foreground maps, histograms, edge contours, and texture
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features. Processing of individual spectral bands allows fea-
ture extraction algorithms to be optimized for each band.
In decision-level fusion, processing is performed on each
independent spectral band where a decision is made, such
as object size and location. These decisions are fused
based on band-specific confidence levels to give an overall
decision.

To exploit benefits of each spectral band, feature-level and
decision-level fusion allow algorithm development tailored
for their respective bands. Algorithms fusing background
models from different image modalities to create a common
foreground for target detection have been demonstrated.12–15

Chen and Wolf13 model the foreground in both visible and
LWIR imagery with the mixture-of-Gaussians model, while
using an adaptive learning rate that is based on the decision
of each spectral band. They also fuse the two spectral bands
for their appearance model to increase the performance of
target association. Torresan et al.15 perform the background
subtraction on each individual spectral modality and merge
the results by picking a master and slave foreground map
based upon the confidence of each modality. By modeling
each background pixel’s intensity as a single Gaussian dis-
tribution, Davis and Sharma12 extract regions-of-interest by
the intersection of the visible and LWIR foreground maps.
Salient contours from the regions-of-interest are then calcu-
lated from both visible and LWIR images and fused to create
a single contour saliency map.

The aforementioned works consider visible and LWIR
bands; our algorithm additionally exploits near-infrared
(NIR) and MWIR bands, and the combinations of spectral
bands. Table 1 shows the spectral bands used and their asso-
ciated wavelengths. The main contribution of this work is an
algorithm to fuse multispectral data sets to reliably detect and
track moving targets with high-probability and low-false
alarm rate. We focus on detection and tracking of vehicles
through an urban scene that includes partial occlusions
and crowded traffic intersections. A block diagram of our
proposed algorithm is shown in Fig. 1. To compensate for
fluctuating pixel intensities in each spectral band, back-
ground models using a Gaussian mixture model (GMM)
adapt to the evolving scenes and detect foreground pixels.
Foreground pixels from different spectral bands are fused
into a foreground region and filtered to obtain a single fore-
ground map that represents pixel regions belonging to target
candidates. Features based on the scale-invariant feature
transform (SIFT) are extracted from these target regions
and used for two purposes:19 detecting targets missed by
the segmentation detection, and associating targets from
a tracking database constructed from prior frames. Lastly,
locations for each target are estimated and the GMMmixture
is updated.

To develop and evaluate the algorithm, we created a UAV
imaging scenario that was synthetically generated from
the digital imaging and remote sensing image generation
(DIRSIG) toolset.20 DIRSIG is a mature and widely used
simulation package for 0.4-μm to 20-μm wavelengths. An
urban scene with 12 vehicles was simulated at visible,
NIR, MWIR, and LWIR wavelengths. A normal traffic sce-
nario was simulated using the open-source tool simulation of
urban mobility (SUMO) to provide realistic traffic maneu-
vers. Figure 2 shows a 2000 × 2000 pixel frame from each
spectral band. By visual inspection, the appearance of target
vehicles varies between the scenes, providing different
intensity information.

The remainder of the paper is organized as follows: Sec. 2
presents the method for foreground extraction using the
GMM and the region growing process to group disjoint

Table 1 Spectral band and their respective wavelengths.

Spectral band Wavelengths (μm)

Visible 0.4 to 0.7

Near-infrared (NIR) 0.8 to 1.2

Midwave infrared (MWIR) 3 to 5

Long-wave infrared (LWIR) 8 to 14

Fig. 1 Algorithm process flowchart.
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pixels. We also discuss our method for fusing the spectral
modalities in Sec. 2. Section 3 presents the association target
candidates with track sequences. Experimental results on
the performance of the algorithm are presented in Sec. 4.
In Sec. 5, conclusions are presented.

2 Detection and Segmentation Algorithm
In this section, we describe the detection and segmentation
algorithms; we then present the fusion process used to com-
bine foreground maps to build pixel regions that represent
target candidates. Pixel intensities fluctuate due to changes
in illumination and movement from both background and
target objects. This does not allow a single value to character-
ize the time history of the intensity of a single pixel for a
given video sequence. To compensate for these changes,
background modeling techniques are used to describe the
probability distribution of the pixels’ intensity by empirically
deriving the parameters from the video sequence. The GMM
has been successfully demonstrated to compensate for the

fluctuations in pixel intensities.21–23 In a scene where the
sensor is fixed, keeping the viewpoint stationary, we use
statistical information extracted from the time history of the
intensity fluctuations to understand the probability distribu-
tion of intensity at each pixel, and use these distributions to
make hypotheses about the label of each pixel. Each pixel in
the scene is classified as a foreground or background pixel,
and we update the parameters of the GMM during each
frame. We now describe this process in detail.

