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Abstract. Colored dissolved organic matter (CDOM) and chlorophyll-a (Chla) are important
water quality parameters and play crucial roles in aquatic environment. Remote sensing of
CDOM and Chla concentrations for inland lakes is often limited by low spatial resolution. The
newly launched Sentinel-2 satellite is equipped with high spatial resolution (10, 20, and 60 m).
Empirical band ratio models were developed to derive CDOM and Chla concentrations in Lake
Huron. The leave-one-out cross-validation method was used for model calibration and valida-
tion. The best CDOM retrieval algorithm is a B3/B5 model with accuracy coefficient of deter-
mination ðR2Þ ¼ 0.884, root-mean-squared error ðRMSEÞ ¼ 0.731 m−1, relative root-mean-
squared error ðRRMSEÞ ¼ 28.02%, and bias ¼ −0.1 m−1. The best Chla retrieval algorithm is
a B5/B4 model with accuracy R2 ¼ 0.49, RMSE ¼ 9.972 mg∕m3, RRMSE ¼ 48.47%,
and bias ¼ −0.116 mg∕m3. Neural network models were further implemented to improve inver-
sion accuracy. The applications of the two best band ratio models to Sentinel-2 imagery with
10 m × 10 m pixel size presented the high potential of the sensor for monitoring water quality of
inland lakes. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.11
.036007]
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1 Introduction

Colored dissolved organic matter (CDOM) is usually the proxy of dissolved organic carbon
(DOC) abundance.1 It consists of aliphatic and aromatic polymers and typically has strong opti-
cal absorption for ultraviolet and short visible light.2,3 CDOM is an important water quality
parameter because it directly relates to aquatic ecosystem processes,4 drinking water safety,5

and contaminant transport.6 There are two major sources of CDOM in aquatic ecosystems,
allochthonous inputs of terrestrial materials7 and autochthonous production by phytoplankton,
benthic algae, and aquatic macrophytes.8,9 The major sinks of CDOM are usually photobleach-
ing and microbial decomposition.10,11 CDOM decomposes and releases compounds that can be
utilized for growth of aquatic biota. CDOM levels in regional and global scales are indicators to
understand carbon cycling and climate change.12 Chlorophyll-a (Chla) is a general measure of
phytoplankton biomass,2,13 and phytoplankton is an important base biota in the primary produc-
tion, carbon cycling modeling, and monitoring the eutrophication of inland waters,14 which are
habitats of a large variety of flora and fauna based on the photosynthesis of Chla.15 In complex
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case II waters, biological attributes of freshwater are a mixture of relatively high concentration of
Chla, nonalgal particles (NAP), and CDOM,16 and the three water quality parameters are inde-
pendent of each other, which then leads to degrade the performance of Chla retrieval. Currently,
many lakes all over the world are suffering from frequent algae bloom. Accordingly, Chla con-
centration retrieval in synoptic scale is essential for water quality assessment and management of
these productive waters.

Inland freshwater ecosystems, such as those in lakes, rivers, and reservoirs, are important
quantitative components in carbon cycling.17 Using high-resolution satellite imagery, researchers
have estimated global lake abundance and found there are ∼117 million lakes whose individual
area is >0.002 km2.18 These massive lakes are pools of dissolved organic matter and particulate
organic matter19 and hence with great significance for carbon cycling.

Chla and CDOM both interact with solar radiation and have considerable impacts on the
underwater light field. Their amount in surface water can be quantified by remote sensing,
which overcomes the spatial and temporal limitations as well as the high costs of the conven-
tional field-based water quality measurement.20 For water quality assessments of middle and
small lakes, we usually use the Landsat designed originally for terrestrial remote sensing
applications.21–26 Landsat series instruments are in a 30-m spatial resolution and with a 16-day
revisit period. Their temporal resolution is not good for the high dynamic of water quality map-
ping. The newly launched Sentinel-2 satellite combines and improves the spectral and spatial
characteristics of the Landsat TM/ETM+ and SPOT XS series, respectively.27 Sentinel-2 carries
an improved instrument radiometric digitization (12 bits) that is helpful for low-radiance aquatic
environment applications. Its spatial resolution is 10 m in wavelength range 490 to 665 nm and
the revisit period is 5 days when the Sentinel-2 operation system is in working order. These
improved satellite parameters motivate us to evaluate the potential of Sentinel-2 for inland
water quality estimation, because so far there are few studies using Sentinel-2 data to do the
same work in lakes.28,29 Using Sentinel-2 images, our study’s objective is to (1) develop empiri-
cal models for CDOM and Chla retrievals in the case study site, Lake Huron, one of the Great
Lakes, (2) improve models using a neural network model, and (3) map CDOM and Chla from
Sentinel-2 with 10 m × 10 m pixel size.

