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Abstract. Road extraction in imagery acquired by low altitude remote sensing (LARS) carried
out using an unmanned aerial vehicle (UAV) is presented. LARS is carried out using a fixed wing
UAV with a high spatial resolution vision spectrum (RGB) camera as the payload. Deep learning
techniques, particularly fully convolutional network (FCN), are adopted to extract roads by
dense semantic segmentation. The proposed model, UFCN (U-shaped FCN) is an FCN archi-
tecture, which is comprised of a stack of convolutions followed by corresponding stack of mir-
rored deconvolutions with the usage of skip connections in between for preserving the local
information. The limited dataset (76 images and their ground truths) is subjected to real-
time data augmentation during training phase to increase the size effectively. Classification per-
formance is evaluated using precision, recall, accuracy, F1 score, and brier score parameters. The
performance is compared with support vector machine (SVM) classifier, a one-dimensional con-
volutional neural network (1D-CNN) model, and a standard two-dimensional CNN (2D-CNN).
The UFCN model outperforms the SVM, 1D-CNN, and 2D-CNN models across all the perfor-
mance parameters. Further, the prediction time of the proposed UFCN model is comparable with
SVM, 1D-CNN, and 2D-CNN models. © 2018 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JRS.12.016020]

Keywords: image segmentation; computer vision; remote sensing; deep learning; road extrac-
tion; fully convolutional neural networks.

Paper 170726 received Aug. 22, 2017; accepted for publication Jan. 16, 2018; published online
Feb. 13, 2018.

1 Introduction

Road extraction is a subject of considerable interest for information extraction from remote
sensed images. Road extraction has several applications, such as city planning, traffic manage-
ment and GPS navigation,1,2 land cover, and land use analysis.3 In the recent years, road transport
infrastructure has received a significant boost in investments particularly in the developing
economies of the Asia Pacific. The cumulative road infrastructure investment until 2025, in
Asia Pacific, is estimated at 5 trillion USD.4 The monitoring and construction operations of
roads hold a significant cost. They are currently manual, which is inefficient and not a cost-
effective approach. Remote sensing is used for road extraction and automatic detection of
roads. Traditional remote sensing-based road extraction is carried out using satellite images,
which have high spectral bandwidth such as hyperspectral and multispectral images.2,5

Current application of satellite remote sensing-based road extraction is in city planning and
land cover estimation studies, which are at a macro level, given the large swathes available
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in satellite remote sensed images of high spectral resolution and relatively low spatial resolution.
Classification methods in road extraction using hyperspectral and multispectral imagery pri-
marily exploit the depth of spectral information6 for road extraction tasks. During the last decade,
remote sensing from unmanned aerial vehicles (UAVs) also called low altitude remote sensing
(LARS) has shown accelerated usage in the field of agricultural science and research.7,8

Moreover, other works on UAV imagery in the domains such as species classification,9 line
extraction, contour generation,10 and shadow classification11 have proved the potential of
UAVs in such domains.

LARS provides an option for microlevel applications of road extraction, such as road con-
struction monitoring. Road construction monitoring is dynamic, which requires acquisition of
data over short time cycles and at a higher spatial detail. Another interesting microlevel appli-
cation is in the determination of actual area available for cultivation in small holder farming. This
is particularly relevant in the developing countries where agriculture is carried out in highly
fragmented land patches. Fragmentation invariably leads to a decrease in effective cropping
area by an increase in the land parcels12 due to provisioning of land space for pathways and
access. Land fragmentation directly impacts agricultural productivity. A one standard deviation
increase in the level of fragmentation by Simpson index reduces productivity by 9.8%.13

Various traditional methods exist for road detection and extraction. In their work, Wang et al.1

summarized and compared the methods used for road extraction in recent years. Song and
Civco14 compared performance of support vector machine (SVM) classifier against Gaussian
maximum likelihood (GML) classifier for road extraction task and concluded SVM to be better
than GML. Fuzzy shell clustering algorithms15 have been applied for road vectorization. Some
knowledge-based methods have also been proposed,16 which use trackers using nonlinear curves
such as parabola to model the trajectory of the road in an image. Neural networks have been used
for road detection.15 However, these methods are not adaptable but are susceptible to noise and
discontinuities1 including misclassification due to shadows and occlusion. The road segments
can be occluded by trees, vehicles, buildings, and shadows, which pose a massive challenge.
Moreover, inter-spectral distance between the road and surrounding scene, e.g., building roof-
tops, is sometimes minimal; hence, such scene-pixels can be analogous to road pixels, making
some techniques render less accurate results.