We define Xðx; y; tÞ as the pixel intensity at location ðx; yÞ
and time t. The goal is to classify this pixel as a background
or foreground pixel by fitting it to a distribution model. The
distribution of the time history of the intensity, P½Xðx; y; tÞ�,
is modeled as a sum of weighted Gaussian distributions:

EQ-TARGET;temp:intralink-;e001;326;122P½Xðx;y; tÞ� ¼
XK
j¼1

wj;tðx;yÞN ½Xðx;y; tÞ;μj;tðx;yÞ;Σj;tðx;yÞ�;

(1)

Fig. 2 Example multispectral frames from evaluated digital imaging and remote sensing image gener-
ation data set: (a) visible, (b) near-infrared (NIR), (c) midwave infrared (MWIR), and (d) long-wave infra-
red (LWIR).
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where K is the number of Gaussian distributions; μj;tðx; yÞ is
the mean of the distributions; and the covariance matrix,
which is assumed to be diagonal, is given by Σj;tðx; yÞ ¼
σ2j;tðx; yÞI, where I is the identity matrix. The weighting fac-
tor wj;tðx; yÞ represents the portion of which the j’th
Gaussian that comprises the entire model, and is dependent
on the number of occurrences for the particular distribution.
This weighting has range 0 < wj;t ≤ 1, and is normalized
such that

P
K
j¼1 wj;t ¼ 1. The Gaussian probability density

function is

EQ-TARGET;temp:intralink-;e002;326;752

N½Xðx; y; tÞ; μj;tðx; yÞ;Σj;tðx; yÞ�

¼ 1

ð2πÞn∕2jΣj;tðx; yÞj1∕2
exp

�
−
1

2
½Xðx; y; tÞ − μj;tðx; yÞ�T

× Σj;tðx; yÞ−1½Xðx; y; tÞ − μj;tðx; yÞ�
�
: (2)

From the K distributions, it must be determined that the
number of distributions are classified as belonging to the
background. We select the top B weighted distributions as
the background, where

EQ-TARGET;temp:intralink-;e003;326;625B ¼ argminb

�Xb
j¼1

wj;tðx; yÞ > Thr

�
: (3)

The threshold Thr is user defined with range (0,1) and is
dependent on the scene.

Table 2 Gaussian mixture model parameters.

VIS NIR MWIR LWIR

Learning rate 0.0004 0.0005 0.0004 0.0003

Threshold 0.7 0.8 0.7 0.5

Fig. 3 Foreground images at frame 600: (a) VIS, (b) NIR, (c) MWIR, and (d) LWIR.
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In a complex scene with multiple moving targets where
pixel distributions vary among targets, and among targets
and background, more Gaussian models will be present
and thus require higher Thr. In the scenes tested with this
algorithm, few objects were moving and typically only
one Gaussian mode was needed to describe the background.
By executing the GMM algorithm with a series of parameters
on the test data set, the optimal Thr was empirically derived
for each spectral band by comparing correctly detected pixels
to falsely detected pixels. The resulting values of Thr are
shown in Table 2. In the algorithm, LWIR had the lowest
Thr at 0.5, which is attributed to the distributions of the target
intensities being similar, along with being lower than the
background surrounding the targets.

To evaluate whether the current pixel intensity Xðx; y; tÞ is
a background or foreground pixel, we calculate the a priori
probability of that pixel intensity belonging to each of the K
distribution components. If the intensity value falls within
2.5 standard deviations of any background distribution, it
is labeled background; otherwise, it is labeled as foreground.
Following the classification of the pixel, the distribution
parameters are updated as23

EQ-TARGET;temp:intralink-;e004;63;510wj;tþ1ðx; yÞ ¼ wj;tðx; yÞ þ α½1 − wj;tðx; yÞ�; (4)

EQ-TARGET;temp:intralink-;e005;63;480μj;tþ1ðx; yÞ ¼ μj;tðx; yÞ
þ ½α∕wj;tðx; yÞ�½Xðx; y; tÞ − μj;tðx; yÞ�; (5)

EQ-TARGET;temp:intralink-;e006;63;435

σ2j;tþ1ðx; yÞ ¼ σ2j;t þ ½α∕wj;tðx; yÞ�f½Xðx; y; tÞ − μj;tðx; yÞ�T
× ½Xðx; y; tÞ − μj;tðx; yÞ� − σj;tðx; yÞ2g; (6)

where α is the learning rate. In a scene where objects typi-
cally move slowly, the update equations should also update
at a slower rate and require a smaller α. After the experimen-
tation, we found the optimal α for each data set as shown in
Table 2. All spectral bands used a low α, with the lowest
value in the LWIR band, which can be attributed to no shad-
ows being present.

