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Abstract. Reliable detection of calcium waves in multiphoton imaging data is challenging because of the low
signal-to-noise ratio and because of the unpredictability of the time and location of these spontaneous events.
This paper describes our approach to calcium wave detection and reconstruction based on a modified multiscale
vision model, an object detection framework based on the thresholding of wavelet coefficients and hierarchical
trees of significant coefficients followed by nonlinear iterative partial object reconstruction, for the analysis of
two-photon calcium imaging data. The framework is discussed in the context of detection and reconstruction
of intercellular glial calciumwaves. We extend the framework by a different decomposition algorithm and iterative
reconstruction of the detected objects. Comparison with several popular state-of-the-art image denoising
methods shows that performance of the multiscale vision model is similar in the denoising, but provides a better
segmenation of the image into meaningful objects, whereas other methods need to be combined with dedicated
thresholding and segmentation utilities. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Modern imaging techniques, including two-photon microscopy,
produce in vivo experimental data of great diversity and volume.
New experimental possibilities, such as optogenetics, bring
about new scientific questions to address and consequently gen-
erate a torrent of data. One of the existing problems is the com-
promise between a demand for fast sampling to resolve rapid
transient processes on one hand and sufficient spatial resolution
on the other hand. Although imaging data tend to be collected in
high detail, a large portion of it contains background or noise
and is discarded downstream in the processing pipeline, while
a small fraction is considered the useful “signal.” It is important
to robustly identify the useful parts of data in low signal-to-noise
ratio (SNR) measurements.

An important feature of analyzed data is its sparseness or
compressibility under some transform, i.e., if the data can be
decomposed into some basis such as Fourier or wavelet, where
only a few coefficients are significantly larger than zero. The
notion of sparseness is essential for noise suppression. If trans-
formed data are sparse, one can legitimately assume that
only the few large coefficients contain information about the
underlying signal, whereas the small-valued coefficients can
be attributed to noise. This leads to the idea of thresholding
in a transform space for image enhancement.1,2 Because wavelet
transform provides a nearly sparse representation of piecewise
smooth images,3 this transform and its variants have become
popular in image denoising and signal detection in transform
domain,4–8 although there are also other transforms that can pro-
vide sparse representation, such as singular value decomposition

and Radon transform. In short, wavelet transform is a multiscale
representation of the input data, obtained via iterative applica-
tion of band-pass filters. Wavelet coefficients capture the signal
features at different locations and hierarchical spatial resolu-
tions. The multiscale property is particularly useful for denois-
ing because a typical useful signal is sparse (concentrated in a
few coefficients at several scales), while noise is homogeneously
distributed.

Calcium signaling in astrocytes takes versatile forms, one
of which is spatially patterned spreading Ca2þ signals that per-
vade astroglial networks. Intercellular Ca2þ waves in astrocytic
syncytium can be triggered by electrical and mechanical stim-
ulations,9 local elevation of extracellular adenosine triphosphate
(ATP) level,10 or by neuronal activity in situ11 Spontaneous glial
calcium signaling is reported to guide axonal growth and cell
migration in the developing brain,12–14 and calcium waves
may represent a reaction to local tissue damage or other pathol-
ogy. For instance, the incidence of spontaneous Ca2þ waves is
increased with aging and low-oxygen conditions.15 Detection
and reconstruction of Ca2þ waves in fluorescent imaging record-
ings pose challenges for data analysis. The key problem is iden-
tifying transient low contrast events in large series of images at a
low SNR. Conventional data analysis methods can be loosely
categorized to region of interest (ROI) type analyses, pixel
thresholding, statistical component analyses, and multiscale
(usually wavelet based) analyses. ROI analysis and pixel thresh-
olding work particularly well with evoked responses, easily rec-
ognizable cellular correlates, relatively low noise, and small
datasets. An ROI-based approach is primarily popular because
it is often simple to select the ROIs corresponding to neuronal
bodies and then process the ROI-averaged fluorescence traces.
However, it becomes unwieldy for the analysis of sparse sponta-
neous events in large datasets and high noise levels or where a
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priori selection of regions of interest is impossible, which is the
case for Ca2þ waves in the molecular layer of the cerebellum.
Independent component analysis (ICA)16 is capable of process-
ing large datasets with sparse spontaneous events, but has some
limitations. Specifically, the output of ICA relies on the inde-
pendence of the analyzed signals, and does not preserve the rel-
ative amplitude or sign of the detected components; in
application to frame series it does not directly take advantage
of local correlations in pixel intensities. Spontaneously occur-
ring glial Ca2þ waves (GCWs) are hard to detect and quantify
by ROI analysis, pixel thresholding, or ICA.