2 Materials and Methods

2.1 Study Site

The Saginaw River and Kawkawlin River plume regions of Lake Huron (Fig. 1) were selected as
the study site for water quality monitoring because of their water’s complex bio-optical proper-
ties. The two rivers are the major tributaries flowing into Saginaw Bay, Lake Huron. The
Kawkawlin River is relatively smaller with length 28.2 km and discharge area of 647 km2.
40.2% of its watershed is deciduous forests (Fig. 1, red area indicates vegetation dominated).
The Saginaw River is the largest river entering Lake Huron, with length 36 km and discharge
area of 22;260 km2. The headwaters of the Saginaw River cover massive vegetation and forests
occupied about 30% of the overall discharge area. The Midland, Bay City, and Saginaw region is
under the status of highly industrialization and urbanization as well as population growth. The
surrounding environment from nature to human may have increasing adverse impact on water
quality in Lake Huron, such as increased CDOM and Chla concentration and reduced water
clarity.30

2.2 Field Data Collection and Laboratory Measurements

Field measurements of water quality were carried out on May 10 and October 18, 2012, and
May 7, 2013. During these three cruises, 41 surface water samples were collected to determine
CDOM and Chla concentrations. Water above-surface spectra were measured using the Hyper-
spectral Surface Acquisition System (HyperSAS) and Hyperspectral Ocean Color Radiometer
(HyperOCR). Viewing direction and water surface reflectance factor ρ followed the recom-
mended values by Mobley.31 The two sensors in HyperSAS measured Lt (water-leaving
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radiance) and Li (sky radiance), respectively, while one sensor in HyperOCR measured Ed

(above-surface downwelling irradiance) simultaneously. The Rrs (remote sensing reflectance)
at each sampling point was calculated as

EQ-TARGET;temp:intralink-;e001;116;314Rrs ¼
Lt − ρLi

Ed
: (1)

More field measurement details are shown by Zhu et al.32

Table 1 gives the center wavelengths, bandwidths, and spatial resolution of the first seven
bands of Sentinel-2. To use Sentinel-2 data to derive aCDOMð440Þ (absorption coefficient of
CDOM at 440 nm) and Chla concentrations, the first step is using field measured Rrs (Fig. 2)
to simulate the first seven Sentinel-2 bands using its relative spectral response (RSR) functions22

EQ-TARGET;temp:intralink-;e002;116;210RrsðBiÞ ¼
R λn
λm
RSRðλÞ � Rrs measuredðλÞdλR λn

λm
RSRðλÞdλ ; (2)

where Rrs_measured is the field measured spectra and RrsðBiÞ is the simulated Rrs for the i’th
band of Sentinel-2, which is computed from λm to λn for the i’th band.

In laboratory, aCDOMð440Þ and Chla concentrations of each sample were determined by
the quantitative filter technique.32 The CDOM absorbance was measured using a Cray-60 spec-
troradiometer with a 1-cm path-length cuvette and Milli-Q baseline correction. Chla was
extracted with a 1:1 mixture of 90% acetone and dimethylsulfoxide and analyzed by a 10-AU
Turner Fluorometer. The measured water quality results show wide variations (Table 2), which
imply the complexity of inland aquatic environment. aCDOMð440Þ ranges from 0.11 to 8.46 m−1

Fig. 1 Location and environment of the Saginaw River and Kawkawlin River plume regions in
Lake Huron, and the sampling locations during three cruises in 2012 and 2013. The base
map is a Sentinel-2 multispectral instrument (MSI) image collected on October 7, 2016.
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with a mean value of 2.61 m−1. Chla shows a range of 1.62 to 51.68 mg∕m3 with a mean value
of 20.46 mg∕m3. DOC ranges from 3.29 to 17.86 mg∕L with a mean value of 6.94 mg∕L. In
addition, aCDOMð440Þ and Chla show large variations with coefficient of variation (CV) values
81.2% and 69.06%, respectively. More detailed information can be referred to in the work by
Zhu et al.32,33

