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Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in
the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and
estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters
of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue
(absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium,
separate determination of absorption and scattering across the head is challenging. The effective attenuation
coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients,
can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of
interest for the scientific community because of its absolute information content, and because light propagation is
governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the
scalp and skull layers. Here, we report an EACmapping procedure that can be applied to standard fNIRS record-
ings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of
venous sinuses in determining regional EAC variations, a factor often overlooked. © 2017 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.4.2.021103]
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1 Introduction
The most common application of near-infrared (NIR) light for
studying the human brain is functional near-infrared spectros-
copy (fNIRS). fNIRS is based on measuring changes in the opti-
cal properties of brain tissue in the NIR range (650 to 950 nm) to
estimate fluctuations in the concentration of oxy- and deoxyhe-
moglobin associated with neural activity. This method is based
on the differential absorption of NIR light of different wave-
lengths by these chromophores.1–6 fNIRS may be employed
using a channel-based approach, relying on the modified
Beer–Lambert equation, or by using diffuse optical tomography
(DOT).7–11 In both cases, knowledge of optical baseline proper-
ties is fundamental to the accuracy of the fNIRS procedures.

Currently, in almost all cases, investigators assume that the
basic optical properties of the tissue are constant across subjects
and can therefore be estimated based on measurements con-
ducted in previous, ad-hoc studies. In fact, much work has
been done to quantify the reduced scattering and absorption
coefficients of intact, living tissue, including the head and its
tissue layers both in vivo and ex vivo.12 This work relies on spe-
cialized time-domain (TD)13,14 and frequency-domain (FD)15–17

recording systems. TD systems use very short pulses of light and
rely on the distribution of photons’ arrival time to estimate the
optical properties of the underlying tissue. However, these

instruments are very expensive and are, therefore, limited to
only a few source–detector pairs, severely limiting the “field
of view” of the recording. FD systems use light modulated at
radiofrequencies (>50 MHz) and employ the frequency-domain
multidistance (FDMD) method to estimate absolute absorption
and reduced scattering coefficients.18–20

Although modern FD systems are capable of recording from
many channels, the FDMD method is difficult to apply to large
sampling areas, such as the whole human head, because this
method requires calibrating the intensity and phase values
obtained across multiple channels. This can be very laborious
when many sources and detectors are used. In addition, large
FD instruments are not very common. Thus, most of the relevant
papers have reported data from only one or two small areas
(typically on the forehead), and there has been no publication
reporting a systematic measurement of variations of absolute
optical parameters across the head. This paucity of data is par-
ticularly important because different types of tissues may vary in
their optical properties and are distributed differently across the
brain and across individuals.

Whereas TD or FD systems are required to compute the sep-
arate absorption and reduced scattering coefficients of tissue,
far from the medium’s boundaries (≫1∕μeff ≈ 5 mm from the
surface of the head), the effective attenuation coefficient (EAC
or μeff ) is sufficient for determining light attenuation in the
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diffusion regime19 and, therefore, provides an important part of
the information about the optical properties of tissue required for
practical applications. Moreover, measurement of the EAC at
multiple wavelengths may provide further important informa-
tion about the tissue status.

Here, we introduce a new procedure for estimating EAC
based on a multichannel, multidistance approach. This pro-
cedure is a modified version of the FDMD method, similarly
relying on the drop in light intensity as a function of source–
detector distance (multidistance approach). However, critically,
since this procedure only measures EAC (and not the reduced
scattering and absorption coefficients separately) it does not
require phase (or time-of-flight) information and, using averag-
ing and linear decomposition analysis, it can avoid calibration
procedures. Here we show that, by applying this method to local
subsets of a relatively large number of channels (20 or more), we
can derive low-resolution topographic maps of EAC across the
head. Importantly, this approach can be based on the same data
and subjects collected for fNIRS studies and can also be used
with the more affordable continuous-wave (CW) instruments,
which only record changes in intensity and are commonly avail-
able in the fNIRS research field. The major limitations of this
approach are that (a) the information retrieved lacks depth char-
acterization and (b) the EAC estimates have limited spatial res-
olution (2 to 3 cm).