The GMM algorithm produces intermediate foreground
maps in all spectral bands that do not represent the complete
target region and do not necessarily correlate with one
another. This is a consequence of discrepancies in the fore-
ground modeling, and is caused by low SNR between the
target and background. Examples of intermediate foreground
maps at frame 600 are shown in Fig. 3. In the NIR band, the
bottom target has a high number of foreground pixels in
comparison with the other bands. In the MWIR band, the
target on the left has a low number of foreground pixels
whereas the other bands have a high number of pixels.
The fusion of foreground maps from multispectral video cre-
ates combined foreground maps that accurately estimate the
centroid of the target with a low-false alarm rate. This is dis-
tinct from previous efforts12–17 in that we have considered
additional spectral bands for foreground fusion, and use
SIFT features for unique target identification and detection
of missed targets.

We define a fused foreground map, FGFUSðx; yÞ, as
the sum of individual weighted foreground maps, where w
represents the weighting and the subscript represents the
respective band,

EQ-TARGET;temp:intralink-;e007;326;752FGFUSðx; yÞ ¼ wVISFGVISðx; yÞ þ wNIRFGNIRðx; yÞ
þ wMWIRFGMWIRðx; yÞ
þ wLWIRFGLWIRðx; yÞ; (7)

FGFUSðx; yÞ is spatially filtered with a 3 × 3 Gaussian fil-
ter with σ ¼ 0.5. Thresholding of FGFUSðx; yÞ is performed
to remove pixels that have a low-foreground probability of
belonging to the foreground, FGFUSðx; yÞ < th. The spectral
combinations and their respective thresholds are shown in
Table 3. Thresholds were chosen by the lowest false alarm
rate produced by the detection algorithm. False alarm rates
for the series of tested thresholds are presented in the Sec. 4
in Table 4.

An example of a fused foreground is shown in Fig. 4(a).
A smoothing of the combined foreground map is applied
using a two-dimensional Gaussian filter and shown in
Fig. 4(b). The filtering results in filling of gaps where pixels
were missed from the foreground map without overdilating
the region. The final foreground map is shown in Fig. 4(c).
A zoomed area on a car region depicting the foreground
fusion process is shown in Fig. 5. The effect of thresholding
the fused and filtered foreground map is illustrated; the target
shadow is removed from the foreground region.

The final step of creating the pixel regions that represent
the detected candidates is an image closing, which consists
of a dilation followed by an erosion. The structuring element
of this procedure is a disk with a radius of four pixels. The

Table 3 Spectral combinations and their respective background
threshold.

Combination Background threshold

VIS —

NIR —

MWIR —

LWIR 0.2

VIS–NIR 1.0

VIS–MWIR —

VIS–LWIR 1.6

NIR–MWIR 0.4

NIR–LWIR 1.2

MWIR–LWIR 1.0

VIS–NIR–MWIR 1.2

VIS–NIR–LWIR 2.0

VIS–MWIR–LWIR 2.0

NIR–MWIR–LWIR 1.2

VIS–NIR–MWIR–LWIR (TOT) 2.0

VIS–NIR–MWIR–3*LWIR (TOT3) 3.0

VIS–3*LWIR 3.4
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dilation operation fills in voids between pixel segments and
grows the size of the region. In the erosion operation, we
attempt to remove any unnecessary region growth that is
a by-product of the dilation. Pixel regions that do not exceed
an area of 200 pixels are filtered to remove the objects that
may not represent vehicle-sized objects.

3 Target Tracking
The association of targets involves relating a track sequence
from prior frames with target candidates detected in the
current frame. This task is trivial in the case where targets
stay separated and no occlusions exist. However, in actual

practice and in this data set, targets become merged or
occluded, making distinguishing between targets difficult.

