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1 Introduction

Abstract. The goal of computer-assisted surgery is to provide the surgeon with guidance during an intervention,
e.g., using augmented reality. To display preoperative data, soft tissue deformations that occur during surgery
have to be taken into consideration. Laparoscopic sensors, such as stereo endoscopes, can be used to create
a three-dimensional reconstruction of stereo frames for registration. Due to the small field of view and the homo-
geneous structure of tissue, reconstructing just one frame, in general, will not provide enough detail to register
preoperative data, since every frame only contains a part of an organ surface. A correct assignment to the pre-
operative model is possible only if the patch geometry can be unambiguously matched to a part of the preoperative
surface. We propose and evaluate a system that combines multiple smaller reconstructions from different
viewpoints to segment and reconstruct a large model of an organ. Using graphics processing unit-based methods,
we achieved four frames per second. We evaluated the system with in silico, phantom, ex vivo, and in vivo
(porcine) data, using different methods for estimating the camera pose (optical tracking, iterative closest point,
and a combination). The results indicate that the proposed method is promising for on-the-fly organ reconstruction
and registration. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.2.4.045001]

Keywords: endoscopic image processing; stitching; simultaneous localization and mapping; visualization; surgical vision; quantitative
endoscopy.
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The amount of minimally invasive surgeries performed yearly is
increasing rapidly. This is largely due to the numerous benefits
these types of intervention have on the patient side: shorter stay
in hospital, less trauma, minimal scarring, and lower chance of
postsurgical complications. There are several drawbacks for
the surgeon, though: limited hand-eye coordination, no haptic
feedback, no direct line of sight, and a limited field of view.

Computer-assisted surgery tries to alleviate some of these
drawbacks by providing the surgeon with information relevant
to the state of the intervention. Prior to the intervention, preop-
erative data are acquired for diagnosis and surgical planning.
Elaborate equipment (e.g., CT or MRI) generates precise data
and also allows imaging from the interior of the body. Three-
dimensional (3-D) models created from this data can provide
the surgeon with a virtual view inside the patient during surgery.
To this end, the models have to be registered to the current sur-
gical scene, i.e., the current location and orientation of the real
structure have to match those of the virtual one. The available
tools for intraoperative imaging (e.g., endoscope) are limited in
image quality and field of view. But they can be used to create
intraoperative surface models that enable the registration proc-
ess with the preoperative data.

Many groups have explored ways to obtain intraoperative
surface models. To sample an intraoperative surface, Herline
et al.! used a probe in which the tip was moved over the visible
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parts of the liver. The probe was localized with an active position
sensor. To avoid possible tissue damage, newer approaches com-
monly rely on ranged sensors. Laser range scanners used by
Clements et al.” offer high reconstruction quality for conven-
tional liver surgery. The downside is the need of additional
hardware in the operating room. Dumpuri et al.® extended this
approach to take intraoperative soft tissue deformation into
account. After an initial rigid registration of the laser scan and
CT surfaces, the residual closest point distances between the
rigidly registered surfaces are minimized using a computational
approach. The method was further refined by Rucker et al.*
using a tissue mechanics model subjected to boundary condi-
tions, which were adjusted for liver resection therapy.

For registering preoperative data in laparoscopic surgery, the
organ surface can be observed with optical laparoscopic sensors
that provide a 3-D-reconstruction of a single video frame. There
are many methods for reconstructing 3-D surface structures.’
The most commonly used methods rely on multiple view geom-
etry. Through correspondence analysis between two or more
images, a 3-D-reconstruction can be obtained via triangulation.
Structure from motion (SfM) uses one camera with images from
at least two different perspectives for triangulation. A similar
approach is the stereo camera. It uses two image sensors, which
can be calibrated to each other. The known transformation
between the two stereo images allows a more precise recon-
struction. Instead of using naturally given correspondences,
shape from shading algorithms use structured light for active
triangulation. The structured light has to be projected onto
the scene, which is proving to be difficult in surgical practice.
The methods mentioned previously only reconstruct a small
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field of view, and due to the homogeneous structure of tissue,
a single frame, in general, will not provide enough detail to
rule out geometrical ambiguities (i.e., an intraoperative surface
patch has multiple possible matches on the preoperative model
surface) during registration.

