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ABSTRACT. Significance: Endoscopic screening for esophageal cancer (EC) may enable early
cancer diagnosis and treatment. While optical microendoscopic technology has
shown promise in improving specificity, the limited field of view (<1 mm) significantly
reduces the ability to survey large areas efficiently in EC screening.

Aim: To improve the efficiency of endoscopic screening, we propose a novel con-
cept of end-expandable endoscopic optical fiber probe for larger field of visualization
and for the first time evaluate a deep-learning-based image super-resolution
(DL-SR) method to overcome the issue of limited sampling capability.

Approach: To demonstrate feasibility of the end-expandable optical fiber probe,
DL-SR was applied on simulated low-resolution microendoscopic images to gener-
ate super-resolved (SR) ones. Varying the degradation model of image data acquis-
ition, we identified the optimal parameters for optical fiber probe prototyping. The
proposed screening method was validated with a human pathology reading study.

Results: For various degradation parameters considered, the DL-SR method dem-
onstrated different levels of improvement of traditional measures of image quality.
The endoscopists’ interpretations of the SR images were comparable to those per-
formed on the high-resolution ones.

Conclusions: This work suggests avenues for development of DL-SR-enabled
sparse image reconstruction to improve high-yield EC screening and similar clinical
applications.
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1 Introduction
With an incidence of about 600,000 new cases and more than 500,000 deaths annually world-
wide, esophageal cancer (EC) is one of the deadliest cancers worldwide. The two main histo-
logical subtypes of EC include: esophageal adenocarcinoma1 and esophageal squamous cell
carcinoma (ESCC).2 Screening and early detection of ESCC are critically important to help
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reduce the incidence and mortality associated with EC. However, challenges posed by the exten-
sive surface area of the esophagus, the limited field-of-view (FOV) offered by conventional
microendoscopic screening probes (100 to 1000 μm),3–5 and the time constraints of endoscopic
procedures (6 to 8 min per patient) necessitate the development of an innovative approach to
enable imaging of larger fields and improve diagnostic yield.

In recent years, in-vivo optical microscopy techniques, such as confocal laser endomicro-
scopy (CLE) and high-resolution microendoscopy (HRME), have been applied to visualize the
nuclear morphology of the esophageal epithelium and assist in differentiating neoplasia from
benign tissue.3,5–7 In contrast to conventional tissue biopsies and histopathologic analysis, these
optical techniques are non-invasive and able to provide real-time results. However, microendo-
scopy is currently limited by its small FOV (the average diameter of a probe is 0.3 mm) that
hinders it from imaging larger tissue areas. To circumvent this limitation, we propose a novel
approach using an end-expandable optical probe to increase the FOV using sparse-data
imaging.8,9 By use of a sleeve mechanism that expands the end of the fiber bundle with unfused
microfibers, a larger tissue FOV can be achieved for real-time diagnosis (Fig. 1). However, one
major challenge for successful application of such an optical probe is the development of image
processing procedures that act on the acquired sparse image data and allow formation of a micro-
endoscopic image with enhanced quality.

Deep-learning-based approaches have been developed for improving the quality of micro-
endoscopy imaging. Ravi et al. proposed a synthetic data generation approach to train exemplar-
based deep neural networks for recovering HR probe-based confocal laser endomicroscopy
images.10 To address the need for non-reference image quality (IQ) improvement, Szczotka et al.
designed a zero-shot super-resolution approach with a physically-motivated downsampling
Voronoi kernel tailored to the acquisition physics by incorporating fiber bundle geometry and
noise simulation.11 More recently, a multi-frame super-resolution algorithm exploiting bundle
rotation to extract features and reconstruct underlying tissue is developed by Eadie et al.12

Motivated by the advances of image super-resolution using deep learning approaches,8,10–16 here
we proposed a deep-learning-based image super-resolution (DL-SR) method that estimates a
HRME image from its acquired low-resolution (LR) counterpart. In this way, sparse images can
be acquired by the end-expandable optical fiber probe to increase the FOV at cost of spatial
resolution, which could be subsequently restored by use of a DL-SR method to enhance IQ for
diagnostic purposes.