We have chosen to use SIFT features for identification
due to their robustness with respect to changes in rotation
and scale, and their invariance to change in camera view-
points and illumination changes.19 Due to our reliance on
these features to uniquely identify targets, we require them
to be robust in long-term tracking applications. A disadvant-
age of SIFT is the heavy computations required for the
keypoints, where typical processing times are tenths of sec-
onds to multiple seconds per frame in a normal CPU imple-
mentation.24,25 Developments in graphics processing units

Table 4 False alarm rates produced for given thresholds.

Threshold VIS NIR MWIR LWIR
VIS
NIR

VIS
MWIR

VIS
LWIR

NIR
MWIR

NIR
LWIR

MWIR
LWIR

VIS
NIR

MWIR

VIS
NIR
LWIR

VIS
MWIR
LWIR

NIR
MWIR
LWIR TOT TOT3

VIS
LWIR3

0.0 1.14 1.07 1.15 1.32 1.17 1.14 1.38 1.18 1.45 1.41 1.17 1.42 1.39 1.45 1.42 1.42 1.38

0.2 1.30 1.08 1.19 1.30 1.34 1.26 1.41 1.12 1.44 1.35 1.31 1.41 1.39 1.46 1.37 1.38 1.38

0.4 1.30 1.08 1.19 1.30 1.31 1.26 1.40 1.03 1.43 1.36 1.30 1.39 1.39 1.44 1.36 1.36 1.41

0.6 1.30 1.08 1.19 1.30 1.31 1.26 1.40 1.03 1.43 1.36 1.30 1.39 1.39 1.44 1.37 1.36 1.40

0.8 1.39 1.26 1.77 1.65 1.26 1.27 1.46 1.11 1.42 1.46 1.26 1.49 1.49 1.43 1.49 1.50 1.44

1.0 — — — — 1.08 1.15 1.16 1.12 1.10 0.96 1.02 1.16 1.23 1.01 1.17 1.41 1.30

1.2 – – – — 1.14 1.31 1.24 1.24 1.08 1.17 0.99 1.15 1.22 0.99 1.16 1.36 1.29

1.4 — — — —— 1.15 1.33 1.24 1.25 1.12 1.24 1.02 1.12 1.24 1.02 1.17 1.38 1.30

1.6 — — — — 1.12 1.36 1.17 1.34 1.16 1.34 1.11 1.16 1.27 1.05 1.18 1.37 1.30

1.8 — — — — 1.31 1.53 1.23 1.45 1.17 1.28 1.16 1.29 1.24 1.16 1.19 1.37 1.30

2.0 — — — — — — — — — — 1.22 1.08 1.10 1.13 1.04 1.36 1.31

2.2 — — — — — — — — — — 1.30 1.08 1.21 1.16 1.07 1.35 1.32

2.4 — — — — — — — — — — 1.37 1.11 1.24 1.09 1.09 1.40 1.56

2.6 — — — — — — — — — — 1.34 1.15 1.26 1.12 1.13 1.47 1.54

2.8 — — — — — — — — — — 1.47 1.30 1.21 1.15 1.14 1.41 1.50

3.0 — — — — — — — — — — — — — — 1.15 1.16 1.29

3.2 — — — — — — — — — — — — — — 1.17 1.20 1.18

3.4 — — — — — — — — — — — — — — 1.16 1.18 1.14

3.6 — — — — — — — — — — — — — — 1.24 1.21 1.14

3.8 — — — — — — — — — — — — — — 1.25 1.21 1.29

4.0 — — — — — — — — — — — — — — — 1.06 —

4.2 — — — — — — — — — — — — — — — 1.08 —

4.4 — — — — — — — — — — — — — — — 1.07 —

4.6 — — — — — — — — — — — — — — — 1.06 —

4.8 — — — — — — — — — — — — — — — 1.11 —

5.0 — — — — — — — — — — — — — — — 1.15 —

Note: dashes (—) imply the threshold exceeded the maximum obtainable pixel value in the image.
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(GPUs) and field programmable gate arrays (FPGAs) have
created opportunities for real-time algorithms. SIFT imple-
mentations have been developed for both GPUs25–27 and
FPGAs,24 where the results demonstrate real-time SIFT
calculations.