To remedy this problem, Planteféve et al.® used anatomical
landmarks to achieve a stable initial registration. The preopera-
tive landmarks were labeled automatically while the intraoper-
ative labeling required manual interaction. After the initial
registration, a biomechanical model and the established corre-
spondences between the landmarks were used to counteract
intraoperative soft tissue deformation and movement.

To expand the reconstructed surface, methods to associate
multiple frames are needed. One of these is the procedure of
localizing the camera in the world while simultaneously mapping
it, known as simultaneous localization and mapping (SLAM)
in literature. SLAM is a well-known approach in robotic mapping
and has also found its way into computer-assisted laparoscopic
surgery. Mountney et al.” introduced an SLAM approach using
a stereo endoscope to map the soft tissue of the liver. They worked
with a sparse set of image texture features, which are tracked
by an extended Kalman filter. In later work, the system was
expanded to compensate breathing motions.®

To recover from occlusions or sudden camera movements,
Puerto-Souza et al.”!® developed a robust feature matching,
the hierarchical multiaffine (HMA) algorithm. In tests with
real intervention data sets, the HMA algorithm exceeded the
existing feature-matching methods in the number of image cor-
respondences, speed, accuracy, and robustness.

SLAM can also be achieved through a single moving camera.
With the previous mentioned SfM technique, reconstructing 3-D
scene information is possible. In the work of Grasa et al.'""'? this
method is used to create a sparse reconstruction of a laparo-
scopic scene in real time. However, reconstructions from single
camera solutions have the problem that they do not provide an
absolute scale. To approach this problem, Scaramuzza et al.'
used nonholonomic constraints. Recently, Newcombe et al.!*
introduced the KinectFusion method, which provides dense
reconstructions of medium-sized (nonmedical) scenes in real
time using a Microsoft Kinect for data acquisition. In the work
of Haase et al.,"” an extension of Newcombe et al.'* is used to
reconstruct the surgical situs with multiple views taken by a
160 x 120 pixels time-of-flight camera.

In this paper, we present a system that combines 3-D recon-
structions generated online by a stereo endoscope from multiple
viewpoints, while simultaneously segmenting structures on-the-
fly. It is based on our previous work'® and was extended by a
detailed description of the method and an extensive evaluation
on in silico, phantom, ex vivo, and in vivo data. In our system,
the reconstructions and the segmentations are combined into one
organ model. To compute a 3-D point cloud from a stereo image
pair, the hybrid recursive matching (HRM) algorithm outlined
by Rohl et al.!” was used. It was compared with other 3-D sur-
face reconstruction methods by Maier-Hein et al.'® and achieved
the best results. The segmentation of the organ of interest is done
on the basis of color images. Using a random forest based
classifier,' each pixel is labeled as part of an organ of interest
or background. The resulting point clouds and their respective
labels are then integrated into a voxel-volume using a
KinectFusion based algorithm.'* Given enough viewpoints,
the voxel-volume will contain a combined model more suited
for registration than the model generated from single shot.
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The novelty of the approach presented in this work is the
application of a stereo endoscope, a modality already available
in the surgical workflow, to reconstruct an entire scene from
multiple viewpoints online, while simultaneously segmenting
one or more organs of interest. Our main contributions are as
follows:

e Mosaicking of frame reconstruction parts using a frame-
to-model registration with the possible use of a tracking
device (e.g., NDI Polaris).

o Dense surface model that is generated online and is avail-
able after each image frame.

o Per-frame segmentation of organs is achieved through
a fast graphics processing unit (GPU) random forest
approach.

¢ Global segmentation allows accumulation of the single-
frame segmentation probabilities for each global surface
point. The combined segmentation results lead to a higher
and more robust recognition rate.