Recently developed state-of-the-art convolutional neural networks (CNNs) are outperform-
ing other models in various domains, such as object detection, dense semantic labeling, and
image classification.17,18 AlexNet18 is one such notable model that was first discovered to pop-
ularize the convolutional networks in computer vision by winning the ImageNet ILSVRC chal-
lenge in 2012. More recently, fully convolutional network (FCN) proposed by Shelhamer et al.,19

a type of CNN, has shown promising results in dense semantic segmentation. Particularly, in
road segmentation, an FCN-based model has been explored on LIDAR data for road extraction.20

A special type of FCN architecture called “U-net” is used for biomedical segmentation by
Ronneberger et al.21 U-net is a special type of FCN, where a convolutional network is followed
by a deconvolutional network producing the output segmented image. Skip connections are used
to reinforce the local information during deconvolution.

In this work, we propose an FCN-based approach for carrying out dense semantic segmen-
tation to extract roads in UAV images using LARS. The proposed architecture is called U-shaped
FCN (UFCN), primarily designed as a modification over the U-net model.21 The UFCN is
trained on a custom dataset of 76 LARS images and ground truths along with real-time data
augmentation.

From the review of literature by the authors, it is observed that there is no evidence of extrac-
tion of roads in UAV imagery using FCN, more specifically the U-net-based architecture.

Four representative RGB images from test set are visualized for demonstrating extraction of
roads. The performance of road extraction for the entire test dataset (33 images) using perfor-
mance parameters is discussed Sec. 5. The road extraction performance is compared with SVM,
1D-CNN, and 2D-CNN approaches. Successful extraction by the UFCN model demonstrates the
potential of using UAV imagery for road construction operations monitoring.

Rest of this article is organized as follows: the UAV image acquisition using LARS and
description of the custom-built UAV deployed with its characteristics and ratings are discussed
in Sec. 2. CNN and fully CNN are discussed in Secs. 3, 4, and 5 discuss the methodology,
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performance evaluation, and comparisons with SVM, 1D-CNN, and 2D-CNN models. Finally,
the conclusion is discussed in Sec. 6.

2 Unmanned Aerial Vehicles for Road Extraction

This section provides a review of the current work in road extraction using UAV imagery and a
description of the UAV used for image acquisition in this work. Zhao et al.22 presented an auto-
matic approach to detect generic roads from a single UAV image. The proposed method uses
stroke width transformation to identify where the roads probably are. Other features such as color
and width are used to classify images using a convex contour segmentation model. Zhao et al.23

used a graph cut-based approach in detection of road regions in UAV images. Kim24 carried out
road detection by learning from one example. The approach learned road structure from a single
image and applied it to detect and localize a road from a new image. The road structure was
defined as a structure having a strong vertical correlation.

From authors’ review of literature, it can be observed that the road detection approaches in
UAV imagery use the geometry and shape of road structure for detection. The proposed approach
does not assume any shape and geometry features.

UAV imagery of road structures is acquired by LARS carried out using a UAV. UAVs used in
LARs are either rotary wings or fixed wings. Rotary wings can take off vertically and they have
the capacity to hover and carry out precision maneuvering. However, they have shorter flight
duration and lower speeds, which require additional flights to survey a given road region thereby
leading to an increase in costs and time. Fixed wing can be launched from a runway or hand
launched. They can cover a larger area in a shorter time since they fly at faster speeds as com-
pared with rotary wings making them more suitable for road inspection applications. Imaging
sensors are important constituents of the payload. LIDARS are used for remote sensing; how-
ever, they are bulky and costly,25 hence imaging sensors are constrained to vision spectrum (also
popularly known as RGB) cameras due to their lower weight, size, and cost. In this work, UAV
imagery is acquired by LARS using a fixed wing aircraft. The fixed wing UAV is a custom-built
electrically powered UAV with a takeoff weight of 2.2 kg and hover flight time of 20 min. The
payload is a GoPro 2 (GoPro HD Hero 2, San Mateo, California) camera.