SIFT features are composed of a keypoint that gives
subpixel location and orientation of the feature, along with
a descriptor that is calculated based on local pixel texture. In
the SIFT algorithm, keypoints are first identified at multiple
scales. A scale space of the image is created with varying
amounts of blur applied to each image using the Gaussian
kernel. The blurred image is defined as

EQ-TARGET;temp:intralink-;e008;63;205Lðx; y; kσÞ ¼ Gðx; y; kσÞ � Iðx; yÞ; (8)

where the Gaussian kernel Gðx; y; kσÞ with variance kσ is

EQ-TARGET;temp:intralink-;e009;63;163Gðx; y; kσÞ ¼ 1

2πkσ2
exp

�
−
x2 þ y2

2 kσ2

�
: (9)

Within the scale space, difference of Gaussian (DoG)
images are calculated by

EQ-TARGET;temp:intralink-;e010;326;315Dðx; y; σÞ ¼ Lðx; y; kσÞ − Lðx; y; σÞ: (10)

The local extrema in the DoG images at each scale are found
by comparing the pixel value with its eight surrounding pix-
els and the nine neighboring pixels from each of the nearest
blurred images. To create an invariance to scale, the extrema
must exist on multiple scales. A filtering step of the detected
extremas in the DoG images is implemented based on the
intensity; an extrema with a low intensity is susceptible to
changes in illumination and is therefore unstable and
removed from the keypoints.

A reference orientation for subsequent processing is given
to the keypoint to provide invariance to rotation. From the
blurred image in which the extrema was located, the gradient
magnitude mðx; y; kσÞ is calculated by

EQ-TARGET;temp:intralink-;e011;63;109mðx; y; kσÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Lðxþ 1; y; kσÞ − Lðx − 1; y; kσÞ�2 þ ½Lðx; yþ 1; kσÞ − Lðx; y − 1; kσÞ�2

q
(11)

Fig. 4 Fused foregroundmaps: (a) the fused foregroundmaps, FGFUSðx; yÞ; (b) the foregroundmap after
applying a Gaussian filter; and (c) the foreground after a threshold has been applied to the filtered image.

Fig. 5 Zoomed area highlighting the foreground fusion process.
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and the orientation, θðx; y; kσÞ, by

EQ-TARGET;temp:intralink-;e012;63;740θðx; y; kσÞ ¼ tan−1
�
Lðx; yþ 1; kσÞ − Lðx; y − 1; kσÞ
Lðxþ 1; y; kσÞ − Lðx − 1; y; kσÞ

�
:

(12)

A histogram of 10 deg bins is created of the orientations,
and the magnitudes added to the histograms are the gradient
magnitudes that are Gaussian weighted with a variance of
1.5kσ. The peaks of the histograms are detected, where
the highest peak and any peaks above 80% of the highest
peak are selected as orientations for the new keypoints.
Peaks in the histogram represent dominant directions of
the local gradients.

Unique identifications are generated for each keypoint,
referred to as descriptors. A 16 × 16 region around the key-
point, with respect to the calculated orientation, is divided
into 4 × 4 subregions. Gradient magnitudes and orientations
are calculated for each pixel in these subregions, and histo-
grams with 45 deg bins are calculated for each subregion.
Through the use of a Gaussian weighting mask with σ ¼
1∕2 of the descriptor window width (16 pixels for our case),
points are inversely weighted proportional to their distance
from the keypoint to decrease their contributions and reduce
errors caused by window displacements.

To match features from a tracked objects database to fea-
tures from the current scene, a matching score is calculated
by the Euclidean distance between two descriptors. The
matching score between a tracked object and a frame object
is calculated by
EQ-TARGET;temp:intralink-;e013;63;417

ScoreðDobj;DfrmÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdobj1 − dfrm1 Þ2 þðdobj2 þ dfrm2 Þ2þ · · · þðdobjn þ dfrmn Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðdobji − dfrmi Þ2
s

; (13)

where Dobj ¼ ðdobj1 ; dobj2 ; : : : ; dobjn Þ is the tracked object
descriptor, Dfrm ¼ ðdfrm1 ; dfrm2 ; : : : ; dfrmn Þ is the frame object
descriptor, and n is the length of the descriptor vector,
which is 128 for our case.

The feature with the shortest Euclidean distance, i.e., the
nearest neighbor, is selected as the matching feature. To
remove matches that do not have a good match, a compari-
son is made between the nearest neighbor and the next near-
est neighbor. If the ratio of the match scores between the
nearest and the next nearest neighbor is >0.8, the match
is rejected. Lowe19 found that this method rejects 90% of
all incorrect keypoints and only removes 5% of the correct
matches.