In the following, we will present a more detailed description
of our reconstruction workflow, followed by an evaluation using
in silico, phantom, ex vivo, and in vivo data (porcine). Three
methods for determining the camera pose are also evaluated:
optical tracking, iterative closest point (ICP) tracking, and a
combination of these two methods. The evaluation and work-
flow are described in the context of laparoscopic liver surgery.

2 Methods

Our system for reconstructing the scene consists of multiple steps
(Fig. 1). First, we reconstruct a 3-D point cloud from stereo image
frames. At the same time, the organs of interest are segmented in
the video image. Afterward, the reconstruction is combined with
the segmentation results and integrated into a truncated signed
distance (TSD) volume. From this volume, a mosaicked model of
the combined reconstructions can be retrieved. Using a TSD
volume allows us to incorporate information from different
viewpoints to create a larger model than from a single view,
while simultaneously reducing noise in the model.

2.1 Reconstruction and Segmentation

The stereo endoscope provides left and right camera images,
which are first preprocessed to remove distortion and to rectify
the image pair. Using correspondence analysis,'” we first calcu-
late a disparity map between the two images and then triangulate
those matches, resulting in a dense 3-D point cloud R; in camera

»

. Stereo
Stereo endoscope images 3-D model
’ : - - Volume -
Segmentation B

>

Fig. 1 System overview.
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coordinates for each time step. The preprocessing and the
correspondence analysis were both implemented on the GPU.

Every pixel in the scene is simultaneously classified using a
random forest'® into foreground, e.g., liver, and background. As
features, the hue and saturation channels from the HSV color
space and the color-opponent dimensions a and b from the
LAB color space were used. The classifier thus provides a map-
ping C;(p) = {1...n}, p € R; from 3-D point to a class-label
for each time step.

The random forest was trained on multiple previously labeled
image. We trained a forest consisting of 50 trees with a maxi-
mum depth of 10. To allow real-time processing, the classifica-
tion portion of the random forest was ported to the GPU.

2.2 Integration into Truncated Signed
Distance-Volume

Assuming the pose P; of the camera in each time step is known,
the point clouds R; can be transformed into the world coordinate
system R = P;(R;). At every time step, RY is integrated into
a TSD volume S;(p) — [F;(p), Ki(p, j), W;(p)], where p is a
voxel in the volume. The TSD value F;(p) and the weight
W;(p) are computed as suggested in Ref. 14.

Wi_i1(p)Fi—1(p) + Wk, (p)Fg,(P)
Wi_i(p) + Wg,(p)

Fi(p) = ; 6]

Wi(p) = Wi_i(p) + Wk, (p), )

where Wy (p) is the weight of voxel p in the current frame. It
can be used to weight the TSD value computed for the current
frame Fp, correlated to the measurement uncertainty, or set
uniformly to one. Fp, can be computed as

Fg,(p) =Y~ 'lt; = pll, — R;(x)], 3)

A=K x|, @)

x = |KT;'p], Q)
_ Jmin(1,D)sgn(n), n>-p

¥(n) = {undefinﬂed, else ©)

where K is the camera calibration matrix, X is the homogenized
image coordinate x, |.| is the nearest neighbor lookup, T} is the
camera transformation, and ¢; is the translation part of T;. 17!
converts the ray distance ||z; — p||, to a depth value in the camera
coordinate system. The function ¥(5) specifies the area of in-
fluence of R; over the voxels F.. The parameter p is responsible
for the maximal distance before the influence of a point on a
voxel is truncated.

We included K;(p, /) in the volume to account for class
membership of p.

Wit (P)Ki—1 (P, ) + Wrw (P)Kgy (P, /)

where R)"(p) represents the point in R} that lies in p and j
stands for the classifier category (e.g., background and target
structure).

The class membership C;(p) at the current time step can then
be computed as

C;(p) = argmaxK;(p, j). &)
Jje{l...n}

This way of smoothing class membership over time allows
our system to cope with potential misclassifications.