The goal of our study is to demonstrate the feasibility of the concept of the end-expandable
optical fiber probe using the proposed sparse imaging methodology to achieve a wider FOV with
IQ comparable to that achieved by a conventional probe of fused fiber. As a surrogate of clinical
trials, computer simulation studies, also known as virtual imaging trials, provide us with an eco-
nomical and convenient route to explore imaging system designs.17 Here, estimates of LR micro-
endoscopic images of esophageal mucosa that would be acquired by use of the novel optical fiber
probe are computationally simulated. This will be accomplished by degrading HRME images by
use of a degradation model that incorporates the physical factors of the optical fiber probe.
Subsequently a DL-SR model was employed to generate super-resolved (SR) images from the
LR ones. The impact of various degradation parameters of the probe on DL-SR performance was
investigated to identify optimal parameters for prototyping. Additionally, a clinically-relevant
detection task of esophageal neoplasia was conducted by endoscopists to study the impact
of DL-SR on task performance. The results will provide valuable guidance for future prototyping
and the advancement of this novel imaging technique.

Fig. 1 Conceptual 3D rendering of a settled optical fiber probe (a) and an end-expanded optical
fiber probe (b), respectively. Here, the diameter of a single fiber strand can vary from 4 to 6 μm.
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2 Methods
To demonstrate the applicability of the proposed end-expandable optical fiber probe model, DL-
SR models were trained in an end-to-end manner to learn a mapping between the LR images
simulated with degradation models that incorporate different optical probe parameters and the
HRME images. Traditional IQ metrics were computed on simulated LR and SR images to assess
the perceptual IQ and identify the optimal parameters for the probe prototyping. In addition, a
human pathology reading study was carried out to evaluate the utility of the images enhanced by
the DL-SR model within a screening context.

2.1 HRME Image Acquisition and Pathology Interpretation
A HRME image dataset acquired by use of a low-cost, point-of-care HRME device that imaged
the esophageal epithelium of patients undergoing endoscopy for ESCC screening18 was used in
the study. The HRME images were obtained sequentially from patients enrolled in a clinical trial
comparing standard of care Lugol’s chromoendoscopy (LCE) to LCE+HRME at three sites: First
Hospital of Jilin University (Changchun, China), the Cancer Institute at The Chinese Academy of
Medical Sciences (Beijing, China), and Baylor College of Medicine (Houston, Texas, United
States) from December 2014 to November 2016, approved by the Institutional Review
Board at Baylor College of Medicine [IRB# H-34973]. The details of image acquisition have
been described in previous studies.18,19

The HRME imaging system consisted of a compact epi-fluorescence fiber optic microscope,
which provides 1000× magnification views of epithelial tissue and subcellular features to dis-
tinguish cancerous from benign tissue after staining with a topical fluorescent dye, 0.01% pro-
flavine hemisulfate. It has been evaluated in various anatomical sites, such as the cervix, anus,
mouth, throat, and esophagus.5,19 Due to its low cost and reusability, HRME can have a high
impact in resource-limited global settings. The HRME principles and schematics have been
described previously.18 Typically, the HRME device conducts imaging through a fused optical
fiber bundle with a cross-sectional diameter of 800 and 4.4 μm lateral spatial resolution (an indi-
vidual fiber strand diameter as little as 4 μm). For a conventional microscopic probe, the input
and the output at the distal and proximal ends of the fibers demonstrate the same pattern. The
fiber strands are positioned as close to each other as possible, and the size of the fiber strands
usually defined image resolution for a registering camera of high-resolution. The light illumi-
nation measures are collected from a continuous part of tissue and registered on a camera cor-
respondingly. Figure 2(a) demonstrates the optical fiber pattern generated by the fiber strands of
the fused optical fiber bundle.

The density of the nuclei represented the metric for diagnosis and differentiation between
neoplastic and non-neoplastic images. All image sites were biopsied, and biopsy histopathology
results served as the gold standard. High-grade dysplasia and ESCC were classified as neoplastic;
normal squamous epithelium, esophagitis, and low-grade dysplasia were classified as non-
neoplastic.