2.3 Sentinel-2 Acquisition and Preprocessing

Sentinel-2A and Sentinel-2B were launched on June 23, 2015, and March 7, 2017, respectively,
which provide a global coverage of the Earth land surface for every 5 days. However, the

Fig. 2 The measured Rrs (λ) spectra. The gray-shaded bars show the ranges of Sentinel-2 MSI
bands.

Table 1 Center wavelengths, bandwidths, and spatial resolution of the first seven bands for
Sentinel-2.

Band Center wavelength (nm) Bandwidth (nm) Spatial resolution (m)

B1 443 20 60

B2 490 65 10

B3 560 35 10

B4 665 30 10

B5 705 15 20

B6 740 15 20

B7 783 20 20

Table 2 Descriptive statistics of the measured water parameters, including aCDOMð440Þ, Chla,
and DOC.

Statistics Min Max Mean Median SD CV (100%)

aCDOMð440Þðm−1Þ 0.11 8.46 2.61 2.06 2.12 81.2

Chla (mg∕m3) 1.62 51.68 20.46 13.02 14.13 69.06

DOC (mg∕L) 3.29 17.86 6.94 6.62 3.08 44.35

Note: SD is the standard deviation and CV is the coefficient of variation in percent.
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Sentinel-2 operation system is in the status of instrument testing, and we cannot obtain imagery
with the rigorous 5-day interval for the same area. Furthermore, frequent cloud cover reduces the
availability of available images in our study area. As a result, few high-quality images could be
achieved from the Sentinels Scientific Data Hub.34 Finally, one high-quality Sentinel-2A image
of Lake Huron on October 10, 2016, was downloaded for mapping CDOM and Chla concen-
trations with 10 m × 10 m pixel size. The image was preprocessed as the following two steps.

1. Atmospheric correction: It was implemented using the Sentinel-2 Toolbox in Sentinel
Application Platform to derive a Bottom of Atmosphere reflectance image,28 namely,
irradiance reflectance (Rt), which is defined as the ratio of upwelling irradiance (Eu)
to downwelling irradiance (Ed).

35

2. Water surface reflectance correction: Remote sensing reflectance (Rrs) is usually the stan-
dard input variable for ocean color remote sensing algorithms. We obtained Rrs from
Sentinel-2 imagery using the following equation:

EQ-TARGET;temp:intralink-;e003;116;574Rrs ¼
Rt

π
−
Lr

Ed
; (3)

where Lr is the surface radiance reflected upward by water surface and Ed is the downwelling
irradiance. The two variables were derived by the Hydrolight, a well-known model for simulat-
ing radiative transfer in aquatic environment. To estimate the two variables, some parameters,
including image acquisition locations and dates, solar zenith angles, cloud cover, and wind
speed, were input into Hydrolight. These parameters could be acquired from either image meta-
data or the National Climatic Data Center. The other input parameters, such as water quality
components and water depth, were set by their defaults because these parameters are not related
to Lr and Ed.

2.4 Model Calibration and Validation

To minimize random factor effects, we used a reliable scheme, which is an uncertainty assess-
ment method known as leave-one-out cross-validation (LOOCV), to implement model calibra-
tion and validation. The subset (40 samples) was randomly selected from the total 41 field
measured samples for model calibration, and the rest of the subset (1 sample) was used for
model validation. Thus, the above process would be repeated for 41 times. We evaluated algo-
rithm performance by four indicators: coefficient of determination (R2), root-mean-squared error
(RMSE), relative root-mean-squared error (RRMSE), and bias

EQ-TARGET;temp:intralink-;e004;116;295RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ðxestimated

i − xmeasured
i Þ2

N
;

r
(4)

EQ-TARGET;temp:intralink-;e005;116;250RRMSE ¼ RMSEPN
i¼1 x

measured
i ∕N

× 100%; (5)

EQ-TARGET;temp:intralink-;e006;116;211Bias ¼
P

n
i¼1ðxestimated

i − xmeasured
i Þ

N
; (6)

where xestimated
i and xmeasured

i represent the estimated and measured aCDOMð440Þ or Chla concen-
trations for the No. i sample, respectively.