2.3 Camera Pose

To integrate the point cloud R; into the TSD volume, the pose P;
of the camera at time step i has to been known. In this paper, we
consider three methods for estimating P;.

1. ICP: We adopt the assumption of Newcombe et al.'*
that the pose of the camera changes only slightly
between frames. By registering R; with a ray cast of
the TSD volume using the projective data association
ICP algorithm,20 we estimate P;. With the small move-
ment assumption and the special ICP variant, all pixels
can be used in real time.

2. Polaris: We use the NDI Polaris optical tracking sys-
tem to track both camera and the patient.

3. Mixed: We combine the two methods by using the
tracking information as a seed for the ICP.

3 Results

We performed five experiments to evaluate our system using in
silico, phantom, ex vivo, and in vivo livers. For each liver, a
reference was computed by laser scan or CT. In each experi-
ment, we moved the stereo endoscope over the liver and used
the captured images to reconstruct and segment the liver simul-
taneously. For each experiment, three mosaicked models, each
with a different method for tracking the camera pose, were con-
structed as described in Sec. 2.3. Afterward, we computed the
average distance of each intraoperative reconstructed point to
the reference for each model. To reduce the influence of tracking
errors, the mosaicked porcine liver models were registered to
the reference using ICP. For the purpose of comparison, we
also computed the average distance of the unprocessed single
frame point clouds R} to the ground truth.

The camera pose used for transforming each point cloud into
the world coordinate system was given by an NDI Polaris optical
tracking system. For the two silicone and the first ex vivo experi-
ment, a calibrated phase alternating line (PAL) stereo endoscope
with a fixed camera unit and a PC workstation (Table 1, No. 1)
were used. The second ex vivo and the in vivo experiment were
conducted with a calibrated HD stereo endoscope with chip-on-
the-tip technology (Table 1, No. 2).

Both configurations took, on average, ~0.25 s for one frame
integration, implying a frame rate of ~4 fps. More run-time

K:(p,j) = , 7 information is available in Table 1.
i(p. /) Wor + W ™)
3.1 In Silico
. W . .
Kgv(p,j) = { 1, if & [Ri (p)] = , (8) In order to evaluate the mosaicking without the errors induced
' 0, else by the stereo matching (HRM), we used a simulation framework
Journal of Medical Imaging 045001-3 Oct—Dec 2015 « Vol. 2(4)
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Table 1 The PC and endoscopic hardware used for evaluation. Both stereo endoscopes were calibrated before the experiments and have no
zoom and fixed focusing. The run-time analysis reveals that the higher computational cost caused through higher resolution can be compensated

by faster hardware.

PC configuration

No. CPU Graphic RAM Endoscope

1 i7-2700k GeForce GTX 650Ti 16 Gbyte Richard Wolf — PAL
(720 x 576 pixels)

2 i7-5820k GeForce GTX 970 16 Gbyte Storz three-dimensional

TIPCAM®1
(1920 x 540 pixels)
Average run-time

No. Hybrid recursive matching (HRM) TSD volume integration Segmentation Overall Frame rate

1 0.134 0.024 0.045 0.252 ~4

2 0.131 0.027 0.030 0.241

to generate a circular image sequence of a textured CT-liver
model (Fig. 2). For each of the 320 images, depth map and cam-
era position were computed. With the simulated input data, an
accurate mosaicked reconstruction of the model was achieved
(Table 2).

The simulation was also used to create noisy depth data to
evaluate the mosaicking behavior on imperfect data. The noise
was generated through a Perlin noise model, as it is similar to the
errors made by HRM. Three different noise levels, noise 1
(mean error 1.12 mm =+ 0.86), noise 2 (2.30 mm =+ 1.68), and
noise 3 (3.36 mm =+ 2.49), were used. The results are showing
that the mosaicking is reducing the noise and is producing
a more accurate model than the single-shot reconstructions
(Fig. 3).