3 Convolutional Neural Network and Fully Convolutional Network

Artificial neural network (ANN)26 is a system of interconnected neurons. ANNs are generally
used to model complicated functions for various tasks, such as classification and regression. The
most basic ANN model is the multilayer perceptron (MLP), which is composed of at least three
layers of one-dimensional (1-D) nodes, an input layer, one or more hidden layers, and an out-
put layer.

A CNN18 is a type of ANN in which, instead of a 1-D set of neurons constituting a layer in
MLP, a convolutional block is used. The convolutional block is a series of convolutional layers.
The convolution operation is the inner product of trainable filter (commonly a 3 × 3 square
matrix) and the input while sliding and summing the entries at overlapping regions of the
input. Nonlinear activation functions, such as rectified linear unit (ReLU) and sigmoid, are
applied to the convolution operation outputs to produce activation maps. Pooling layers are
used between convolutional layers, reducing the spatial dimensionality and complexity such
that global features are extracted along with local features. After the convolutional layers,
fully connected dense layers are appended to produce a vector of desired dimension, representing
the output.

FCN is a modified CNN, where fully connected layers at the end are replaced by only
convolutional layers™ introducing scale invariance and providing the ability to accept
inputs of varying sizes to the network.19 Also, CNNs with a fully connected output layer
may end up prior learning of the locations in a scene,27 resulting in loss of spatial-invariance
inherent to convolutional layers. The loss of spatial invariance poses an issue in semantic
segmentation.19 Figure 1 shows the overview of the proposed UFCN model, which is a type
of FCN. In this architecture, the reduction in spatial resolution due to the convolution and
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pooling operations is restored using deconvolution. The complete working of the model is
described in methodology section (Sec. 4).

4 Methodology

4.1 Data Acquisition and Preparation

The UAV was flown over an area that was covered with roads. A video was captured as the UAV
flew over the road area at varying altitudes and angles. The aerial video was acquired for 4 min at
50 frames per second. An image extractor was used to extract RGB images from the videos.
A total of 109 images acquired at various angles and altitudes were chosen as the dataset.
About 70% of data (=76 images) were chosen as a training set and remaining 30% as a test
set. Four representative images out of test set were chosen for detailed analysis and visualization.
The original size of images is of high spatial dimension 1920 × 1080. Due to the computational
constraints, the size is resized to 512 × 512. The ground truth of the aerial images was created
manually using an image editor tool. The ground truth has two class labels, road and nonroad (or
background) regions. Although preparing a perfect ground truth with no mislabeled pixel is
a challenging task, we have made exhaustive attempts to ensure minimum errors in ground
truth. The task of preparing the ground truths of all the 76 images for training and the test
sets was given to multiple persons multiple times, and the best combination was chosen
after evaluation on the basis of comprehensive visual judgment.

4.2 UFCN Model Architecture

Figure 2 shows the detailed architecture of the proposed UFCN model. The UFCN model is fully
convolutional and thus can take input of any size.19 For our dataset, the input image size is

Fig. 1 Overview of the structure of proposed UFCN model.

Fig. 2 The detailed architecture of the UFCN model.
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512 × 512 × 3. The model takes N × N × 3 RGB image as input (here N ¼ 512) and outputs the
predicted segmentation map of the same size, where the input image is segmented into two
regions (classes)—road and background.

A 3 × 3 kernel size is used across all convolutional layers with a stride of 1 × 1 and a padding
type of “same.” Padding type “same” ensures that the output feature map of the convolutional
layer is of the same spatial size as that of input after a convolution operation. In every convolu-
tional layer, the convolutions are followed by element-wise activation using ReLU denoted as
fð·Þ, which is given by

EQ-TARGET;temp:intralink-;e001;116;640fðxÞ ¼ maxð0; xÞ: (1)

The stack of convolutions is followed by a stack of mirrored deconvolutions resulting in a U-
shaped network. Skip connections are used between the stacks. A skip connection is the con-
catenation operation of the filters in convolution layer with the corresponding mirrored decon-
volution layer. Skip connections are used to reinforce the information of the primary layers for
reconstruction during upsampling in the deconvolution layers. In this work, “deconvolution”
refers to the operation of “transposed convolution” (not the mathematical inverse of the con-
volution) or “learned upsampling,” where pixel values are not simply interpolated to obtain
the image of higher spatial size but learned during training. Deconvolution can be seen as
a convolution with the fractional stride.19 The fractional stride here is a half stride (stride ¼ 1∕2).