The linear, logarithmic, power, and exponential band ratio models were tested, respectively.
Then, the R2, RMSE, and RRMSE values of all model validations were compared with each
other to determine the best band ratio model for CDOM monitoring. Numerous remote sensing
algorithms have been developed to estimate Chla concentrations for complex waters, in which
two-band/three-band/four-band (2-B/3-B/4-B) ratio models are widely used following the below
equations:15,33,36,37
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EQ-TARGET;temp:intralink-;e007;116;735Chla ∝ RrsðB1Þ∕RrsðB2Þ; (7)

EQ-TARGET;temp:intralink-;e008;116;701Chla ∝ ½1∕RrsðB1Þ − 1∕RrsðB2Þ�RrsðB3Þ; (8)

EQ-TARGET;temp:intralink-;e009;116;687Chla ∝ ½1∕RrsðB1Þ − 1∕RrsðB2Þ�∕½1∕RrsðB4Þ − 1∕RrsðB3Þ�: (9)

Note that B1 is located at red band. B2, B3, and B4 are located at near-infrared (NIR) band
and B4 > B3 > B2.

To create the best band ratio model for Chla estimation, 2-B/3-B/4-B models incorporating
all possible combinations of B1 to B7 of Sentinel-2 were tested using linear, logarithmic, power,
and exponential functions. In addition, we used the LOOCV method to implement model devel-
opment and validation. Finally, we chose the best model with higher R2 and lower RMSE,
RRMSE, and bias value.

3 Results and Discussion

3.1 Colored Dissolved Organic Matter Retrieval

In remote sensing, the adjacent bands are possibly correlated to each other. The correlation coef-
ficients between two Sentinel-2 bands are shown in Table 3. The results indicated that B1 was
highly correlated with both B2 and B3. There are strong statistical relationships between B4 and
B5, and B6 and B7. Absorption is considered only as to CDOM optical property, while back-
scattering is ignored. Thus, Pearson’s correlative coefficients between Rrs and aCDOMð440Þ
present negative values (Fig. 3). This is in agreement with previous studies in which
aCDOMð440Þ was inversely correlated with remote sensing reflectance.38 The relative high R
values were mainly occurred at the green bands within 550 to 575 nm. The high correlations
are due to the ratio of CDOM absorption to water’s total absorption at the green band for com-
plex inland waters.39 In addition, we examined the Pearson’s correlative coefficients between Rrs

at Sentinel-2 band and aCDOMð440Þ. The outcomes show that B3 (green band) generates the
highest R value −0.897 with aCDOMð440Þ, which is greater than B1 and B2, −0.741 and
−0.890, respectively. B4 to B7, by contrast, present a weak correlation (R value is no more
than −0.251).

Band ratio models tend to remove the certain impacts of atmospheric correction errors.40

Furthermore, previous study proved that including wavelengths >600 nm in the band ratio
model improves CDOM retrieval accuracy notably, particularly for optical complex inland
waters.32 In this study, a band ratio algorithm assembled in the form that short bands (B1 to
B3) highly correlated with aCDOMð440Þ acted as the numerator and longer bands (B4 to B7)
as the denominator had higher accuracy to derive aCDOMð440Þ. The results indicated that the
exponential model is more reliable to build a relationship between aCDOMð440Þ and variables,

Table 3 R2 values between first seven bands of Sentinel-2.

Band No. B1 B2 B3 B4 B5 B6 B7

B1 — — — — — — —

B2 0.968 — — — — — —

B3 0.866 0.954 — — — — —

B4 0.114 0.165 0.292 — — — —

B5 0.012 0.022 0.078 0.854 — — —

B6 0.196 0.167 0.198 0.575 0.692 — —

B7 0.153 0.120 0.139 0.491 0.648 0.986 —

Note: Bold values exhibit correlations which were highly significant (p < 0.05).
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and the function is such that y ¼ aebx, where y is the aCDOMð440Þ and x is the remote sensing
reflectance of band ratio.