In this paper, we present an example of a multiscale
approach to image and signal processing. We discuss a frame-
work for the multiscale vision model (MVM)17,18 in application
to the problem of detection and reconstruction of spontaneous
intercellular glial Ca2þ waves. This technique relies on the spar-
sifying property of the wavelet transform. In short, wavelet
transform is a multiscale representation of the input data,
made via iterative application of band-pass filters. Wavelet
coefficients capture the signal features at different locations
and hierarchical spatial resolutions. Due to the nature of the
used transform, MVM is most suitable for detection of nearly
round faint structures in noisy images or bright blobs in three-
dimensional (3-D) data. Because glial calcium waves are man-
ifested as expanding nearly isotropic transient fluorescent ele-
vations, MVM performs well in pursuing such structures frame
after frame, and then stitching overlapping objects as snapshots
of a single GCW event.

2 Multiscale Vision Model for Detection of
Glial Calcium Waves

Recently, we adapted a wavelet-based framework, multiscale
vision model to detect and analyze the spontaneous intercellular
calcium waves in mouse cerebellum glial cells in vivo.18

In short, this framework amounts to noise rejection by thresh-
olding wavelet coefficients of the input image, followed by
establishing an interscale relationship between significant
coefficients at different scales of decomposition and partial
iterative reconstruction of the detected objects. Originally,
this framework was suggested for the analysis of astronomy
images19 and employed redundant wavelet transform with B-
spline basis, also called “starlet” transform.2 Here, we report
two improvements to our previous MVM implementation:18

(1) we increase the tolerance to outlier samples by using a
mixed multiscale median and the starlet transform, and
(2) we implement an iterative partial reconstruction algorithm.
To illustrate this improved framework, we use several phantom
patterns [Fig. 1(a)] of different shapes, contaminated with addi-
tive Gaussian white noise (AGWN) with a few bright “hot-spot”
pixels with 50× the noise variance in 0.05% of pixels [Fig. 1(b)].
This can also be described as a small amount of “salt noise”
(SN). The framework is summarized in Fig. 4 using an exper-
imental 2-pm record with a spontaneous glial Ca2þ wave in
the mouse cerebellum as an example. The MVM framework is
compared to other denoising techniques in Fig. 6 for phantoms
and in Fig. 7 for the experimental recording.

2.1 Starlet and Multiscale Median Transforms

Starlet transfrom (also known as à trous transform) decomposes
an original image Iðx; yÞ into a set fwjðx; yÞg representing
two-dimensional (2-D) image details at different scales j

(wavelet coefficients) and a smoothed approximation cNðx; yÞ
at the largest scale:

Iðx; yÞ ¼ cNðx; yÞ þ
X

j

wjðx; yÞ; (1)

where j ¼ 1; : : : N is the level of decomposition corresponding
to a hierarchy of spatial scales. As j increases, the coefficient
images wj represent more and more coarse features of the origi-
nal image I. The starlet decomposition of a noisy phantom
image is illustrated in Fig. 1. Wavelet coefficients at consecutive
levels are iteratively obtained. First, the original image is con-
sidered an approximation at level 0 Iðx; yÞ ¼ c0ðx; yÞ. Then,
smoothed approximations at the level nþ 1 are obtained by con-
volution of the approximation cn at the level n with a low-pass
filter:

cnþ1ðx; yÞ ¼ cnðx; yÞ � hnþ1; (2)

and the wavelet coefficients (“details”) are defined as the differ-
ence between the subsequent approximations:

Wnþ1ðx; yÞ ¼ Cnþ1ðx; yÞ − Cnðx; yÞ: (3)

The low-pass filter is 2× zero-upsampled at each level,
leading to interlaced image convolution. In the starlet trans-
form, a discrete filter based on a cubic B-spline is used.
In one dimension (1-D), this filter takes the form h1 ¼
½ð1∕16Þ; ð1∕4Þ; ð3∕8Þ; ð1∕4Þ; ð1∕16Þ�. For 2-D images, one
can use the outer product of the two one-dimensional filters
h2 ¼ h1 ⊗ h1 or process each dimension separately with
a 1-D filter.

S

M

M

Approx

(a)

(c)

(b)

(d)

Fig. 1 Test phantom patterns and their decompositions. (a) Pure
patterns, patterns corrupted with additive Gaussian white noise
(+AGWN), patterns corrupted with additive Gaussian white noise
and salt noise (+AGWN+SN), (b) wavelet coefficients after the
five-level starlet transform for the noisy patterns (+AGWN+SN),
(c) coefficients of the multiscale median transform of the same pat-
tern, (d) coefficients of the mixed multiscale median/starlet transform
of the same pattern.

Neurophotonics 011012-2 Jul–Sep 2014 • Vol. 1(1)

Brazhe et al.: Multiscale vision model for event detection and reconstruction in two-photon imaging data



A known drawback of the starlet transform is that a very
bright point structure will have responses in many scales instead
of just being captured by the finest scale.2 Such small bright
structures can be outliers, like occasional “hot pixels” of the
charge coupled device matrix or salt noise. This is illustrated
in the starlet decomposition of the phantom image, mixed
with AGWN and salt noise [Fig. 1(b)], where the bright outlier
points influence coefficients up to the fourth level of decompo-
sition. Such a problem does not exist in the multiscale median
transform [Fig. 1(c)]. This transform is organized in the same
iterative way as the starlet transform, but the role of low-pass
filtering is played by the median filter, with the window size
doubling at each level of decomposition. In 2-Ds, the median
filter of an image f with window size L × L can be defined
as Medðf; LÞ: fi;k → Q2ffi�L;k�Lg, i.e., each pixel in the
image f is replaced by the sample median of pixel values in
the L × L neigborhood of the pixel fi;k. The window size
changes with the decomposition level j as L ¼ 4jþ 1. The
median filter is nonlinear and provides for robust smoothing,
i.e., it attenuates the effect of outlier samples.2 Hence, one of
the advantages of the multiscale median transform is better
separation of structures in the scales, but the starlet transform
provides a more robust noise estimation at different scales.
In a compromise, one can mix the two transforms and use the
median or starlet transform depending on the amplitude of the
coefficient. In the original merged median/starlet transform
(MST)2 at level jþ 1, one first computes the median filtering
of the approximation cj with a window size 4jþ 1:

c 0
jþ1 ¼ Medðcj; 4jþ 1Þ.

Next, the temporary median transform coefficients are obtained,
as w 0

jþ1 ¼ cj − c 0
jþ1. Then the high-intensity coefficients are

defined as coefficients where jw 0
jþ1j > τMADðw 0

jþ1Þ∕0.6745,
where MAD stands for the median absolute deviation and is
used as a robust estimator of noise standard deviation, and
threshold τ is chosen high enough to avoid false detections, usu-
ally τ ¼ 5. All the high-intensity coefficients in w 0

jþ1 are set to
zero and a version of cj with zeroed high-intensity structures is
formed: c 0 0