All HRME images were standardized in size of 960 pixels × 1280 pixels. A Gaussian filter
with standard deviation of 2 pixels was applied to remove the comb pattern introduced by the

Fig. 2 Schematics of image acquisition by means of (a) a conventional fused endoscopic fiber
probe; (b) an end-expandable, unfused endoscopic fiber probe.
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sparse data of optical fiber bundles. A contrast-limited adaptive histogram equalization with a
clip limit of 0.005 was employed to enhance the image contrast.

2.2 Quality Control and Image Selection
In addition to IQ control conducted as described in the previous study,19 bioengineers further
categorize the acquired HRME images into three types of perceptual image qualities: good, inter-
mediate, and poor. Images with good quality should demonstrate an FOV where nuclei can be
clearly visualized. Images with intermediate quality showed mild motion blur or defocus aber-
ration that could affects approximately a quarter of the imaged area. Images with poor quality
were classified by factors, such as severe motion blur, obstructed vision, or image corruption for
half of the image area or more. Only images of good and intermediate perceptual quality were
selected and used in this study.

2.3 Simulated Image Data for End-Expandable Optical Fiber Probe
A virtual imaging trial was performed to simulate LR images that would be acquired using the
proposed novel optical fiber probe by use of the acquired HRME images. As shown in Fig. 2(b),
one can find a schematic of the concept to an end-expandable optical fiber probe. Unlike conven-
tional image acquisition through an optical fiber bundle [Fig. 2(a)], the end-expandable optical
fiber bundle can form a “brush” at the input end [Fig. 2(b)]. The input elements of such lightguide
are fiber strands, which are placed at a distance from each other and all together they represent a
sparse data set. Thus, the optical fiber “brush” collects fluorescent emission from a surface par-
tially and discontinuously. To create LR images, we processed the simulated sparse image data
acquired from the end-expandable endoscopic optical fiber probe [Fig. 2(b)] by filling in non-
populated pixels of the sparse images [Fig. 3(b)]. Diagrams that depict the conventional and
sparse image data acquisition and processing are shown in Fig. 3.

To emulate the LR images that would be acquired from the novel end-expandable optical
fiber probe, a degradation model that incorporates the fiber knock-out downsampling was
applied to the HRME images. Assuming a single fiber strand with a diameter of 4 μm, we
considered a pixel size of 2 μm in this study. As shown in Fig. 3, given a fiber strand rep-
resented by a range-of-interest (ROI) block of m pixels ×m pixels that resides in the center of
an FOV block of s pixels × s pixels, a random deformation offset with maximum of dx pixels
and dy pixels in horizontal and vertical direction was considered, respectively. This was
designed to depict the off-center deviation when defining the ROI block. The degradation
model calculated the mean value over pixels within the ROI block and filled the pixels in
FOV block with the derived value. In this study, three different parameters of the degradation
model were investigated to evaluate the DL-SR performance: the fiber diameter m, the inter-
fiber distance s, and the deformation offset d. The schematic of the proposed degradation
model is shown in Fig. 4.

Figure 5 shows examples of an HRME image, an intermediate sparse image and the LR
image simulated by use of the degradation model, respectively. Here, the fiber diameter
m ¼ 6 μm, the inter-fiber distance s ¼ 12 μm, and the deformation offset d ¼ 1.

Fig. 3 (a) 1D-schematic of the conventional image data acquisition leading to the HR images;
(b) the sparse image data acquisition and reconstitution from the compressed data set into the
LR images. Red elements represent a fiber strand collecting light illuminated by the tissue surface
and green elements are a set of pixels displayed as average value of light intensity in the adjacent
fiber. (c) 2D-illustration of the simulated sparse image data; s and m are the length of side of FOV
and ROI, respectively; dx and dy are the offsets in x and y directions, respectively.
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2.4 Deep-Learning-Based Image Super-Resolution
Given an LR image ILR virtually acquired with the end-expandable optical probe, image super-
resolution methods seek to produce an SR image ISR as an estimate of a HRME image that would
be obtained from a conventional fused endoscopic fiber probe. However, this is a challenging ill-
posed inverse problem. In recent years, DL-SR methods have been widely applied in various
applications.13–15,20–24 Here, the well-studied super-resolution convolutional neural network
(SRCNN)13 was employed to investigate the feasibility of DL-SR methods to improve quality
of simulated LR images from the novel optical probe. Such analysis can be readily repeated with
other more recent DL-SR approaches.14,25 The SRCNN seeks to establish a mapping from the
space of simulated LR images to the space of HR images