Based on the LOOCV analytic method, the statistical values of model validation results can
be seen in Table 4. The better four models are highlighted in bold with higher R2 and lower
RMSE, RRMSE, and bias. In addition, Fig. 4 shows the measured aCDOMð440Þ against those
from Sentinel-2 estimated values based on the four better band ratio models. B3/B5 band ratio
model with the highest performance (R2 ¼ 0.884, RMSE ¼ 0.731 m−1, RRMSE ¼ 28.02%,
and bias ¼ −0.1 m−1) among all different algorithms was as follows:

EQ-TARGET;temp:intralink-;e010;116;449aCDOMð440Þ ¼ 22.283e−1.724x; X ¼ RrsðB3Þ∕RrsðB5Þ: (10)

As expected, band ratio models that incorporated bands >600 nm obtained much better per-
formance for CDOM estimations.32 The B5 band (>600 nm) is used here to remove the effects
of particulate matters, as well as for normalizing purposes. aCDOM at short bands (B1 and B2) are
much larger than longer bands (B3, green band), considering the exponential decay of aCDOM

Fig. 3 Pearson’s correlative coefficients (R) between Rrs and aCDOMð440Þ.

Table 4 LOOCVmodel validation results of CDOMmodel performance corresponding to different
band ratios.

Variables a b R2 RMSE (m − 1) RRMSE (100%) Bias (m − 1)

B1/B4 12.171 −3.23 0.581 1.357 51.98 0.02

B1/B5 13.283 −3.347 0.696 1.167 44.73 −0.1

B1/B6 16.349 −1.415 0.685 1.186 45.45 −0.09

B1/B7 14.027 −1.181 0.676 1.205 46.17 −0.1

B2/B4 20.899 −2.952 0.779 0.987 37.83 −0.05

B2/B5 18.618 −2.709 0.849 0.836 32.04 −0.14

B2/B6 18.204 −0.977 0.729 1.106 42.37 −0.11

B2/B7 14.712 −0.791 0.693 1.179 45.18 −0.12

B3/B4 28.966 −2.015 0.832 0.859 32.9 −0.03

B3/B5 22.283 −1.724 0.884 0.731 28.02 −0.1

B3/B6 20.61 −0.619 0.655 1.252 47.98 −0.12

B3/B7 16.425 −0.506 0.617 1.323 50.7 −0.15

Note: The bold rows indicate models with better performance.
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with the increasing of wavelengths. However, Chla and NAP also absorb light strongly at the
short blue band. Finally, water-leaving signals from short blue bands are very weak, causing
aCDOM at those bands to take small proportions of the water’s total absorptions, while such a
case is opposite for the green band. The green band is thus more sensitive to derive CDOM, and
models using the green band achieve better accuracy for complex inland waters.39

3.2 Chlorophyll-a Retrieval

We found the best Chla retrieval model among all testing: Chla ¼ 25.985x3.117,
x ¼ RrsðB5Þ∕RrsðB4Þ, with R2 ¼ 0.49, RMSE ¼ 9.972 mg∕m3, RRMSE ¼ 48.47%, and
bias ¼ −0.116 mg∕m3 (Fig. 5). All samples were nearly located inside of the 95% prediction
bands, and the best model performance was acceptable. The best model was not the 3-B/4-B
algorithm but the 2-B model. The reason is that the 2-B model, an NIR–red model, is just simple
and sufficient without involving more uncertainties carried by the additional bands in the 3-B/4-
B models.33 Gurlin et al.37 compared several NIR–red models with different levels of complexity
for case II waters and found that the simple applicable NIR–red 2-B algorithm holds a high
potential for Chla retrieval. The best results of the 2-B/3-B/4-B models in our study site are
generally excellent and acceptable. We also tested normalized difference chlorophyll index and
fluorescence line height algorithms for Chla estimation and found the same results that band ratio
empirical models gave the best performance.41

Fig. 4 Scatter plots showing the measured aCDOMð440Þ versus Sentinel-2 estimations using four
better band ratio models: (a) B2/B4, (b) B2/B5, (c) B3/B4, and (d) B3/B5. The red solid line indi-
cates the regression line between estimated and measured aCDOMð440Þ values. The double blue
dashed lines are the 95% prediction bands, and the black dashed line is the y ¼ x line.
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3.3 Neural Network Model