As we go deeper into a convolutional network, the local information is lost due to successive
convolutions, and the global information is attained.19 This is because of the pooling operations,
which follow the nonlinear activation and convolution operations (see Sec. 3). “Local informa-
tion” here refers to the information regarding the locations/pixel positions of the predicted class.
The convolutional network is exceptionally good when it comes to identifying “what” is in the
given image, but due to local-information loss, it cannot accurately deduce “where” the predicted
class is present.19 In addition, depending upon the stride size, the pooling and convolution oper-
ations down sample the input image. Thus, successive convolutional layers (including pooling)
may result in a very low spatial resolution output.

Shelhamer et al.19 used a single skip layer to add all the skip information at the end of the
network. However in the proposed UFCN architecture, a step-wise approach is used. Skip con-
nections taken from a convolutional layer of size, say,m ×m × r, is connected to the deconvolu-
tional layer of corresponding size, m ×m × r 0 (see Fig. 2). Such a connection structure also
avoids any information loss. U-net architecture proposed by Ronneberger et al.21 uses cropping
operations in skip layers, leading to inefficiency. The proposed UFCN architecture is designed so
as to avoid any cropping and, hence, skip connections in UFCN are lossless. Further, an output
image matrix, with the same spatial resolution (unlike the U-net model) of the input image
matrix, is obtained with multifold feature maps as compared with the input image. A 1 × 1 con-
volutional layer with a sigmoid activation is appended at the end to reduce the number of feature
maps to 1, resulting in the output of size N × N × 1, which is represented with just a N × N 2-D
matrix with a value between 0 and 1 at every pixel position.

4.3 Problem Formulation

Let X ¼ RN×N×3 be the space of N × N × 3 dimensional rank-3 tensors (or simply RGB color
images),Y ¼ RN×N be the space ofN × N dimensional rank-2 tensors (also called matrices), and
Wk ⊂ Rk×k be the set of learnable 2-D filters of size k (described in Sec. 4.2). In this work, we
have chosen a fixed size for filter (k ¼ 3) throughout the model. The proposed UFCN model can
be thought of as a transformation UWk

∶X → Y with Wk as parameter for defining U. The learn-
ing objective is to choose Wk to minimize a loss function. We leave the intricate mathematics of
the internal machinery of transformationU and the theory of learning of conditional distributions
to the extensive literature available. Only a minimal mathematical formulation of the problem is
presented. However, a visualization of the transformation at multiple convolutional levels is pro-
vided (Fig. 3).

As the spectral depth of these maps is too large to be visualized, element-wise-average feature
map of each level in the UFCN model is presented. We see that earlier convolutional layers tend
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to extract edges [see Fig. 3(b)] and deeper convolutional layers are of low resolution [see
Fig. 3(c)]. An increase in the resolution via deconvolutional layers and skip connections, dis-
cussed in Sec. 4.2, can be observed as we go from Figs. 3(c) to 3(d) through Fig. 3(f).

We interpret the output P ∈ Y of the transformation U as the “prediction probability matrix”
P ¼ ½pij�, where pij is the probability of the pixel at position ði; jÞ belonging to road. To produce
this matrix, the last activation used in the proposed UFCN model is an element-wise sigmoid
activation, which is σð·Þ given by

EQ-TARGET;temp:intralink-;e002;116;273σðxÞ ¼ 1

1þ e−x
; (2)

and hence every element pij in the output lies between 0 and 1.
The corresponding probabilities for the background can be obtained as bij ¼ 1 − pij. We,

therefore, formulate the subsequent discussion in terms of P matrix only. The “prediction prob-
ability matrix” P is thresholded to obtain the final output, involving assigning of the pixel to road
or the background.