Our procedure relies on an equation [Eq. (1)] that links light
decay, as a function of distance from a source, with the EAC.21

This equation was derived for a semi-infinite, homogeneous
medium. The human head is of course neither semi-infinite
nor homogeneous. Although the FDMD procedure has been
applied successfully to the human head when sampling small
volumes,16 tissue inhomogeneity may lead to errors in the com-
putation of EAC for large areas (see Ref. 22 for similar problems
when using FD methods to estimate the absorption and reduced
scattering coefficients of tissue). Therefore, here we will assess
how departures from homogeneity influence EAC estimation.
We will also consider the problems generated by departures
of the head’s geometry from that of a semi-infinite medium,
by considering them as problems of “local curvature.”

When the multidistance method is used on multisource, mul-
tidetector data recorded in vivo, some issues need to be consid-
ered. One important problem is that the range of light intensities
can vary widely across different source–detector distances (by a
factor of up to 106, if the range of distances is on the order of 40
to 50 mm). This range is greater than the dynamic range of the
apparatus used for the measurement (photo multiplier tubes, or
avalanche photo diodes, APDs, coupled with A/D converters),
which is typically on the order of 105, leading to either ceiling or
floor effects in the data. To address this issue, we typically
combine data from detectors with different amplification factors.
This procedure, however, introduces the problem of how to
combine intensity measurements obtained from different detec-
tors. This problem can be overcome by indirectly estimating the
intensity of the light reaching the detectors from another feature
of the data—the quantum/shot-noise inherent to recorded data,
caused by random variations in the arrival time of photons at
the detector.23 With high internal gain detectors such as
PMTs or APDs, if a reasonable number of photons are detected,
quantum/shot-noise is the major source of variance in intensity
data at high frequencies (>10 Hz). At lower frequencies, vari-
ance over time is also determined by other factors, such as
physiological phenomena (e.g., arterial pulsation, respiration,

or movement artifacts). The relationship between quantum/
shot noise and the number of photons detected is known and
can be expressed by a simple equation [see Eq. (3) in Sec. 2].
If detector gain remains constant across multiple detectors, this
procedure is still valid.

When very low numbers of photons reach the detectors, the
thermal noise of the electronics within the detector system
becomes the main source of variance in the data. However, chan-
nels with low signal levels can be easily identified and excluded
from the EAC computation because the slope of the log noise by
distance function becomes flat. We thus decided to use the sig-
nal-to-noise ratio (i.e., the coefficient of variation) of the inten-
sity data to estimate the amount of light detected. This procedure
allows for an expansion of the range of source–detector distan-
ces employed up to ∼60 mm.

A second issue that arises with recorded data is the variabil-
ity of the light injected and detected due to differences in
source and detector efficiency and optode-scalp coupling vari-
ability (henceforth we refer to this problem as optode-to-scalp
coupling, O-S coupling). In previous applications, limited to
measuring the optical properties of only one small area of
the head, variability in O-S coupling could be typically con-
trolled for by using only one detector and multiple calibrated
sources.20 In our approach, which aims at mapping these
properties across the head, we need a different approach.
Specifically, we dampen the effect of O-S coupling variability
on EAC estimation by increasing the number of sources and
detectors used for each EAC computation. In fact, if the num-
ber of independent optodes is sufficiently high, the coupling
efficiency can be considered a source of Gaussian random
noise (an assumption tested in this paper based on in vivo
recordings) and the influence of O-S coupling can be reduced.
Averaging and postprocessing correction procedures based on
estimating the variance in the log intensity due to O-S coupling
can also be used to further reduce this problem. When perform-
ing regression analyses, at a fixed level of noise, the greater the
range of the independent variable, the smaller the error. For this
reason, we employed optical montages with a wide range of
source–detector distances (20 to 60 mm).