j ¼ w 0
jþ1 þ c 0

jþ1. Next, the starlet transform of c 0 0
j is

done at jþ 1 scales (1), and the last approximation is finally
used as cjþ1. Thus, cj has been smoothed with wavelets after
all strong features have been removed by median filtering.
Because median filtering is computationally intensive and the
outlying structures are usually small and thus are most frequent
at small scales, we simplified the original algorithm by only per-
forming the mixed decomposition at the first two scales and
then continuing with the usual starlet transform. Coefficients
of such a decomposition for the phantom image are shown in
Fig. 1(d)—here all the hot-spot pixels are confined to the small-
est scale coefficients and the structure of the patterns is more
well preserved. Another example is shown in Fig. 2 for a
noisy 1-D signal, which contains a Gaussian with σ ¼ 10 at t ¼
512 and an outlier sample with an amplitude 100× the noise
standard deviation at t ¼ 485. Representation of the Gaussian
object in the starlet coefficients at scale j ¼ 5 is affected by
this sample, while the multiscale median and median/starlet
transforms are free from this spurious influence and represent
only the object of interest.

2.2 Significant Wavelet Coefficients

Detection of structures of interest that are significantly brighter
than the background should be based on the knowledge about
the statistical distribution of the wavelet coefficients fwjðx; yÞg
in the background. We assumed stationary Gaussian white noise
to set significance levels. Statistics of wavelet coefficients at
each level were estimated with Monte Carlo simulations: we
obtained standard deviations σ1ðjÞ of noise wavelet coefficients
at each level of decomposition j (index 1 in σ1 represents unit
variance). The obtained σ1ðjÞ values were used as weighting
factors for arbitrary noise variance in the analyzed images.
More details can be found in Ref. 17 and in Chapter 2 of Ref. 20

The knowledge of noise standard deviations at different spa-
tial scales allows the definition of significant coefficients for an
image Iðk; lÞ by thresholding at kσðjÞ at each level. If
Wjðx; yÞ > kσðjÞ, the coefficient is considered significant and
possibly belonging to a bright object. Interested in elevations
of ½Ca2þ�i, we only test positive coefficients corresponding to
the luminous sources. The choice of k can be varied for optimal
performance; in the figures below, we used k ¼ 3.3 which cor-
responds to the 99.95th percentile of a Gaussian distribution.

2.3 Interscale Relationship and Object
Reconstruction

Image Iðx; yÞ can be modeled as a composition of No objects
Oi, smooth background B, and noise N:

Iðx; yÞ ¼
XNo

i¼1

Oiðx; yÞ þ Bðx; yÞ þ Nðx; yÞ: (4)

Signal

Starlet (j=5)

Median (j=5)

Median/starlet

Fig. 2 Illustration of the influence of outlying samples on detection of
objects in one-dimensional (1-D) signals. From top to bottom: ana-
lyzed signal, containing white noise, a Gaussian with σ ¼ 10 at
t ¼ 512 and an outlier with amplitude 100× higher than the noise
standard deviation at t ¼ 485; starlet coefficients at fifth level of
decomposition; multiscale median transform coefficients at fifth
level of decomposition; mixed median/starlet transform coefficients
at fifth level of decomposition. The outlier distorts object of interest
representation for starlet transform, but has no effect on multiscale
median and mixed transforms.
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To recover the objects Oiðx; yÞ in a given image, we use
contiguous regions of significant coefficients at each scale and
establish their interscale connectivity relationships. Let a struc-
ture Sj;l be a set of p connected significant wavelet coefficients
at scale j:

Sj;l ¼ fwjðx1; y1Þ; wjðx2; y2Þ; : : : ; wjðxp; ypÞg; (5)

where ðxi; yiÞ are the coordinates of the i’th coefficient included
in the structure. An example of such structures is given in
Fig. 3(a), where the positions of significant median/starlet
coefficients from Fig. 1(d) are shown in red. An object can be
defined via a set of n structures at several different levels:

Ow
i ¼ fSj1;l1 ; : : : ; Sjn;lng; (6)

and the real object Oi can be reconstructed from its wavelet
representation Ow

i . Structures in this set are hierarchically con-
nected. Two structures at successive levels Sj;k and Sjþ1;m are
connected if the position ðxm; ymÞ of the maximum of wavelet
coefficients belonging to the structure Sj;k is also contained
in Sjþ1;m. Some significant structures can also result from
the noise. These structures are typically isolated, i.e., they are

not connected to any structure at a lower or higher level.
Such structures are discarded in the algorithm. Indeed, any
structure can only be connected to one structure at the higher
level and to more than one structure at the lower level, thus
resulting in a branched tree-like connectivity graph. Such con-
nectivity trees are illustrated in Fig. 3(b), where each tree is
shown in a different color, and coefficients at different scales
are overlaid. We can refer to these connectivity trees by their
root nodes, i.e., the structures at the largest scale.

When there are several close objects or a smaller object is
overlaid on a bigger one, the objects can become entangled
in one connectivity tree and should be deblended. A structure
Sj;k will be detached from the tree as a new root node if
there exists at least one other structure at the same level belong-
ing to the same tree and the following condition is fulfilled:
wm
j−1 < wm

j > wm
jþ1. Here, w

m
j is the maximum wavelet coeffi-

cient of Sj;k; wm
j−1 ¼ maxfSj−1;lg, where Sj−1;l is the structure

connected to Sj;k, such that the position of its maximum wavelet
coefficient is closest to the position of the maximum of Sj;k,
if Sj;k is not connected to any structure at scale j − 1 then
wm
j−1 ¼ 0; and wm

jþ1 ¼ max wjþ1ðx; yÞjwjðx; yÞ ∈ Sj;k, i.e.,
the maximum wavelet coefficient at scale jþ 1, such that
its location belongs to Sj;k. Recursive application of this
deblending procedure to the connectivity tree yields objects
as independent structures of significant wavelet coefficients.
Partial reconstruction of these objects as images is a nontrivial
task. The simplest solution is to perform inverse wavelet trans-
forms for each object, setting all wavelet coefficients not belong-
ing to the object to zero.

In our previos study,18 we looked for a compromise between
the computational speed and accuracy of reconstruction. For the
sake of computational speed, we reconstructed objects simply as
the inverse transform Rw of the wavelet coefficients representing
the object. Here, we improve our framework with an iterative
reconstruction scheme.2 The idea is that we search for an
image that will, under the multiscale transform (e.g., starlet),
result in coefficients as close as possible to those to Ow

i .
Thus, we want to minimize E ¼ kMiðOw

i − TwXÞk22 by varying
reconstruction image X, where Tw is the wavelet transform oper-
ator, and Mi is the multiresolution support of Ow

i , i.e., has ones
where Ow

i is nonzero and has zeros otherwise. The solution is
searched iteratively:

Xnþ1 ¼ Xn þ αRwMiðOw
i − TwXnÞ; (7)

where Rw is the inverse transform operator, X1 ¼ TwOw
i , and

step size α can be damped at each iteration to ensure the stability
of the solution. Reconstruction convergence can be seen from
the decay of E with the iteration number in Fig. 3(c) for the
starlet transform (black points) and the median/starlet transform
(blue diamonds). It is implied that the transform operator Tw
used for reconstruction in Eq. (7) is the same as the one used
to obtain Ow

i and Mi, but this is not necessary. Noting that the
median/starlet transform is computationally slower than the star-
let transform and must be done multiple times in the iterative
reconstruction algorithm, we tried to use the starlet transform
as the Tw in Eq. (7) (reconstruction operator Rw is the same
for these transforms). This trick is justified by the notion that
it is unlikely that the starting image for reconstruction X1 ¼
TwOw

i should contain any salt noise or outlier point structures,
as the latter should have been rejected at the MST decomposi-
tion stage. This scheme led to surprisingly good results, shown
in Fig. 3(c) (green triangles): the convergence is faster and better