EQ-TARGET;temp:intralink-;sec2.4;117;336ISR ¼ F ðΘ; ILRÞ;
where F is the network parameterized by Θ. The SRCNN was trained by minimizing the mean
squared error between generated SR images and original HRME images. The architecture of an
SRCNN is shown in Fig. 6, consisting of three feedforward convolutional layers interspersed
with leaky rectified linear unit nonlinearities. The filter sizes of the three convolutional layers
were 9 × 9, 1 × 1, and 5 × 5 and the corresponding number of filters were 64, 32, and 1,
respectively.

The training and validation data for the SRCNN consisted of 206 and 50 paired HRME and
corresponding simulated LR images, respectively. During training and validation, each image
was randomly cropped into 10 patches with a size of 512 × 512. In the testing stage, the
full-size simulated LR images were used. The SRCNN was trained with Adam optimizer26 with
a learning rate of 0.0001. The network was trained for 300 epochs with a batch size of 8, and the

Fig. 5 Example of an original HRME image, the same imaging area as sparse data captured by the
proposed end-expandable optical fiber probe, and the LR image restored from the sparse data.

Fig. 6 Schematic of the SRCNN architecture used in the study.

Fig. 4 Illustration of degradation models that incorporated various optical fiber probe parameters
including (a) offset, (b) inter-fiber distance, and (c) fiber diameter.
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model with best validation performance was used for downstream task evaluation. For various
degradation parameters mentioned in Sec. 2.3, the SRCNN was retrained and evaluated. SRCNN
were implemented with TensorFlow 2.0 and trained on NVIDIA GPUs.

2.5 Image Quality Assessment and Statistical Analysis
To assess the DL-SR performance with consideration of various degradation parameters used to
simulate the LR images, traditional IQ metrics, such as peak-signal-to-noise ratio (PSNR) and
structural similarity index metric (SSIM) were computed on the simulated LR and SR images. In
addition, a binary detection task to determine whether esophageal neoplasia is present or not was
performed by endoscopists on both SR images obtained from SRCNN and the original HRME
ones. The accuracy and confidence level were evaluated to assess the task-based performance of
the employed DL-SR method.

A total of four endoscopists (three experts, one novice) underwent standardized training in
HRME image interpretation. Expert endoscopists were defined as having previously performed
>50HRME cases, whereas novices were new to the technology. All endoscopists viewed a set of
training slides that demonstrated the features of neoplastic and non-neoplastic classification of
HRME images, including nuclear size, crowding, and pleomorphism. All endoscopists were
asked to interpret a series of original HRME images and generated SR images as neoplastic
(high-grade dysplasia, ESCC) or non-neoplastic (normal squamous, esophagitis, low-grade dys-
plasia) along with their confidence level in their interpretation (high or low).

Assuming 80% power, α ¼ 0.05, and two-sided test to establish equivalence between HR
and SR images with equivalence limit of 0.15, a sample size of 120 images was calculated using
sample-based variance estimates without continuity correction for binary data. The sensitivity,
specificity, and accuracy of HRME and SR image interpretation of individual endoscopists was
compared with histopathology as the gold standard. Unpaired t-test was computed to assess for
differences in the sensitivity, specificity, and accuracy in endoscopists’ interpretation of HR and
generated SR images.

3 Results

3.1 Performance Evaluation of DL-SR to Super-Resolve Simulated LR Images
of End-Expandable Optical Fiber Probe

The DL-SR model was first trained and tested on HRME images and corresponding LR images
simulated by use of a degradation model with fiber diameter m ¼ 4 μm, inter-fiber distance s ¼
8 μm and no offset imposed. Figure 7 shows two examples of the test images where perceptual
IQ of the simulated LR images appeared to be improved by DL-SR. Figure 8 shows a zoomed-in,
cutoff image patch of the original HR, simulated LR, and generated SR images and the corre-
sponding cross-sectional profiles of optical intensity. Note that, as expected, the line profiles of

Fig. 7 Examples of original HRME image, simulated LR image and corresponding SR image (top
row) generated by the DL-SR method with magnification (bottom row).
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the SR image aligned closer to the HR one, compared to the line profiles of the simulated LR
image. Visual inspection confirms that details of subcellular features could be restored by use of
SRCNN to obtain improved perceptual IQ.