Once obtained, EAC measures can be used to determine
accurate optical values to describe light diffusion across the
head (forward models)24 and potentially for other applications.
Current approaches to the generation of forward models employ
anatomical information from T1-weighted (T1w), and some-
times T2-weighted (T2w), magnetic resonance images (MRI)
to segment the head into four or five compartments [skin,
bone, cerebrospinal fluid (CSF), gray matter, and white matter],
each of which is assigned different optical properties, which in
turn are estimated based on previously published values.25 This
approach generates a nonhomogeneous model of the baseline
optical properties of the brain. The major limitation of this
approach is that the anatomical model is applied without veri-
fying that it accounts for the actual variations in optical proper-
ties that occur across the head. For instance, the lipid content
(and therefore the scattering properties) of the skin layer may
vary significantly as a function of age and gender. Even more
importantly, this model ignores components, such as the vascu-
lar bed and large venous sinuses, which are not visible in typical
structural MR images but can potentially have a great influence
on the optical properties of the human head because of their high
absorption. Actual measurement of the EAC properties of tissue
may help address these issues. For example, a particular model
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can be validated at a low level of resolution by comparing simu-
lated estimations of EAC with EAC estimated from in vivo data
and with the same optode layout. Note that, because of the low
resolution of the procedure and the heterogeneity of the head,
the validation would be effective at a coarse level of resolution.
However, gross inaccuracies in the model utilized could be
easily identified by this procedure.

2 Methods
The current paper reports a series of studies, based on simulation
and real data processing, designed to introduce and test the
accuracy of the EAC mapping procedures we developed. An
application of the algorithm is also presented.

First, we describe the problem of EAC estimation and map-
ping using simulated recordings. This section includes

1. Computation of EAC estimates in a semi-infinite
geometry in a homogeneous medium.

2. Quantification of the error introduced on the estimated
EAC when considering nonflat geometries.

3. Demonstration that local variations in EAC can be
accurately retrieved spatially using a regional
approach.

Second, we describe how this approach can be applied to real
data recorded both in phantoms and in vivo. Specifically, this
section includes

1. Demonstration that accurate EAC estimations can be
obtained for real high-density data using a shot-noise
approach, regression procedures, and O-S coupling
estimates. This was accomplished using both finite
element model (FEM) simulations and data recorded
in a phantom with known optical properties.

2. Application of the EAC mapping procedure to data
recorded with a high-density optical montage covering
most of the scalp of five young adults and testing of
the procedure’s reliability.

Third, we use this procedure to test whether current head
models accurately predict the distribution of optical parameters
observed in human heads. Specifically, we are interested in
determining whether major variations in EAC across the head
may be due to the presence of large veins in intracranial
areas (venous sinuses). The influence of veins is not considered
by current models of the optical properties of the head, which
include only other types of tissue (i.e., skin, skull, CSF, gray and
white matter), probably due to the expense and inconvenience of
obtaining MR venograms and arteriograms.

For our analyses, we used three types of data: simulated data
based on various types of analytical and FEM models varying in
their level of realism (e.g., semi-infinite slab models, nonuni-
form models, and realistic-head models derived from MR
images), phantom data obtained from physical models with opti-
cal properties intended to mimic the human head, and data
recorded from human subjects. The choice of the type of
data used for each analysis, including the number and arrange-
ment of sources and detectors (montage), was dictated by the
question asked. A flowchart summarizing the paper’s structure
is shown in Fig. 1.

2.1 EAC Computation

EAC estimation relies on the known exponential decay in opti-
cal fluence rate as a function of distance from the illumination
point on the tissue surface. The slope (i.e., the exponential factor
linking optical fluence to source–detector distance) of this
decay function is determined by the optical properties of the tis-
sue (and, more precisely, by a combination of the absorption and
reduced scattering coefficients of the tissue, EAC), as well as by
its geometric properties and boundary conditions. Specifically,
for a semi-infinite, homogeneous medium with zero boundary
conditions, the CW reflectance IðrÞ recorded at a distance
r from a source is linked to the EAC through the following equa-
tion (derived from Ref. 21):

EQ-TARGET;temp:intralink-;e001;326;369 ln ½IðrÞr2� ¼ k − rμeff ; (1)

where k is a factor that depends on μeff but does not depend on
distance and is affected by source power and detector efficiency,
and μeff is the EAC defined as in Ref. 21