Input Starlet Starlet StarletMst Mst Mst

Iteration number

Residuals

(a)

(b)

(d)

(c)

– – –

Fig. 3 Iterative reconstruction of the detected structures. (a) Masks
for significant (shown in red) starlet/wavelet coefficients for the
noisy image shown in Fig. 1, (b) labeled interscale trees of the signifi-
cant starlet/wavelet coefficients, (c) L2 norm of difference between the
significant coefficients and decomposition of the reconstructed image
E ¼ ΣikMi ðOi − TwX Þk22 for decomposition and reconstruction using
the starlet transform (black circles), decomposition and reconstruction
using the combined median/starlet transform (MST, blue diamonds),
and decomposition using MST and reconstruction using the starlet
transform (green triangles), (d) noisy image (+AGWN+SN), recon-
structions using the different reconstruction variants shown in (c)
and the residuals after subtracting the reconstructed image from
the input image.
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than in the starlet–starlet decomposition/reconstruction pair, and
the reconstruction process is much less computationally inten-
sive than in the MST-MST decomposition/reconstruction pair.

The reconstruction results for the three decomposition/
reconstruction pairs are shown in Fig. 3(d). We should note
that in the reconstruction images, each of the pattern was inde-
pendently reconstructed, but all the individual object reconstruc-
tions are summed in one image for the clarity of representation.
The starlet-starlet variant retains the point structures along with
the patterns, while the schemes involving the median/starlet
transform reject this type of noise. Although the MST-MST
scheme enhances the object contrast, the residual image
(input minus the reconstruction) shows that it does not preserve
initial object intensity, while the residual image for the MST-
starlet scheme almost exclusively contains noise and little
if any traces of the original patterns. This, together with a
lower computational load, suggests the MST-starlet decomposi-
tion/reconstruction pair as the scheme of choice for the task of
glial Ca2þ waves detection and reconstruction.

The full MVM framework with the mixed median/starlet
decomposition and iterative reconstruction to detect and recover
spontaneous glial calcium waves is summarized in Fig. 4. For
each frame of normalized imaging data, we perform the median/
starlet decomposition and after thresholding find contiguous
areas of significant coefficients. These structrures are linked
into interscale tree-like connectivity trees (connected structures
belonging to one object are shown in the same color in the fig-
ure). Based on these connectivity trees, iterative reconstruction
using the starlet transform is individually done for each tree
according to Eq. (7) (shown in different colors as “significant
structures in the kth frame” in the figure). After this the pro-
cedure is done for all frames, and the individual objects con-
tained in each frame are stored. The overlapping objects in
the neighboring frames are linked into an XYT 3-D representa-
tion of an evolution of distinct Ca2þ signaling events, shown as

3-D colored blobs in the scheme. Clearly, not all Ca2þ signaling
events are glial Ca2þ waves, but after detection and 3-D
reconstruction stages, one can identify the events of different
types manually or according to any automated sorting scheme.

2.4 Comparison to Other Denoising Techniques

We compared the MVM framework with our modifications to
other modern denoising techniques, although an exhaustive sur-
vey of different denoising and object detection techniques is
beyond the scope of this study. Figure 5(a) presents how the
PSNR of denoised images changes with the PSNR of noise-
corrupted images. Here, we compare the MVM, two algorithms
of total variation (TV) denoising, which searches for image
approximation with a minimal TV (integral of absolute gradient)
and a bilateral filter.21 The TV denoising was used in two
variants: the Chambolle algorithm22 and the split-Bregman
algorithm.23 The TV and bilateral filtering implementations
were used from the open-sourse scikit-image python library.24

Because the maximum value of the pure phantom image was
1, the PSNR was calculated as 20 lgð1∕ ffiffiffiffiffiffiffiffiffiffi