3.2 Impact of Offset, Inter-Fiber Distances and Fiber Diameter on Traditional
Image Quality Metrics

In this study, the impact of different parameters considered in the degradation model on tradi-
tional IQ metrics was evaluated. The offset d was varied from 0 to 10 μm, and the inter-fiber
distance s was changed ranging between 4 and 24 μm. A fiber strand diameter m ranging from 4
to 12 μm was applied. All SRCNN models were trained on paired of HRME and LR images
simulated with various degradation parameter values. Traditional measures of IQ were assessed
by computing PSNR and SSIM values on a test set consisting of 300 images, and these quantities
are plotted on Fig. 9. In most cases, the SR images generated by the SRCNN demonstrated

Fig. 8 Cross-sectional line profile on selected images allows comparison of profiles of optical
intensity associated with stained nuclei on original HR images, simulated LR images, and recon-
structed SR images.

Fig. 9 Traditional IQ metrics show degradation of LR and limitation of improvement of SR images
with reference to HR images: PSNR and SSIM values of LR (red) and SR (blue). The gray dashed
line denotes a SSIM value of 0.95.
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improvements across various offsets, inter-fiber distances and fiber diameters compared with
their LR counterparts in terms of the traditional IQ metrics. Moreover, various degradation
parameters showed different levels of impacts on the traditional IQ metrics of simulated LR and
SR images. When increasing the offset of fibers, traditional IQ metrics of both LR and SR images
decreased. Similar phenomena were observed when the inter-fiber distance and fiber diameters
were increased. This is due to the more severe degradation model incorporated and thus DL-SR
performs worse on images largely missing information when the network capacity or the number
of training images were limited.

3.3 Endoscopists’ HRME Image Interpretation of DL-SR Images
Among the 120 paired HRME images and SR images included in the study, 42 images (35%)
were non-neoplastic and 78 images (65%) were neoplastic. The diagnostic performance of endo-
scopists on HR and SR images is demonstrated in Figs. 10 and 11 for the summation of all four
endoscopists’ reads. Overall, the task-based IQ of SR images was comparable to that of HR
images when endoscopists interpreted them in a post-hoc setting. On the original HR images,
the endoscopists achieved an overall accuracy of 70.2% (standard deviation [SD], 5.4%), a sen-
sitivity of 73.7% (SD, 14.1%), and a specificity of 63.7% (SD, 12.8%). On the SR images, the
endoscopists did not significantly change their accuracy (p ¼ 0.37), sensitivity (p ¼ 0.70), or
specificity (p ¼ 0.07).

Overall, endoscopists had high confidence in their image interpretation in a mean 51.1%
(SD, 7.7%) of HR images and 48.5% of SR images (SD, 9.0%, p ¼ 0.68). Among high con-
fidence images, endoscopists had no significant difference in their accuracy (76.0% versus
74.8%, p ¼ 0.73), sensitivity (84.6% versus 88.3%, p ¼ 0.45), or specificity (45.9% versus
30.2%, p ¼ 0.19) on SR images compared to HR counterparts. Similarly, for low-confidence
images, endoscopists did not have a significant difference in their accuracy (64.2% versus
60.1%, p ¼ 0.39), sensitivity (58.1% to 63.7%, p ¼ 0.68), or specificity (73.3% versus
55.8%, p ¼ 0.14) on SR images compared to HR images.

4 Discussion
In this study, an endoscopic end-expandable optical fiber probe was proposed and evaluated for
its ability to improve the field of imaging in EC screening. The novel concept of an end-expand-
able optical fiber probe was simulated by use of degradation model incorporating various probe
parameters and was tested using HRME images of esophageal squamous tissue. We performed a

Fig. 10 Diagnostic performance of endoscopists’ reading on HR and SR microendoscopy images
shown in box and whisker plot. The cross and horizontal line in the box represents mean and
median values of the endoscopists’ response. The bottom and the top end from the whiskers are
the minimum and maximum values, respectively.
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virtual imaging trial to simulate LR microendoscopic image dataset from clinical HRME images
and demonstrated the effectiveness of a DL algorithm to improve the perceptual IQ measures of
LR images. Furthermore, the generated SR images were comparable to the original HRME
images when interpreted by endoscopists in a diagnostics task.