LetM ∈ X be the input image, T∶Y → Y represents the thresholding operator and S ∈ Y be
the matrix obtained after thresholding then

EQ-TARGET;temp:intralink-;e003;116;147P ¼ UWk
ðMÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;115S ¼ TðPÞ; (4)

such that sij ¼ nintðpijÞ, where nintð·Þ is the nearest-integer function, which in this case, maps
the probabilities to integers 0 or 1, whichever is “nearer.” The thresholding operation maps the

Fig. 3 Feature maps (activation maps) extracted by corresponding filters (wk ) in different layers of
the trained UFCN model: (a) input image (512 × 512 × 3), (b) averaged feature map at level two of
the convolutional network (originally: 256 × 256 × 32), (c) averaged feature map at level four of the
convolutional network (originally: 64 × 64 × 128), (d) averaged feature map at level first of the
deconvolutional network after merging operation (originally: 128 × 128 × 192), (e) averaged fea-
ture map at level two of the deconvolutional network after merging operation (originally:
256 × 256 × 96), and (f) averaged feature map at level three of the deconvolutional network
after merging operation (originally: 512 × 512 × 48).
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probabilities to the maximum probability class since the operation nintð·Þ results in matrix S of
the form, which is given by

EQ-TARGET;temp:intralink-;e005;116;711sij ¼
�
1 if pij > bij
0 if pij ≤ bij

: (5)

The final output after thresholding, S, is thus a binary matrix in which “1” occurs at the pixel
positions where the road is predicted and 0 otherwise. This thresholded matrix S is also termed as
“threshold image” from now on.

The prediction probability matrix P output from the model is visualized as a heat map, which
is an RGB image where the likelihood of a pixel belonging to the road (i.e., pij) is indicated by
a color on a blue-to-red scale. Some output heat maps are shown in Fig. 7 (see Sec. 5).

4.4 Objective and Learning

The objective is to choose Wk such that given any input image M ∈ X should produce a seg-
mentation map T½UWk

ðMÞ� ∈ Y, in which road and background are differentiated with “1” at
road pixels and “0” otherwise. A subset of images is selected from a set of aerial images obtained
from the UAV described in Sec. 2. The subset is chosen to include a variety of aerial images of
roads taken at various perspectives and altitudes to thoroughly train the model. The subset is
denoted as M whose cardinality is nðMÞ ¼ 76. The model is trained via supervised learning
approach with segmentation maps (ground truth or label) corresponding to all the images inM.
Thus, a ground truth G ∈ Y is a 2-D binary matrix G ¼ ½gij� representing the actual map of the
aerial image, which is given by

EQ-TARGET;temp:intralink-;e006;116;449gij ¼
�
1 if pixel at ði; jÞ belongs to road

0 otherwise
: (6)

The set of such binary ground truths corresponding to aerial images inM is represented as G,
where G ⊂ Y. The set of pairs D ¼ fðM;GÞ∶M ∈ M; G ∈ Gg is referred to as dataset. Our
original dataset is not large enough (only 76 aerial images along with ground truths); therefore,
real-time data augmentation is done while training. Data augmentation is a technique of gen-
erating more images (and corresponding ground truths) by doing random affine transformations
on images such as rotation by an arbitrary angle, vertical flip, horizontal flip, and so on. Real-
time data augmentation implies that these affine transformations are done while training (and not
in advance) to save memory and time. This implies that new pairs are generated and included in
D in real time and are immediately used as training examples. Hence, final cardinality of D
depends on the duration of training phase. Ronneberger et al.21 showed that U-structured net-
works can actually be trained end to end on very few examples, making strong use of data aug-
mentation more efficiently.

LetP ¼ fP∶P ¼ UWk
ðMÞ ∀ M ∈ Mg. We define loss function or cost functionL∶P × G →

R to be the binary cross entropy (BCE) evaluated between the ground truth (G) and the pre-
diction probability matrix (P). The cross entropy gives the measure of similarity between the two
probability distributions, here probability distributions of gij and pij in particular. The equation
for this loss function is given as

EQ-TARGET;temp:intralink-;e007;116;199L ¼ −
X
i

X
j

½gij logðpijÞ þ ð1 − gijÞ: logð1 − pijÞ�: (7)

In Eq. (7), gij are predefined and pij are obtained from Eq. (3). It should be noted that cross
entropies corresponding to every pixel (which follow its own distribution pij ∼ Fij) are added to
obtain the final loss. The minimization of loss function is done using “adam” optimizer,28 which
is a method for stochastic optimization. The required gradients are obtained using the back-
propagation algorithm.29