To improve the accuracy of water quality retrieval models, an artificial neural network model was
considered, which provides an alternative intelligence algorithm compared to traditional empiri-
cal statistical models. Beale and Jackson42 introduced that any mathematical function could be
depicted via neural network (NN), which is well-known as the Kolmogorov representation theo-
rem. In addition, 80% to 90% of applied cases utilize the backpropagation (BP) pattern to
develop network architecture. A typical NN model is comprised of one input layer, one or
more hidden layers, and one output layer. One hidden layer is highly recommended as a
first choice along with increasing the number of neurons. To avoid overfitting and obtain
good accuracy, we set the rule that the optimal number of neurons in the hidden layer was deter-
mined by selecting the satisfying model with higher accuracy and fewer neurons. Therefore, in
this study, about 1 to 20 neurons were tested to determine the best architecture that combined a
minimal MSE value with the least neurons.43 Note that it is the preliminary result using NN
models, and training of NN will need a larger dataset to guarantee the robustness of the neural
network for model prediction in future work. The NN model was conducted by MATLAB®, and
the detailed implementation process may be found in studies.38,43 During the NN model develop-
ment, 26 samples randomly chosen from the total 41 samples were used to establish a stable
network, and the remaining 15 samples were used to assess model accuracy.

Based on the above empirical model analysis, four variables, including RrsðB2Þ∕RrsðB4Þ,
RrsðB2Þ∕RrsðB5Þ, RrsðB3Þ∕RrsðB4Þ, and RrsðB3Þ∕RrsðB5Þ, acted as the four input nodes of
the input layer for the CDOM-NN model. Eventually, the CDOM-NN model comprises the fol-
lowing: an input layer with four nodes and a hidden layer with eights neurons. The CDOM-NN
model presented the results with R2 ¼ 0.913, RMSE ¼ 0.601 m−1, RRMSE ¼ 23.3%, and
bias ¼ −0.09 m−1.

Sun et al.22 used multivariate regression analysis to estimate phycocyanin pigment concen-
tration in inland waters from Landsat imagery and obtained acceptable performance. In this
study, a multivariate model was proposed to estimate Chla
EQ-TARGET;temp:intralink-;e011;116;144

Chla¼ 3.134þ5636.315RrsðB1Þ−10816.193RrsðB2Þþ6671.622RrsðB3Þ−11010.068RrsðB4Þ
þ10878.736RrsðB5Þþ4838.647RrsðB6Þ−6863.896RrsðB7Þ: (11)

In contrast, the Chla estimations accuracy was improved using the multivariate regression
model, and validation results reveal R2 ¼ 0.733, RMSE ¼ 7.268 mg∕m3, RRMSE ¼ 35.5%,
and bias ¼ −0.292 mg∕m3 (Fig. 6).

Fig. 5 Scatter plots showing the measured Chla versus Sentinel-2 estimations using B5/B4 power
model. The red solid line, blue, and black dashed lines refer to the same as in Fig. 4.
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Equation (11) implies that Rrs at B1 to B7 bands may be a function of Chla, but the special
equation may be not highly accurate to account for Chla. Similarly, the Chla-NN model, which
comprises the following: an input layer with seven nodes and a hidden layer with nine neurons, is
employed to determine Chla concentrations. The Chla-NN model presented the results with
R2 ¼ 0.95, RMSE ¼ 3.127 mg∕m3, RRMSE ¼ 10.4%, and bias ¼ 0.77 mg∕m3. Figure 7
shows the validation results from the two NN models. Apparently, those models were more
accurate than the empirical models. Simple band ratio models somehow remove atmospheric
correction error when deriving water quality parameters from satellite imagery.40 In general, the
short (blue) waveband poses greater atmospheric correction errors,44 and the analysis of the
relationship within bands in Sec. 3.1 provides a basis for the optimal band selecting.

3.4 Application to Sentinel-2 Imagery

The Sentinel-2 operation system is now in the status of instrument testing, and we cannot obtain
imagery with the rigorous 5-day interval for the same area. The exact match between in situ
measurement and satellite overpass is usually difficult to obtain, particularly if the satellite

Fig. 6 Validation results of Chla retrievals. Scatter plots showing the measured Chla against those
from Sentinel-2 estimations based on the multivariate regression model.