EQ-TARGET;temp:intralink-;e002;326;306μeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μa ðμa þ μ 0

sÞ
p

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3μaμ

0
s ;

p
(2)

where μa and μ 0
s are the absorption and reduced scattering co-

efficients, respectively. Note that, in diffusive media where
μa ≪ μ 0

s , the EAC can be considered proportional to the geomet-
ric mean of absorption and reduced scattering coefficients.
Equation (1) is valid when r ≫ 1

μeff
(≈5 mm in vivo), making

the left-hand side of the equation linear with r. With these
simplifying assumptions, it is possible to retrieve information
about the EAC of the tissue investigated using a multidistance
approach by regressing the log of the light intensity (multiplied
for the r2 term) as a function of source–detector distance [Note
that a similar approach, based on a point source (a laser source)
but a wide view detector (a CCD camera) is employed by a tech-
nique called “spatially resolved diffuse reflectometry”
(SRDR).26–31 However, because of the large dynamic range
required by the exponential decay of light as a function of dis-
tance in a turbid medium, SRDR is limited to study the light
attenuation within the first 10 to 15 mm from the source
where the light intensity decay is not linear, rendering the
separate quantification of reduced scattering and absorption

Fig. 1 Flowchart of the paper’s structure. EAC, effective attenuation
coefficient; O-S, optode-scalp coupling.
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possible for very superficial structures. Differently from SRDR,
here we used the standard approach employed by diffuse
optical methods, in which separate “single point” detectors
are employed for the measurement of the radial dependence
of light attenuation around a source. The advantage of this
approach is that it allows us to employ different dynamic ranges
for different detectors, thus greatly expanding the total dynamic
range of the measurement. As a consequence, we can study a
large range of source–detector distances (from 20 to 60 mm).
Further, rather than focusing on short radial distances, we exam-
ined longer source–detector distances (greater than 20 mm),
which are more sensitive to optical properties of deep structures.
Using a 20- to 60-mm interoptode distance range, the log of
light decay can be considered linear, thus greatly simplifying
the problem of accurately estimating its slope.]

2.2 Light Modeling

NIR light propagation in biological tissue is well approximated
by the diffusion equation.32 In order to test our assumptions and
to run comparisons between simulations and real results, we
used both analytical solutions33 and FEM approaches applied
to the diffusion equation. 34

For FEM simulations, high-resolution meshes (maximum
tetrahedral volume ¼ 2 mm3) were generated using the
MATLAB® function iso2mesh35 for homogeneous slab geom-
etry, homogeneous spherical geometry, and heterogeneous
head geometry. The heterogeneous head geometries were
based on segmented T1w MR images. Segmentation of sub-
jects’ heads into skull and scalp, CSF, white matter and gray
matter [an example can be seen in Fig. 11(b)] was performed
using statistical parametric mapping functions applied to T1w
images.36 Baseline optical properties (μa, μ 0

s , and refraction
index η) of the tissues at the relevant wavelength were taken
from previous papers.30,37 A combination of T1w and T2w seg-
mentation is required to differentiate skull and scalp. Here, for
practical purposes, and given the similarities of the optical prop-
erties of skull and scalp, we only used T1w images and attrib-
uted the skull’s values to both structures. Optical properties vary
considerably more among skull, CSF, and brain. The optical
values at the wavelength of interest (830 nm) were set to
the following values: scalp and skull: μa ¼ 0.014 mm−1,
μ 0
s ¼ 0.84 mm−1; CSF: μa ¼ 0.004 mm−1, μ 0

s ¼ 0.3 mm−1;
gray matter: μa ¼ 0.019 mm−1, μ 0

s ¼ 0.673 mm−1; white mat-
ter: μa ¼ 0.021 mm−1, μ 0

s ¼ 1.01 mm−1. The refraction index
was set at η ¼ 1.4 for all compartments, simulations, and medi-
ums considered. In order to improve the heterogeneous model,
veins were added to the T1w segmented structures in some
simulations. Veins were identified using thresholded, high-
pass filtered MRI venograms (Gaussian filter, full-width half-
maximum: 15 mm, threshold: 15% of maximum value). These
venograms were then aligned to the T1w image and, when
included in the model, the optical properties of the veins were
set to μa ¼ 0.3 mm−1, μ 0

s ¼ 1 mm−1 (obtained from Ref. 38).
When included in the model, the vein compartment substituted
some of the CSF layer.