3.2 Phantom Liver

After verifying the method in silico, we performed five phantom
experiments with three silicone livers (Fig. 4). The first two liv-
ers were recorded with both the Wolf and HD stereo endoscope,
and the third only with the HD stereo endoscope (Fig. 5). The
first (Wolf endoscope 1 and HD endoscope 1) and third (HD
endoscope 3) liver were placed on a flat surface, whereas the
second liver (Wolf endoscope 2 and HD endoscope 2) was

(@)

placed inside a 3-D printed patient phantom (Fig. 4). As previ-
ously mentioned, an NDI Polaris optical tracking system was
used for endoscope position tracking. To evaluate the ICP only
approach, Polaris tracking data from the first image frame
served as registration to the reference model.

The results show that the use of an HD stereo endoscope
increases the quality and stability of the method (Table 3).
In combination with the Wolf stereo endoscope, our method
produces the best results with Polaris mode. With the HD stereo
endoscope, the best results shift toward mixed mode. Figure 6
illustrates an example of a failed reconstruction using the ICP
for frame-to-model registration. Multiple consecutive frames to
model registrations with high errors in position or orientation
usually lead to a fracture in the final reconstruction, i.e., the spa-
tial relation of the reconstructed parts before and after the ICP
failure(s) is erroneous.

To determine if the models created by our approach are suit-
able for registering a preoperative model in absence of soft
tissue deformation, we transformed the model for silicone 1
using multiple random rigid transformations. Thereupon, we
performed a rough registration of the model to the reference
laser scan with fast point feature histograms®' and fine-tuned
it with the use of ICP. The average distance error for 600 random
transformations was 13.19 mm = 23.39, with 90% having an

Dpenee)
= J00]
750
2.99

.2,50

.99

(b) (c)

Fig. 2 (a) Textured simulation model, and (b) error distribution using reference depth data and (c) using

hybrid recursive matching (HRM).
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Table 2 The root mean square (RMS) error between the mosaicked models and the reference model in mm. The last column contains the RMS
error, using all frames for evaluation separately. In the last row, hybrid recursive matching (HRM) is used for depth map creation instead of the
reference depth data.

Endoscope position

Simulation Reference lterative closest point (ICP) Mixed Single shot with reference position
Reference depth map 0.022 £ 0.009 0.016 £ 0.008 0.021 £ 0.009 —

With noise 1 0.021 £0.012 0.836 + 0.354 0.187 +0.089 0.812+0.363

With noise 2 0.100 + 0.046 4.941 +£2.149 1.137 £0.975 1.610 £0.731

With noise 3 1.156 + 0.597 20.622 +9.780 3.862 + 1.806 2.388 +1.383

HRM 0.468 + 0.251 2.004 +0.920 1.820 + 0.682 0.694 + 0.307

Table 3 The RMS error between the mosaicked models and the reference models in mm. The use of the HD stereo endoscope caused an overall
improvement of the results. The first and second recording (lines 1 and 2) illustrate the strong influence of the HRM quality in the final
reconstruction. The error levels in single shot (single HRM reconstructions) are reflected in the results of the final reconstruction.

Endoscope position

Silicone Polaris ICP Mixed Single shot with Polaris position
Wolf endoscope 1 1.89+1.97 5.04 + 4.66 3.79+3.37 2.88+2.14
Wolf endoscope 2 3.64 £3.55 6.73 £5.97 6.14 £ 5.59 5.36 £5.33
HD endoscope 1 1.04 £0.98 1.64 +£1.26 0.73 +0.61 2.12+1.69
HD endoscope 2 2.13+1.78 3.76 +£ 3.42 1.36 £1.27 3.31+2.58
HD endoscope 3 1.56 +1.29 4.32 +3.83 1.27 +£0.94 2.48 +2.04

DJs1ance]
-~ Vov]
7.39

DiS1ance]
(= Jow]
7.39

Ds1ance)
= oy]
v50)

| 50) | l50) | 500)
.2,5'J .2,50 .ZJU
.99 949 9.9

(a) (b) (©)

Fig. 3 Error distribution for (a) noise 1, (b) noise 2, and (c) noise 3.