Fig. 7 Validation results of (a) aCDOMð440Þ retrievals and (b) Chla retrievals, based on NN model.
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temporal resolution is relatively long now. So far, a few high-quality images could be achieved
from the Sentinels Scientific Data Hub.34 Band ratio models tend to remove the certain impacts
of atmospheric correction errors.40 NN models are more accurate, while they also involve multi-
variable inputs. Direct atmospheric correction assessment should be conducted with in situ
observations in the future to use the NN model on Sentinel-2 imagery.

Atmospheric correction is a critical issue for image-based water color remote sensing. We
would like to emphasize that the atmospheric correction module, Sen2cor, used in this study is
particularly designed for atmospheric correction of Sentinel-2 imagery. The Sen2cor toolkit has
also been tested for atmospheric correction over waters and obtained good results in previous
studies.28,29 When the toolkit was used in our study, some module input parameters were
adjusted according to the field or regional realities in Lake Huron. Given the results of the
Sen2cor toolkit being reliable, then water surface reflectance effects could be removed using
the HydroLight, a well-known radiative transfer numerical model.45 As a result, the remote sens-
ing reflectance (Rrs), a standard input of ocean color algorithm, can be obtained from Sentinel-2
imagery. For more validation, we also compared the atmospheric correction results of Sentinel-2
with the help of a moderate-resolution imaging spectrometer (MODIS) Rrs product (freely down-
loaded from Ref. 46). We found that Rrs of Sentinel-2 kept good consistency with Rrs of MODIS
in our study site.

Figure 8 shows the CDOM and Chla retrievals with 10 m × 10 m pixel size from Sentinel-2
imagery on October 7, 2016. The Saginaw River and Kawkawlin River plume regions of Lake
Huron show spatial distributions of CDOM and Chla with ranges of 0 to 5.02 m−1 and 0 to
55.14 mg∕m3, respectively. The Kawkawlin River water was much more turbid than the
Saginaw River which contains less CDOM and Chla. In estuarine and plume regions, CDOM
and Chla concentrations were higher than those in the open water of Lake Huron. These image-
derived distribution patterns were consistent with in situ observations and field measurements
during the same month in another year. The results provide the evidence that Sentinel-2 offers the
potential to assess water quality for complex inland waters.

Numerous remote sensing models have been proposed to derive the CDOM and Chla
concentrations in productive waters, including empirical, semiempirical, semianalytical, and
analytical models.32,47 Owing to its simplicity and availability among those algorithms, studies

Fig. 8 CDOM and Chla estimations using a Sentinel-2 image on October 7, 2016. Results of
atmospheric correction using the 10-m pixel size from Sen2cor output.
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based on empirical algorithms are easier to get and much more common. However, empirical
algorithms are often area dependent and time dependent due to no rigorous theoretical basis to
support them, which indicates that the models here could not be directly used for other waters.48

Note that the band ratio setting might be suitable for those waters, where the optical properties
are similar to Lake Huron. Then, empirical models should reparameterize the equations.

4 Conclusions

This study proved that Sentinel-2 imagery can continuously monitor water color parameters,
particularly, to assess water quality dynamic for many lakes in different scales. Results show
that the best band ratio for deriving aCDOMð440Þ is B3/B5, and it is a reasonable and applicable
model in Lake Huron. For Chla, the best band combination is the B5/B4 2-B model rather than 3-
B or 4-B models. In addition, a multivariate regression model was proposed to estimate Chla and
we obtained good results. CDOM-NN and Chla-NN models have been trained based on a BP
neural network, using models with a hidden layer of eight and nine neurons, respectively, and
they were selected as the best model architecture. Validation results showed that CDOM esti-
mation accuracy is R2 ¼ 0.913, RMSE ¼ 0.601 m−1, and RRMSE ¼ 23.3%, and the Chla
model also performed well with R2 ¼ 0.95, RMSE ¼ 3.127 mg∕m3, and RRMSE ¼ 10.4%.
The estimated CDOM and Chla from a Sentinel-2 image on October 10, 2016, show a general
spatial distribution pattern that is consistent with our field measurements in the same season.
Although the proposed algorithms have performed well in Lake Huron, our study is still pre-
liminary, and more studies should be conducted for further model improvement and validation.
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