The UFCNmodel processes the whole of the test image to predict every single pixel such that
the neighborhood information of a pixel is incorporated during prediction. The pixel-wise
prediction machine-learning models (e.g., SVM) and 1D-CNN in particular, do not take
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neighborhood information in consideration. This means that probability distributions Fij such
that pij ∼ Fij are estimated independently of each other in the traditional models, where con-
textual information is not utilized. Some works30,31 take into account the context information in
one way or the other, e.g., including texture features using methods such as wavelet transforms,
gray-level co-occurrence matrix (GLCM), or window-wise prediction but are inefficient.19,27

Practically, neighboring distributions do affect each other and estimation of Fij may depend
on a contextual window in the image. UFCN model estimates each Fij taking whole of the
imageM as the contextual window. FCNs exploit the contextual information in a more effective
way than traditional approaches.19

4.5 Experiments

For the purpose of comparison, we employ three different models, namely SVM, 1D-CNN, and
2D-CNN, for pixel-wise classification and compare the results with the proposed UFCN model.
Section 5 later shows how the results of a classical model (here SVM), 1D-CNN, and 2D-CNN
models are comparable.

To validate the importance of skip connections and learned upsampling, we use a standard
2D-CNN model, which is devoid of skip connections and deconvolutional layers, and is similar
in architecture to UFCN upto final max pooling operation (see Fig. 2). Feature maps of the final
Max Pooling operation are upsampled to the size of input using repetitive upsampling, which is
followed by a single-node network-in-network layer32 (or mlpconv layer) with sigmoid activa-
tion, producing a 2-D matrix similar to P [see Eq. (3)]. 2D-CNN is trained on the same data used
for UFCN taking “binary crossentropy” as the loss function.

SVMs have been traditionally explored for the tasks of image classification33 and road
extraction.1 We also evaluate the SVM model to compare the performance. A pixel-wise
SVM classifier is designed and trained across 8192 pixels chosen from the adequate regions
in the training set. A nonlinear kernel, Gaussian radial basis function is chosen for the classi-
fication task. The parameters of C (cost of classification) and γ (free parameter of the Gaussian
radial basis function) were empirically fine tuned to values 1000 and 0.001, respectively.

1D-CNNs have been used as classifiers and feature extractors.34,35 1D-CNN-based
approaches have also been used in hyperspectral image classifications.6 The essence of “one
dimensional” in such networks can be visualized as subsequent convolution operations on layers
of vectors making the feature maps strictly 1-D.36 The input to this model is a vector of red,
green, blue (RGB) and hue, saturation, and value values of pixels. Throughout the model, stride
of 1, kernel size of 1 × 3, and 64 filters are used in each convolutional layer. To involve every
possible combination into convolution, RGB values are again appended at the end of vector.
A fully connected dense layer is appended and is followed by a single node. ReLU activation
is used for convolutional layers and fully connected layer, sigmoid is used for output node. Also,
dropout of 0.2 is employed in the fully connected layer to avoid overfitting. The weights of filters
are optimized via backpropagation, minimizing the “binary cross-entropy” function. For an

Fig. 4 Architecture of the 1D-CNN model.
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equitable comparison, the training data are prepared from the same regions on which SVM clas-
sifier is trained. Figure 4 shows the detailed architecture of 1D-CNN model.

4.6 Performance Evaluation

In this work, we use standard measures for evaluating the semantic segmentation task, namely
precision, recall, F1-score, and accuracy.19,37 Brier score38 is also used to evaluate predicted heat
maps. Let D be the set of pixels on which metrics are to be calculated. We evaluate confusion
matrix39 (2 × 2), for the pixel-wise binary classification, where nij is the i; j entry of the matrix.
Let n00, n01, n10, and n11 denote the number of true negative, false positive, false negative, and
true positives, respectively. Let N be the total number of pixels in D, Ti be the actual label of the
i’th pixel (1 for road and 0 otherwise), and pi be the predicted probability of road. We compute
the following:

• Precision (P): n11∕ðn11 þ n01Þ
• Recall (R): n11∕ðn11 þ n10Þ
• F1 score: 2 · P · R∕ðPþ RÞ
• Accuracy (A): ðn00 þ n11Þ∕N
• Brier score (BS): 1

N

P
N
i¼1 ðpi − TiÞ2

The model was implemented in the Keras framework (python) and was trained for 11 hours
on GeForce GTX 780 TI GPU.