Updating the track location is based on several factors.
The search region for a matching target candidate is limited
to the track’s estimated bounding box, preventing erroneous
associations with targets of similar appearance but at a dis-
tance away. In the event that multiple targets are located in
the track bounding box, such as at a road intersection when
cars become merged, SIFT features are used to select the cor-
rect target. If no target is found in the bounding box, SIFT
features are matched in the bounding box region and provide
a velocity measurement for a linear motion model. Tracks are

propagated if no target is matched and no SIFT features are
found, a typical occurrence when the target may be partially
or fully occluded from view of the sensor. The propagation
projects the location of the bounding box linearly into future
frames based on the most recent position and velocity prior
to the occlusion.

4 Experiment
The performance of this algorithm was evaluated with a syn-
thetically generated data set using the DIRSIG toolset.20 A
standard midlatitude summer model was used for the atmos-
pheric model MODTRAN.28 The thermal signatures for 12
vehicles were simulated with the thermal prediction software
MuSES.29 Realistic traffic patterns were generated using the
SUMO traffic simulator.30 The video sequence consists of
600 frames of 2000 × 2000 pixels sampled at 20 frames∕s.
The ground sample distance is 0.0635 m and frames are
coaligned where pixels correspond geometrically between
frames and registered between the spectral bands. As this is
a synthetically generated data set, the locations of pixels
corresponding to each vehicle is known, providing ground
truth centroids of vehicles in the scene.

4.1 Detection

We now present the performance for detecting moving
targets using our fusion algorithm applied to the DIRSIG
data set. For the evaluation of segmented detection rates,
a successful detection is a group of pixels that has a centroid
with a Euclidean distance within 0.95 m of the centroid of
a ground truth object; otherwise, it is considered a false
alarm. False alarms are reported on a per frame basis. Targets
occluded by 20% or more are not factored into the target
detection score.

False alarm rates for a series of examined thresholds are
shown in Table 4, where the optimal thresholds are given in
bold. The false alarm rate is presented by the number of false
alarms per frame. The optimal thresholds for image filtering
were selected by choosing the lowest false alarm rate for
their respective spectral combination. LWIR resulted in
the highest false alarm rate at 1.30. Three of the fusion
combinations have false alarms less than 1: MWIR–LWIR,
VIS–NIR–MWIR, and NIR–MWIR–LWIR. MWIR–LWIR
presented the lowest false alarm rate of 0.96. In the single
spectral bands, NIR had the lowest false alarm rate with 1.07.

Detection rates by segmentation for a series of examined
thresholds are shown in Table 5, where the results for the
optimal thresholds for each spectral combination are given
in bold. LWIR achieved the highest detection rate of
0.94 and VIS had a detection rate of 0.93. VIS–MWIR
and VIS–LWIR resulted in detection rates of 0.93, while
the weighted VIS–NIR–MWIR–3*LWIR (TOT3) and VIS–
LWIR3 had results of 0.91 and 0.92, respectively.

Total detection rates and false alarm rates are shown in
graph form in Fig. 6. The total detection rates include detec-
tions by both segmented objects and features. In the single
spectral bands, LWIR resulted in a detection rate of 0.94, but
suffered from the highest false alarm rate of 1.30. The detec-
tion rate of VIS was slightly lower at 0.93, but lowered the
false alarm rate to 1.14. VIS–MWIR had a detection rate of
0.94, while lowering the false alarm rate to 1.14. MWIR–
LWIR produced the lowest false alarm rate at 0.96 with a
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detection rate of 0.91. These presented fusion results dem-
onstrate that fusing multiple spectral bands lowers false
alarms while maintaining high detection rates.

The contribution to the overall detection by segmented
objects and features is shown in Fig. 7. The black bar indi-
cates the rate by segmented detection and the gray bar is
the additional detection rate by using the SIFT features.
Detection by segmentation is the primary detection mecha-
nism and contributes to the bulk of the detection rate,
whereas feature detection is secondary and has a smaller
impact on the overall detection rate. Pixel texture varies in

each spectral band, providing different spatial features that
are independent of one another. Extracting features from dif-
ferent spectral bands provides additional features for tracking
and identification. Single spectral bands did not have any
detection by features, which we attributed to an insignificant
number of features to match between the target database and
the scene. NIR–MWIR had the highest contribution for
detections by features at 0.040. We attributed this to the
high number of false pixels that were detected by segmen-
tation, incorporating features that belong to the background.
VIS–MWIR–LWIR had the next highest contribution of

Table 5 Detection rates produced for given thresholds.