The FEM software NIRFAST39 was used to model the light
propagation through the investigated medium, both for homo-
geneous finite geometries and heterogeneous heads. NIRFAST
was used to compute the boundary data for a given optode
distribution when simulations were employed.

2.3 EAC Values

EAC values, defined in Eq. (1), were computed using a more
general and accurate solution of the diffusion equation33 as a
function of optical parameters when a simple semi-infinite
geometry is employed (considering source–detector distances
from 20 up to 60 mm). The linear assumption was tested by
performing regression analyses on simulated data based on a
set of different baseline optical properties covering most of
the range commonly observed in human head tissues.

EAC is computed based on interoptode Euclidean distances,
but its estimated value can also be affected by surface geometry.
To test the effect of a curved surface, EAC was estimated using
FEM. A spherical medium was generated with constant optical
properties (μa ¼ 0.01 mm−1, μ 0

s ¼ 1 mm−1) and different
curvatures (simulated by sphere radiuses ranging from 50 to
150 mm). The bulk absorption and reduced scattering co-
efficients were chosen to represent commonly accepted average
values of optical properties of the head in the NIR range.38 The
range of sphere radiuses was chosen to approximate adult
human head curvatures. Different light intensities were com-
puted by moving a source relative to a fixed detector on the
sphere surface. The linear assumption was tested by computing
regression analyses for simulations based on a set of surface
curvatures covering the range likely to be observed in normal
adult human heads.

2.4 Construction of Topographic EAC Maps from
Two-Dimensional Optode Array

In order to quantify local variations in EAC using a topographic
two-dimensional (2-D) approach, we developed an algorithm
that computed EAC for each channel (source–detector pair)
using subsets of channels in close proximity (neighbors) to
the channel being estimated. A flowchart of the procedure is
reported in Fig. 2; a more formal description of the algorithm
is as follows:

1. Locate the k’th channel center (the midpoint) ~rck for
the channel ck composed by the i’th source s at posi-

tion ~rsi and the j’th detector d at position ~rdj as: ~rck ¼
~rsiþ~rdj

2
∀ c ∈ S, where S is the set of all the channels

considered in the measurement.

Fig. 2 Flowchart of the procedures used for EAC mapping.
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2. Estimate interoptode distance rk for the k’th channel
ck composed by the i’th source s at position ~rsi
and the j’th detector d at position ~rdj as: rk ¼
k~rsi − ~rdjk ∀c ∈ S.

3. Define a neighborhood radius ρ.

4. Define a subset of channels Sk for the k’th channel ck
such that them’th channel cm ∈ Sk ↔ k~rcm − ~rckk < ρ
where Sk ⊆ S, ∀c ∈ S.

5. Compute EACk at location ~rck for the channel ck using
Eq. (1) and the subset of channels Sk ∀ ck.

6. Obtain topographic images by cubic spline interpola-
tion of the EACk values among all channels’ cen-
ters ~rck.

The number of channels considered for each EAC estimate
can be adjusted by modifying the neighborhood radius ρ,
thereby affecting (in opposite direction) the accuracy of EAC
estimation and the resolution of the topographic image. The
effect of varying ρ was investigated in some of the analyses.

The performance of this image reconstruction process was
tested using simulated FEM data. Simulations were based on
a homogeneous slab medium (200 mm × 200 mm × 200 mm,
μa ¼ 0.01 mm−1, μ 0

s ¼ 1 mm−1) with a cylindrical inhomoge-
neity (10 mm diameter parallel to the investigation surface,
up to 40 mm depth, μa ¼ 0.04 mm−1) at the center of the
cube face. One face of the cube was covered by a square
grid of optodes [alternating source and detector fibers with a
15-mm minimum interfiber distance, see Fig. 3(c)]. Only chan-
nels with source–detector distances>20 and <60 mmwere used
for the analysis. The accuracy and resolution capabilities of
the algorithm were estimated using different neighborhood
radiuses.