&

()

Fig. 4 (a) Experimental phantom setup: stereo endoscope, optical tracking system, and patient phantom.
(b) Silicone liver 1, (c) silicone liver 2, and (d) silicone liver 3.
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Fig. 5 Error distribution (HD stereo endoscope) in (a) liver 1, (b) liver 2, and (c) liver 3. The images for
the Wolf stereo endoscope can be viewed in our previous work.'®

(@)

(©)

Fig. 6 Example of an iterative closest point (ICP) failure in silicone liver 1. A reconstruction using only
Polaris is shown in (a). The hole in the model is due to missing viewpoints. A reconstruction using ICP is
shown in (b), where the mosaicking failed, creating a larger hole. The mixed approach was used in (c),
which closed the hole, connecting parts of the liver that do not belong together.

error <10 mm. In comparison, using only a single frame
reconstruction had an error of 89.92 mm + 20.48.

3.3 Ex Vivo Porcine Liver

As a first step into the real operating environment, two ex vivo
porcine liver experiments were conducted. In the first experi-
ment (liver 1), the Wolf stereo endoscope was used, and
reference data were provided by a laser scan. For the second
experiment (liver 2), we used the high-resolution HD Storz
stereo endoscope and CT imaging as reference data (Fig. 7).
The results from liver 1 are comparable to the phantom
data, both using the same hardware, showing that the HRM
can cope with real liver texture. The second experiment
using the HD Storz stereo endoscope reduced the root mean
square error from 4.21 to 1.51 mm (Table 4). While slightly

(@)

different experiment settings could cause small differences,
the grave change is certainly due to the better image quality
and resolution.

3.4 In Vivo Porcine Liver

To evaluate our system in an in vivo setting, we performed an
animal experiment. At first, the pig was prepared for surgery and
placed on the CT table (Fig. 8). After applying a pneumoper-
itoneum as well as placing ports for the endoscope and instru-
ments, we recorded several image sequences featuring a sweep
of the porcine liver. Shortly after each sequence, a CT scan was
taken in order to evaluate the sequence, using the liver model
acquired through the scan. To minimize breathing deformation
between the two image modalities, respiration was paused
between scan acquisitions.

Fig. 7 Error distribution in ex vivo liver experiments: (a) ex vivo with Wolf stereo endoscope. Blue signals
an error <2 mm and red an error >2 mm. (b) Ex vivo with HD stereo endoscope.
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Table4 The RMS error between the mosaicked models and the ground truth models in mm. The HD stereo endoscope outperforms the older Wolf
stereo endoscope clearly. This demonstrates the importance of image quality and image resolution for the reconstruction result.

Endoscope position

Ex vivo Polaris ICP Mixed Single shot with Polaris position
Wolf endoscope 4.21+3.78 10.37 +5.67 10.94 +5.48 6.88 +6.11
HD endoscope 1.57+1.63 223+1.97 1.51+1.21 6.38 £4.79

Fig. 8 Experimental setting for in vivo evaluation. The image sequences were taken directly on the
CT table to minimize recording time between endoscopy and CT images. The last picture displays
an exemplary in vivo endoscopic image.

(a) (b) (©)

Fig. 9 Error distribution for in vivo liver experiment: (a) Polaris, (b) ICP, and (c) mixed.

Table 5 The RMS error between the mosaicked models and the ground truth models in mm. A reference CT scan was performed before and
after each sequence. The sequences differ in endoscope movement and liver coverage. The different error values between sequences indicate that
the endoscope handling plays a significant role for the reconstruction quality.