Threshold VIS NIR MWIR LWIR
VIS
NIR

VIS
MWIR

VIS
LWIR

NIR
MWIR

NIR
LWIR

MWIR
LWIR

VIS
NIR

MWIR

VIS
NIR
LWIR

VIS
MWIR
LWIR

NIR
MWIR
LWIR TOT TOT3

VIS
LWIR3

0.0 0.93 0.91 0.89 0.96 0.93 0.93 0.93 0.91 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

0.2 0.92 0.87 0.85 0.94 0.92 0.92 0.93 0.89 0.91 0.92 0.92 0.93 0.93 0.91 0.93 0.94 0.93

0.4 0.91 0.87 0.85 0.94 0.92 0.92 0.93 0.89 0.91 0.92 0.92 0.93 0.93 0.92 0.93 0.93 0.93

0.6 0.91 0.87 0.85 0.94 0.92 0.92 0.93 0.89 0.91 0.92 0.92 0.93 0.93 0.92 0.93 0.94 0.93

0.8 0.88 0.84 0.80 0.89 0.90 0.89 0.90 0.86 0.89 0.89 0.90 0.90 0.90 0.90 0.91 0.92 0.92

1.0 — — — — 0.87 0.87 0.91 0.85 0.89 0.90 0.88 0.90 0.89 0.89 0.90 0.92 0.94

1.2 — — — — 0.85 0.84 0.91 0.84 0.88 0.86 0.88 0.90 0.89 0.88 0.90 0.92 0.94

1.4 — — — — 0.85 0.84 0.91 0.84 0.88 0.86 0.87 0.89 0.89 0.88 0.89 0.91 0.94

1.6 — — — — 0.86 0.84 0.93 0.83 0.87 0.85 0.86 0.89 0.88 0.87 0.89 0.91 0.94

1.8 — — — — 0.83 0.77 0.91 0.78 0.86 0.78 0.85 0.88 0.90 0.86 0.88 0.91 0.94

2.0 — — — — — — — — — — 0.85 0.89 0.90 0.87 0.88 0.92 0.93

2.2 — — — — — — — — — — 0.84 0.88 0.86 0.85 0.87 0.91 0.93

2.4 — — — — — — — — — — 0.84 0.88 0.86 0.86 0.87 0.90 0.90

2.6 — — — — — — — — — — 0.82 0.87 0.84 0.84 0.87 0.89 0.90

2.8 — — — — — — — — — — 0.76 0.83 0.75 0.76 0.87 0.90 0.89

3.0 — — — — — — — — — — — — — — 0.86 0.91 0.90

3.2 — — — — — — — — — — — — — — 0.85 0.90 0.92

3.4 — — — — — — — — — — — — — — 0.84 0.90 0.92

3.6 — — — — — — — — — — — — — — 0.81 0.90 0.92

3.8 — — — — — — — — — — — — — — 0.73 0.90 0.87

4.0 — — — — — — — — — — — — — — — 0.89 —

4.2 — — — — — — — — — — — — — — — 0.89 —

4.4 — — — — — — — — — — — — — — — 0.89 —

4.6 — — — — — — — — — — — — — — — 0.89 —

4.8 — — — — — — — — — — — — — — — 0.88 —

5.0 — — — — — — — — — — — — — — — 0.86 —

Note: dashes (—) imply the threshold exceeded the maximum obtainable pixel value in the image.
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Fig. 8 Example showing how detected pixels are scored as true positives or false alarms: (a) an example
vehicle in MWIR; (b) detected foreground pixels; blue indicates true positive and red indicates false
alarm.

Fig. 7 Detection rate with segmented objects and features.

f

Fig. 6 Detection and false alarm rates.
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feature detections with 0.028. The overall detection contri-
bution by features is not significant for this data set, but
provides a means to track targets in difficult situations such
as busy intersections or partial occlusions when they would
otherwise be lost.

Algorithm performance for estimating the targets true
centroid by correctly detecting pixels that belong to ground
truth objects will now be discussed. A correctly detected
pixel is defined as belonging to a ground truth object; other-
wise, it is classified as a false pixel. A pixel scoring example
is shown in Fig. 8. Figure 8(a) is a ground truth vehicle in
MWIR and Fig. 8(b) is labeled as foreground pixels. Blue
pixels represent true positives that belong to the ground
truth object, and red pixels represent pixels that were falsely
detected. For this example, false pixels are attributed to the
vehicle shadow.