2.5 EAC Estimation in Recorded Data

2.5.1 Intensity estimation in recorded data

In order to enable comparisons between intensity values
obtained from detectors with different amplifications, we used
indirect measures of light intensity obtained from estimates of
signal-to-shot noise ratios. This procedure is accurate when
physiological variability is small with respect to shot noise.
This is true for frequencies above 10 Hz, where even the higher
frequency components of the heartbeat signal are negligible.
We therefore estimated the light intensities from the computed
signal-to-shot noise ratio as23

EQ-TARGET;temp:intralink-;e003;63;228Ilight ∝
1

var
h
iðtÞ
iavg

i ∝ SNR2; (3)

where Ilight is the amount of light detected, var is the variance
operator, iðtÞ is the electrical signal recorded by the photodetec-
tor above 10 Hz, iavg is the average electrical signal, and SNR is
the signal-to-noise ratio of the recorded signal.

Note that when a CW system is used, iðtÞ
iavg

is the relative
change of the continuous component of the light recorded.
However, this approach is general and can be applied to other
measured quantities when more complex instruments are
employed. For example, when an FD system is used, the SNR
can be estimated at a particular modulation frequency as power

or phase variability. In fact, although different signals can have
slightly different sensitivities to physiological noise, when shot
noise is dominant (>10 Hz) the results are practically identical
(if no sources of ambient noise are present).

This procedure can be applied when detected light intensity
is above a minimum level. When light intensity is very low
(i.e., low SNR), other sources of noise (such as thermal noise)
become stronger than shot noise, invalidating Eq. (3). However,
the SNR as a function of interoptode distance becomes flat when
thermal noise becomes dominant. This property was used to
identify the maximum useful interoptode distance in the real
data.

2.5.2 Effects of O-S coupling on EAC estimation

Another important issue when dealing with recorded data is that
different optodes generally have different coupling and effi-
ciency levels. Generally, this problem requires using only one
detector and many, phantom calibrated, sources. This procedure
is difficult to apply to real data as the O-S coupling obtained in
phantoms may not be easily replicated when placing the optodes
on an actual human head. However, if combinations of multiple
sources and multiple detectors are used simultaneously for each
EAC computation, the effects of variations in O-S coupling on
EAC estimation can be drastically dampened.

Mathematically, this problem can be conceived as the esti-
mation of the standard error of the slope in a univariate regres-
sion analysis. In this case, the standard error of the slope can be
expressed as

EQ-TARGET;temp:intralink-;e004;326;436SEslope ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ε

2
i

ðn − 2ÞPn
i¼1 ðxi − x̄Þ2 ;

s
(4)

where n is the number of samples, εi is the i’th residual of the
regression analysis, xi is the i’th independent variable, and x̄ is
the average value of the independent variable. Note that, in this
particular case SEslope is the estimate of the standard error of the
EAC, n is the number of channels used for each EAC compu-
tation, and xi and x̄ are the i’th interoptode distance and the aver-
age interoptode distance, respectively. This equation is valid
if the ε distribution is Gaussian. We investigated the standard
error of the slope as a function of the intensity of the residuals
and number of independent samples (number of channels in our
case) by fixing the interoptode distance range between 20 and
60 mm (i.e., the ranges we used for in vivo measurements).

A further statistical correction to O-S coupling can be intro-
duced. Specifically, the effect of O-S coupling should be equiv-
alent for all those channels that share the same source or the
same detector, independently of source–detector distance.
In Eq. (1), this effect is equivalent to changing the value of
k (intercept). In other words, the effect of O-S coupling can
be modeled as the effect of a covariate and can be removed
using a covariance analysis. A critical requirement, however,
is that O-S coupling can be accurately estimated from the data.