MSE
p Þ, where MSE

is the mean square error between the tested image f and
the pure phantom image g, each of size N × N: MSE ¼
ð1∕N2ÞPk;lkfðk; lÞ − gðk; lÞk2. It is clear that with AGWN,
the MVM resulted in a better PSNR of the recovered images
at very low SNRs of the input images and had a similar perfor-
mance [Fig. 5(a), left pane] to the TV/Chambolle algorithm at a
higher PSNR of the input images, although MVM displayed
much a higher performance scatter than the other algorithms
at the higher PSNR of the input images. The better performance
of the MVM at a very low PNSR of the noisy images likely
results from background rejection in the MVM and exclusive
reconstruction of only the detected structures. The addition of
small amounts of salt noise (outlier pixels) did not affect the
MVM performance, but deteriorated the performances of the
other algorithms [Fig. 5(a), right pane]. It is clear that while

Fig. 4 Scheme of the MVM protocol for a frame sequence: significant bright objects are detected and
reconstructed in each frame using 2-D MVM, followed by relation of the objects in the neighboring frames
and finally the time evolution of each detected Ca2þ signaling event is independently reconstructed.
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the used denoising algorithms are not optimized for outlier
measurements, preprocessing of the input images with filters,
devoted for removal of salt noise, e.g., adaptive median filter,
would have reverted the results to the case of a simple AGWN.
Figure 5(b) visualizes the difference between denoising pro-
vided by the TV/Chambolle and the MVM approaches at differ-
ent PSNR values for the degraded phantom image. Comparsion
of the images denoised by the two algorithms supports the
observation that the higher PSNR values achieved by MVM
are due to setting the background to zero.

An important feature of the MVM is the ability to detect
and segment structures in an input images, which is built in.
Figure 6(a) presents the results of denoising of the test noisy
phantom with TV/Chambolle, TV/Bregman, and the sure-let
wavelet-based algorithm.25 SURE-LET denoising was done using
the MATLAB® code provided by Luisier and colleagues.26 To
detect individual objects in the output of the alternative denois-
ing algorithms, we performed Otsu thresholding27 and labeled
the resulting contiguous areas as individual objects. Because
the given denoising techniques did not effectively suppress
the salt noise present in the input phantom, we had to perform
adaptive median filtering on the denoised images prior to Otsu

segmentation. The results are presented in Fig. 6(b), where each
object is shown in a different color. The object separation in
MVM matches the ground truth of the object composition,
while the alternative methods tend to segment some of the pat-
terns into multiple objects. Some false-positive objects are also
detected. It is likely that it is possible to tune the thresholding
and segmentation algorithms for the other denoising methods to
produce more satisfactory results, but in our view, the power of
MVM is that this object separation comes out of the box. The
TV/Chambolle produced the best results among the alternative
denoising approaches and it was chosen for further comparison
of the algorithm performance.

Figure 7 shows the results of the TV/Chambolle denoising
and the MVM for the experimental data, displaying several
glial Ca2þ waves co-occurring in the field of view (FOV). In
short, we imaged spontaneous glial Ca2þ waves in mouse cer-
ebellum in vivo under ketamine anesthesia using two-photon
microscope and Oregon green BAPTA-1/AM dye. In the top
row, every fourth frame of the original normalized frame
sequence is shown (time interval between the shown frames
is ≈2.9 s). Fluorescence values in each pixel were normalized
to their respective standard deviation after subtraction of the