We define the pixel detection rate for the full video
sequence as

EQ-TARGET;temp:intralink-;e014;326;752pixel detection rate ¼
P

N
i¼1 detected ground truth pixelsP

N
i¼1 total ground truth pixels

;

(14)

where N is the number of frames. High pixel detection rates
result in accurate estimates of target centroids, but falsely
detected pixels can negatively affect the centroid calculation,
resulting in less accurate results. The false pixel rate is mea-
sured per frame and presented as

EQ-TARGET;temp:intralink-;e015;326;647false pixel rate ¼
P

N
i¼1 false pixels detected

P � N ; (15)

where P is the number of nontarget pixels in the frame and
N is the number of frames.

Pixel detection rates and false pixel rates for all spectral
bands and fusion combinations are shown in Fig. 9. LWIR

Fig. 10 Mean centroid displacement of detected targets.
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Fig. 9 Rates for pixel detections and false pixels.
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produced the highest pixel detection rate of 0.95 and a false
pixel rate of 0.0007. The fusion combination VIS–MWIR
produced a high pixel detection rate of 0.94, but suffered
the highest false pixel rate of 0.0017. TOT3 resulted in a
detection rate of 0.89 and false pixel rate of 0.0003.
Seven fusion combinations resulted in false pixel
rates <0.0005.

Displacement error between detected objects and their
respective ground truth centroids is a measure of how accu-
rately an algorithm estimates the true centroid of the target.
For target tracking, centroids are input to filters that predict
future targets locations, i.e., Kalman filtering, which require
accurate estimates. Displacements of detected targets over all
frames were measured and the root-mean-square error
(RMSE) was calculated as

EQ-TARGET;temp:intralink-;e016;63;587RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
t¼1½ðx − x̂Þ2 þ ðy − ŷÞ2�

p
N

; (16)

where ðx̂; ŷÞ are the coordinates of the measured centroid,
ðx; yÞ are the ground truth centroids, and N is the number
of detections. The results are presented in Fig. 10. NIR–
LWIR had an RMSE of 0.07 m, which was the lowest for
all spectral combinations. LWIR had the next lowest
RMSE at 0.08 m, whereas the other single spectral bands
had errors >0.3 m. The fusion results presented highlight
the centroid accuracy improvements made by fusing spectral
bands as compared with using single bands.

4.2 Tracking

We now evaluate the performance of the fusion algorithm to
associate targets between scenes and create a tracking profile
using the foreground combination map (VIS–LWIR). This
weighted combination was chosen due to the low centroid
error, along with the high detection rate and low-false
alarm rate. In this evaluation, the bottom 400 rows of pixels
are not considered for the tracking results due to trees

Fig. 11 Single frames from the tracking sequence: (a) frame 150, (b) frame 300, (c) frame 450, and
(d) frame 600. (Video 1, MPEG, 14 MB [URL: http://dx.doi.org/10.1117/1.OE.54.12.123106.1]).
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obstructing the view of the imaging sensors, preventing full
vehicle segmentation. Sample images from the tracking
sequence are shown in Fig. 11. The yellow box indicates
the track algorithm has used a segmented object to update
the track location. A teal box indicates that no segmented
object matched and SIFT features were used to update the
track location.

The motion of 12 vehicles was simulated for an urban
traffic environment. Tracks were initiated on all 12 vehicles
during the video. Of those 12 vehicle tracks, 11 were tracked
though the entire video sequence with no errors. Due to
being idle for extended periods of time, one track was
lost, but a new track was initiated after it initiated movement.
There were no instances where track identities were switched
between vehicles and only one instance of a false track.
Three false tracks were produced, where two false tracks
are attributed to the idle vehicle. The tracking results are
summarized in Table 6.

5 Conclusion
In this paper, we proposed an algorithm to fuse multispectral
data sets to increase detection accuracy of a video tracker,
while maintaining a high detection rate and low-false alarms
per frame. Previous works consider visible and LWIR data
sets;12–17 we extend previous work to include NIR and
MWIR. In these four spectral bands, we build a GMM to
detect foreground pixels by modeling the time history of
the pixels intensities. Foreground pixels from all spectral
bands are weighted and fused into foreground maps, and
formed into targets candidates. Target candidates are tracked
through the frame sequence using SIFT features to track
missed detections and uniquely identify targets. Our pro-
posed algorithm was tested on synthetically generated
data using the DIRSIG toolset of visible, NIR, MWIR,
and LWIR imagery. Compared with the single spectral
band base, the fused algorithm improves detection accuracy
while improving detection rates and lowering false alarm
rates. The detection results provided input to a video tracker
that detected the 12 moving vehicles in the scene. Of those
12 targets, 11 were tracked with no failures, one vehicle
showed track-loss, but this track was reinitiated, and three
false tracks occurred.
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