This problem can be expressed by considering the intercept
factor k in Eq. (1) as the algebraic sum of three factors:

EQ-TARGET;temp:intralink-;e005;326;132k ¼ k0 þ ks þ kd; (5)

where k0 reflects local scattering and absorption together with
the average O-S coupling while ks and kd reflect the O-S cou-
pling variability for a particular channel.
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To dampen the effects of ks and kd, we assume that k0 is
constant across all channels used to compute a local value of
EAC (i.e., we assume the tissue to be locally homogeneous over
the area identified by the selected neighborhood radius) and
that the averages of all ks and kd values are equal to 0. We can
therefore estimate k0 by entering all channels (irrespective of
their source and detector) in the regression procedure using

EQ-TARGET;temp:intralink-;e006;63;675k0 ¼ lnðIlightr2Þ −
Cov½r; lnðIlightr2Þ�

VarðrÞ r̄; (6)

where Ilight is the estimated light intensity, r is the interoptode

distance, lnðIlightr2Þ is the average log light intensity (multiplied
by the r2 term), r̄ is the average interoptode distance, Cov is the
covariance operator, and Var is the variance operator, consider-
ing ∀ c ∈ S in the simple regression procedure, where c is a
channel and S is the set of all the good channels used in the
measurement.

The values of ks and kd for each source and detector are esti-
mated by computing separate regressions including only the
channels having that particular source (in the case of ks) or
that particular detector (in the case of kd), using Eq. (7) (for
ks) and Eq. (8) (kd) written as follows:

EQ-TARGET;temp:intralink-;e007;63;493ks ¼ lnðIlightsr2Þ −
Cov½rs; lnðIlightsr2Þ�

VarðrsÞ
r̄s − k0; (7)

where Ilights is the estimated amount of light, rs is the interop-

tode distance, lnðIlightr2Þ is the average log light intensity (multi-
plied by the r2 term), and r̄s is the average interoptode distance
considering ∀ c ∈ Ss where Ss is the set of all the good channels
using a specific source ks.

EQ-TARGET;temp:intralink-;e008;63;387kd ¼ lnðIlightdr2Þ −
Cov½rd; lnðIlightdr2Þ�

VarðrdÞ
r̄d − k0; (8)

where Ilightd is the estimated amount of light, rd is the interop-

tode distance, lnðIlightdr2Þ is the average log light intensity
(multiplied by the r2 term), and r̄d is the average interoptode
distance considering ∀ c ∈ Sd where Sd is the set of all the
good channels using a specific detector kd.

Once these values are computed, we can subtract the effect of
ks and kd from the intensity value obtained for each channel, and
effectively covary out O-S coupling from the regression. This
procedure results in a reduction of the error of the EAC
(slope) estimate. Note that this procedure is effective when
each source or detector is used in a large number of channels
(the intercept estimation needs to be accurate).

Note that this approach implies computing a single value of
ks and kd for each source and detector, even if the channels used
for their computation extend over an area that may be bigger
than that used to estimate EAC values. Thus, local variation
in k0 over this area may, in principle, introduce error in the esti-
mation of ks and kd. However, we found this type of local vari-
ability in k0 to be quite small compared to the variability in ks
and kd found in vivo. For this reason, this procedure is likely to
reduce the error in the estimation of EAC.

We ran a simulation to demonstrate the impact of including
different numbers of channels in the regression analysis
involved in EAC estimation, as well as the effect of statistical
correction on the regression intercept. In this simulation, O-S

coupling was modeled as a random effect on log light intensity
(Gaussian distribution with a mean ¼ 0 and SD ¼ 1.5, chosen
to mimic realistic in vivo conditions). Note that the Gaussian
assumption of O-S coupling was tested in this paper and
strengthened by an outlier removal procedure. This simulation
was based on an alternating grid of 16 sources and 16 detectors
(256 channels and 15 mm minimum interoptode distance)
positioned on the surface of a homogeneous semi-infinite
medium. Baseline optical properties were set to: absorption
μa ¼ 0.01 mm−1, reduced scattering coefficient μ 0

s ¼ 1 mm−1.
EAC values were computed by using random subsets of the
original channels, varying in number between 5 and 200.
This channel randomization procedure was repeated 100
times, to assess the variability of the EAC estimates. EAC
values were also computed before and after O-S coupling
correction.