Fig. 5 Performance of the MVM and other state-of-the-art denoising techniques at different PSNR levels
of the degraded phantom image shown in Fig. 1(a). (a) Resulting PSNR for images, denoised with the
MVM (green) two total variation (TV) techniques with Chambolle (blue) and Bregman (yellow) algorithms,
and a bilateral filter algorithm (pink) as a function of PSNR of input (degraded) images; input images are
mixed with AGWN (left pane) or AGWN+SN (right pane). Shaded areas around the curves are between
0.05 and 0.95 quantiles of the observed PNSR values and continuous lines are median values (mea-
sured after 200 runs), (b) visual comparison between the TV/Chambolle and the MVM denoising per-
formance at different levels of input PSNR (after mixing with AGWN). Grayscale values rescaled to
belong to ½0;1� interval for each image independently.
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mean value. Experimental details are given in Refs. 15 and 18.
Because we do not have ground truth for the events in the exper-
imental data, we compared the denoising and detection results to
operator-detected events. Locations of the five glial Ca2þ waves
in the FOV as detected by the operator in the ΔF∕σF data are
shown as circles in the fourth column of images. The TV/
Chambolle denoising followed by Otsu thresholding and
zeroing pixel values below the threshold (middle row) clearly
improves the contrast of the images; however, there are also
numerous above-threshold pixels which do not belong to any
wave visible in the FOV. In contrast, the MVM (bottom row)
provides a cleaner view of the data, recovering areas of elevated
Ca2þ corresponding to glial Ca2þ waves, while at the same
time rejecting background and providing for recognition of
individual objects.

3 Conclusion
Our aim in this work was to illustrate the utility of multiscale
transforms for the extraction of useful signals from two-photon
laser scanning microscopy imaging data. Our main point of
application was detection and reconstruction of spontaneous
glial Ca2þ waves using the multiscale vision model approach.

In comparison to our previously reported MVM experience,18

we extended the technique by using the more robust mixed mul-
tiscale median/startlet transform for image decomposition and
implemented an iterative scheme for nonlinear image restoration
from the wavelet coefficients representing an object of interest.

With this technique we were able to detect and reconstruct
areas of increased Ca2þ elevations, corresponding to glial cal-
cium waves and other forms of Ca2þ signaling in each of the
recorded image frames. Performed in all frames, this procedure
allows us to recover the whole dynamics of individual calcium
waves by linking overlapping objects together in the neighbor-
ing frames. The mixed multiscale median/starlet transform
allowed for suppression of both the Gaussian noise and outlying
samples such as salt noise, while iterative object reconstruction
from the significant wavelet coefficients and multiscale support
allowed for a nearly perfect representation of the patterns,
although the difference between the source image and the object
reconstruction contained almost nothing but noise.

With only minor modifications, MVM should be extendable
to other applications, such as quantification of blood vessel
cross-sectional areas, since penetrating vessels also appear as
nearly circular structures in typical two-photon brain imaging

(a)

(b)

Fig. 6 Comparison of performance of MVM and other denoising techniques on the test noisy phantom,
shown in Fig. 1(a). Denoising results for two total variation (TV) minimization techniqes with Chambolle
and Bregman algorthms, bilateral filter and SURE-LET wavelet-based algorithm (a) and object seg-
mentation and labeling results for the corresponding algorithms (b), segmentation is part of MVM, in
other algorithms it was performed by labeling contiguous areas after binarization with automatic Otsu
thresholding.

Fig. 7 Normalized fluorescence data (top row), results of TV/Chambolle denoising followed by Otsu
thresholding and rejecting pixels below threshold (middle row), and results of the MVM reconstruction
(bottom row). Objects, overlapping in neighboring frames are attributed to one signaling event and are
shown in the same color code. Shown is every fourth frame of the original sequence, same data as in
Fig. 4, there are several co-occurring calcium waves in the field of view (FOV). In the MVM.
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data. There is obviously more to neuroimaging data than round-
ish calcium waves or vessel cross sections, and some native
structures, such as Purkinje cell dendrites, are markedly aniso-
tropic. Representation of such structures should benefit from
using, for example, curvelet transforms.6 In general, it is prob-
ably a winning strategy to not limit the analysis to a single trans-
form, but to combine the significant coefficients from several
types of transforms, creating over-redundant dictionaries for
morphological component analysis,2 which would allow for
high flexibility in data representation.
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