Endoscope position

In vivo Polaris ICP Mixed Single shot with Polaris position
Sequence 1 0.75+0.65 1.97 £1.72 0.54 +0.36 5.11 £ 3.96
Sequence 2 1.87+1.03 2.48 +1.33 0.97 £0.79 7.25 +5.53
Sequence 3 1.92+1.54 221+1.27 1.07 +1.02 6.03 + 4.60

The previous results in the second ex vivo experiment agree 4 Discussion

with the in vivo results. Both were obtained using the HD Storz

stereo endoscope (Fig. 9). As in the previous ex vivo experiment, struction and segmentation of organs from multiple viewpoints

the error in all three sequences was smallest in mixed mode online during laparoscopic surgery. We have clearly demon-
(Table 5). The mean error of the three mixed mode results is strated that mosaicking multiple reconstructions reduces the

0.86 mm. distance error when compared to single-shot reconstructions.

In this paper, we presented an approach enabling the recon-

Journal of Medical Imaging 045001-7 Oct-Dec 2015 « Vol. 2(4)
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(@) (b)
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Fig. 10 Difficult situations: (a) our method would integrate the instruments into the volume destroying
previously captured surface information near it. A poorly illuminated image is shown in (b) leading to

(c) a poor HRM result.

Furthermore, we have shown that using a mosaicked model for
rigid registration produces a significantly smaller error (drop-
ping from 90 to 13 mm).

The comparison between results from the Wolf stereo endo-
scope and the HD stereo endoscope allows an insight into the
correlation of image quality and final reconstruction result. The
data suggest that image quality and image resolution are impor-
tant for two steps. First, the HRM reconstruction needs a certain
image quality to produce satisfactory results, e.g., good illumi-
nation, resolution, and little distortion. For the HRM, on the
other hand, the increased sensor noise greatly reduces the
reconstruction quality (as shown in Fig. 10). For the ICP-
based methods (ICP only and mixed), the bad frame recon-
struction not only affects the mosaicked model directly, but
also the frame-to-model registration, as the ICP uses the
frame 3-D reconstruction to register the frame to the model
created so far. Without the use of Polaris tracking, multiple
consecutive bad frame registrations usually lead to a complete
fail of the mosaicking attempt. The Polaris localization method
allows a higher HRM error tolerance since the patches are at
least placed at the correct location.

In our experiments, Polaris tracking was necessary to achieve
the best results. But advances in hardware, like HD stereo endo-
scopes, will make image-based tracking more robust. As shown
in our ex vivo experiments, the ICP-only error dropped 78% due
to the use of the better HD endoscope. Also, the mixed mode
exceeds the pure Polaris method when used with the HD endo-
scope, meaning, the small localization errors were reduced
by the ICP. This is a synergetic process as Polaris provides
a good initial alignment needed for a stable ICP.

There are limitations of our work. Objects, like instruments,
moving between camera and organ lead to reconstruction errors.
Although the instruments are likely classified as background,
they are still integrated into the voxel volume. This causes an
erroneous morphing of the underlying previously captured
organ surface. To fix this problem, the instruments have to
be specifically classified in the image and the associated pixels
then excluded from the integration process. We are currently
working on a stable automatic classification of instruments to
solve this problem. A general problem is the HRM reconstruc-
tion quality. Slight deviations from suitable illumination settings
can lead to bad reconstruction results as shown in Fig. 10.
Therefore, careful monitoring of the capture settings is needed.
Since our method relies on surface sweeps, a sufficient space for
endoscopic movement is required. Not enough surface area is
captured for reconstruction otherwise. Finally, the frame-to-
model ICP registration modes (mixed and only) are likely not
suitable for organs with uniform appearances (e.g., prostate) or
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would at least create a higher error as with distinct shaped
organs (e.g., liver or kidney).

Future research will focus on accounting for dynamic scenes,
as currently only static scenes were considered, meaning that
soft tissue deformation was not taken into account. Due to
the shown limitations of the frame-to-model ICP registration,
evaluating other methods for localization should be consid-
ered to lessen the dependency on optical tracking systems.
Especially, feature-based approaches, taking advantage of the
veined surface of organs and color information in general, are
a promising addition to depth data only methods.
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