The capability of the employed DL-SR algorithm to super-resolve an LR image of end-
expandable optical fiber probe was proven for the first time here and should be highlighted
because of its potential for further improvement and application. As expected, the quality of
the SR images deteriorated when severe degradation models were considered. This indicated
the significance of choosing tolerable parameters for future physical prototypes of the end-
expandable optical fiber probe. We found that the diameter of a single fiber strand should be
no more than 6 μm. The inter-fiber distance can be increased to up to 14 to 16 μm, which should
be taken into account in the design and development of an optical fiber probe sleeve and a mecha-
nism for controlling the inter-fiber distance. The fiber flexibility can permit offset of up to 4 to
6 μm. As a result, it will allow for increasing the diameter of an endoscopic sensor up to 4 to
5 mm instantly (the FOV area is 10 to 20 folds bigger than HRME) that can provide a dramatic
improvement in esophageal screening efficiency. In the Supplemental Material and Video 1
(MP4, 6.03 MB [URL: https://doi.org/10.1117/1.JBO.29.4.046001.s1]), we demonstrate that the
flexibility of single microfibers is very high and will not be limited by the expansion of the
optical fiber brush in the applied range of microfiber curvation. The outer diameter of an
expanded optical fiber brush and the corresponding simultaneously examined area depend
on both the single fiber diameter and the range of inter-fiber distance.

The proposed concept of DL-SR image reconstruction for the case of limited sampling or
low resolution can be applied to other optical methods of image acquisition. For example, the
zoom mini lens were developed to enlarge microendoscopic FOV up to 1.15 mm.27,28 Given the
principle of sparse image acquisition, the scanning sampling of zoom mini lens, its FOV and
image resolution can be potentially enhanced.

Fig. 11 (a) Sensitivity and specificity plot of individual endoscopist diagnosis on HR and SRmicro-
endoscopic images with high and low confidence, respectively. (b) Confusion matrix of diagnostic
performance of readers on HR and SR images with low and high confidence, respectively. TP, true
positive; FP, false positive; FN, false negative; and TN, true negative.
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Endoscopists had comparable diagnostic accuracy when interpreting original HRME images
and DL-SR generated SR ones. While specificity could be improved, sensitivity was higher for
SR images than for the original HR images. Our metrics of success focused on achieving com-
parable performance of human reads on SR images compared to that on HR images, which was
achieved. Moreover, endoscopists had comparable level of confidence when interpreting SR
images compared to the original HR images, which is a quantitative task-based assessment
of the SR IQ. DL-SR methods that effectively estimate SR images, resembling the original
HR images, is a robust strategy to increase the field of visualization during EC screening while
maintaining accurate esophageal neoplasia detection by clinicians. More advanced deep-
learning-based approaches for endoscopy super-resolution, such as those employing deformable
transformer, contrastive adversarial learning, and zero-shot learning11,12,29–32 should also be
investigated for the end-expandable probe application in future studies.

This study evaluated the feasibility, imaging capability, and clinical performance of a hypo-
thetical end-expandable optical fiber probe based on simulation studies using existing HRME
images. Future in vivo studies will need to develop and test the fiber probe and its effectiveness in
EC imaging. Using a larger dataset of the clinical microendoscopic images will potentially fur-
ther advance the DL-SR performance. Another limitation of this study includes the rectangular
orientation of the degradation model. A radial model of the optical fiber probe expansion will be
applied to future studies.

5 Conclusion
We proposed a concept of an end-expandable optical fiber probe that would increase the field of
visualization by up to 20-fold compared to a traditional fused HRME probes. We further validated
the DL-SR generated images produced from the end-expandable optical fiber probe and found
endoscopists’ interpretation of the SR images to be comparable to that of conventional HRME
images. The proposed novel end-expandable optical fiber probe has the potential to enable
high-yield endoscopic microscopy screening and even facilitate a screen-and-treat protocol for
early EC treatment. Moreover, the proposed sparse image methodology will provide valuable
guidance for future prototyping and the advancement of optical biopsy techniques over larger
surface areas.
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