5 Results

In this section, we demonstrate the performance of the UFCN model and evaluate the results
against SVM, 1D-CNN, and 2D-CNN models. Figure 5 visualizes the performance and

Fig. 5 Visual interpretation of the performance of models across four representative images in
order: (a) input image, (b) ground truth, (c) SVMmodel threshold image, (d) 1D-CNNmodel thresh-
old image, (e) 2D-CNN model threshold image, and (f) UFCN model threshold image.
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comparisons of the proposed UFCN method. We use “threshold image” of the trained SVM, 1D-
CNN, 2D-CNN, and UFCN models across the four images to compare the performance of each
model. The test images in Fig. 5 chosen for demonstration are taken by the UAV camera at
different angles, terrains, and during different times of the day to evaluate the models more
explicitly. Some of the factors that cause misclassification in the task of road extraction
such as occlusion (see the blunt edges captured in Figs. 5 “Image 3” and 5 “Image 4” due
the camera’s curvature) and similar background texture (see Figs. 5 “Image 1” and 5
“Image 2”) have been incorporated in the input images with an attempt to review the robustness
of the models. Image 1 is a road stretch with two lanes separated by a median. Figure 5 shows
Image 2, a toll junction where the road expands to multiple lanes without medians. Image 3 and
Image 4 are roads in a residential locality with edge markers and multiple intersections.

Table 1 tabulates the performance parameters and prediction times evaluated on the corre-
spondingly obtained results of SVM, 1D-CNN, 2D-CNN, and UFCN models across the four
images shown in Fig. 5. The threshold image predicted by the three models is evaluated against
the ground truths to calculate precision, recall, F1 score, and accuracy. The heat maps of the
predicted images are evaluated against the ground truths to calculate the BSs. Going by the
results of Fig. 5 and evaluation of Table 1, clearly by visual interpretation and taking any of
the performance parameter in consideration, the UFCN model outperforms the SVM, 1D-
CNN, and 2D-CNN models. Precision performance of the SVM model dips to as low as
0.411 and 1D-CNN model performance on accuracy is in the range of 0.567 to 0.933, producing
much variance. Similar trends can be seen with 2D-CNN model across all the performance
parameters, which are attributed to simple upsampling causing pixelation (discussed in
Sec. 4.5). Comparatively, performance of UFCN model is consistent with much less variance
across the four images. The consistent behavior is evident from the precision and recall of UFCN
model being in the range of 0.973 to 0.988 and 0.961 to 0.971, respectively.

As is also evident from Table 1, UFCN and 2D-CNN models are faster and stable in pre-
diction than 1D-CNN and SVMmodels. The faster output rate of 2D-CNN model is attributed to

Table 1 Detailed performance evaluation across four representative images.

Test data (D) Model Precision Recall F1 score Accuracy BS Prediction time (s)

Image 1 UFCN 0.988 0.965 0.976 0.994 0.0046 1.90

SVM 0.468 0.862 0.607 0.854 0.1325 7.05

1D-CNN 0.567 0.988 0.720 0.900 0.0818 42.02

2D-CNN 0.668 0.722 0.694 0.917 0.0565 1.05

Image 2 UFCN 0.989 0.977 0.983 0.987 0.0100 1.92

SVM 0.979 0.737 0.841 0.894 0.1182 7.44

1D-CNN 0.933 0.912 0.923 0.942 0.0488 43.10

2D-CNN 0.938 0.734 0.824 0.880 0.0984 1.11

Image 3 UFCN 0.978 0.953 0.965 0.990 0.0073 1.99

SVM 0.671 0.732 0.701 0.912 0.0783 8.45

1D-CNN 0.633 0.960 0.763 0.916 0.0649 45.05

2D-CNN 0.866 0.582 0.697 0.929 0.0530 1.07

Image 4 UFCN 0.973 0.961 0.967 0.989 0.0082 2.01

SVM 0.411 0.904 0.566 0.768 0.1948 7.79

1D-CNN 0.582 0.993 0.734 0.880 0.1021 45.34

2D-CNN 0.614 0.727 0.666 0.879 0.0958 1.13
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less complex architecture than the UFCNmodel. The prediction techniques used in 1D-CNN and
SVM models are based on conventional machine learning following a pixel-by-pixel prediction
strategy. The UFCN and 2D-CNN models predict the whole image (a matrix of pixels) at once.
The simultaneous labeling of all the pixels is evident from the architecture of the model as dis-
cussed in Secs. 4 and 4.5. Here, SVM model is faster than 1D-CNN model with average pre-
diction times of 7.68 and 43.88 s, respectively. This is mainly due to comparatively much
computationally intensive architecture of the 1D-CNN model. In Fig. 6, the variation in predic-
tion times of 1D-CNN and SVM models is noticeable and hence is inconsistent. The UFCN and
2D-CNN models show consistency across all images.

In Fig. 7, heat maps of the UFCN, 1D-CNN, and 2D-CNN models are visually compared.
UFCN model shows a higher confidence in prediction and predicts the whole background with
much less probability of it belonging to road. The heat maps of 1D-CNN and 2D-CNN models
are highly grained, depicting a low confidence behavior before the thresholding is performed.
This behavior is visualized by the results compared with heat map index provided. Most of the
pixels predicted by UFCN model fall in the upper range of 0.70 to 1.00 for the road and lower
range of 0.00 to 0.30 for the background. 1D-CNN and 2D-CNN models clearly show dispersed
range of values across the index, which is undesirable.

To further examine the consistency of models across diverse data, we evaluate the entire test
set (see Table 2) to verify the overall performance of the proposed UFCN model. The metrics are
calculated on the set D containing the pixels of all the 33 test images. For visualization, pre-
cision–recall scatter plot and box plots of the above-mentioned performance parameters are
shown in Figs. 8 and 9, respectively. In Fig. 8, it is clear that the UFCN model is highly con-
sistent than its SVM, 1D-CNN, and 2D-CNN counterparts. The cluster of points plotted by the
UFCN model across all test data is closer to coordinates (1,1), which is desirable. SVM, 1D-
CNN, and 2D-CNN models show the plots scattered over the space.

Fig. 6 Visualization of prediction time.

Fig. 7 Heat maps of 1D-CNN, 2D-CNN, and UFCN models for performance comparison: (a) input
image, (b) ground truth, (c) output heat map of 1D-CNN model, (d) output heat map of 2D-CNN
model, and (e) output heat map of UFCN model.
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Box plots of the other three performance parameters (F1 score, accuracy, and BS) are pre-
sented in Fig. 9. These visualizations represent the performance data of models in Table 2. It is
quite evident that the UFCN model shows far less variation than SVM, 1D-CNN, and 2D-CNN
models across all the parameters.

6 Conclusion

The task of the extraction of roads in RGB images acquired through LARS carried out by a UAV
was successfully accomplished. UFCN, a U-shaped FCN was used to carry out dense semantic
segmentation for the road extraction. A set of 76 LARS images were used along with real-time
data augmentation to train the UFCN model. The results compared with SVM, 1D-CNN, and
2D-CNN illustrates that UFCN outperforming all the models. Also, the prediction time of the
UFCN model is fast and stable compared with SVM and 1D-CNN models, making it an

Table 2 Performance evaluation across whole test set.

Test data (D) Model Precision Recall F1 score Accuracy BS

33 images UFCN 0.925 0.868 0.896 0.952 0.0378

SVM 0.805 0.759 0.780 0.899 0.0856

1D-CNN 0.720 0.938 0.814 0.898 0.0851

2D-CNN 0.869 0.748 0.804 0.914 0.0665

Fig. 8 Precision versus recall plot for performance evaluation of UFCN, SVM, 1D-CNN, and 2D-
CNN models.

Fig. 9 Performance visualization of the models using box plots of F1 score, accuracy, and BS.
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excellent choice for near real-time data acquisition operations. This work also demonstrates the
potential of using LARS and the associated deep learning architecture for use in the microlevel
remote sensing applications, such as road construction monitoring and determining effective
crop area in fragmented land holdings. The results are promising; however, the work can be
extended to apply the proposed UFCN architecture for road extraction in mosaic UAV images
covering a large area.
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