2.5.3 Optical and MRI data recording

Optical data were acquired from phantoms and five human sub-
jects with a multichannel FD commercial NIR spectrometer (ISS
Imagent™, Champaign, Illinois) equipped with 128 laser diodes
(64 emitting light at 690 nm and 64 at 830 nm) and 24 photo-
multiplier tubes (PMTs). Time multiplexing was employed, so
that each detector picked up light from 16 different sources at
different times within a multiplexing cycle. The sampling rate
was set to 39.0625 Hz. Light was sent to the scalp (or optical
phantom) using optic fibers (0.4 mm core) and from the scalp (or
optical phantom) back to the detectors using fiber bundles
(3 mm diameter). Although we used an FD system for recording,
because the purpose of this paper is to introduce a method that
could be applied to data acquired with a CW system, only DC
light intensity data were used for this paper (although closely
matching data were obtained when phase variance was used
to estimate shot noise).

Structural MRIs were recorded from each subject on a
Siemens 3T TRIO scanner using a three-dimensional (3-D) mag-
netization prepared rapid gradient echo protocol [TR ¼ 1900 ms,
TIðinversion timeÞ ¼ 900 ms, TE ¼ 2.32 ms, field of view ¼
230 × 230 × 172.8 mm3 (sagittal), matrix size ¼ 512 × 512 ×
192, flip angle ¼ 9 deg, slice thickness ¼ 0.9 mm]. Venograms
were also acquired for each subject with the same scanner
[TR ¼ 20 ms, TE ¼ 4.83 ms, field of view ¼ 240 × 240 ×
220 mm3 (sagittal), matrix size ¼ 256 × 256 × 88, flip angle ¼
60 deg, slice thickness ¼ 2.5 mm].

2.5.4 Phantom studies: procedures

A phantom study was set up to assess the stability and accuracy
of the EAC estimation methods under the experimental condi-
tions. Because of the known similarity between the scattering
properties of milk and human brain tissue in the NIR spectral
range, homogenized skim milk was used as the bulk substance
in the phantom experiment, with India ink added to it to mimic
the tissue’s absorption properties.40 The milk was placed in a
black 4-l tank and was kept at a constant temperature using
ice. A square array of alternating optodes [minimum source–
detector distance ¼ 25 mm; covered area 200 mm × 100 mm,
see Fig. 8(a)] was arranged on the surface of the milk.
Baseline absorption values were measured using an FDMD
method.16 The estimated absorption and reduced scattering
values of the milk medium over a 2-min recording were μa ¼
0.005 mm−1 and μ 0

s ¼ 1 mm−1 at a wavelength of 830 nm.
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A solid rectangular silicone phantom (50-mm thick, 40-mm
wide, 100-mm long with μa ¼ 0.02 mm−1, and μ 0

s ¼ 1 mm−1

at 830 nm wavelength) was embedded at the center of the
medium surface.

The data used to estimate phantom EAC were acquired for
30 s. Light intensity at each detector was estimated from the
continuous wave component (DC intensity) of the recorded
signal [high-pass filtered, 10 Hz, as defined in Eq. (3)].

2.5.5 Human study: participants and procedures

Five young adults (age range 18 to 30, average age 25 years,
3 women) signed informed consent documents and partici-
pated in an experiment whose procedures were approved
by the University of Illinois Institutional Review Board. They
performed a resting-state paradigm31 in which they were
instructed to look at a cross-hair on a monitor and to try not
to think of anything in particular. Two 6-min blocks were
recorded using four separate optical recording montages. A
total of 384 channels (192 at 830 nm and 192 at 690 nm)
were acquired for each montage, with source–detector distan-
ces varying between 15 and 80 mm for a total of 1536 chan-
nels covering most of the scalp surface.

Fiducial markers were placed on each participant’s left and
right preauricular points and on the nasion (Na). Fiducials,
optodes, and other scalp locations were digitized with a
Polhemus FastTrak 3-D digitizer (Colchester, Vermont; accu-
racy: 0.8 mm) using a recording stylus and three head-mounted
receivers, which allowed for small movements of the head in
between measurements. Optode locations and structural MRI
data were coregistered using fiducials and a surface-fitting
Levenberg and Marquardt algorithm.41,42 See Fig. 10(b) for
source and detector locations in a representative subject, ren-
dered onto their T1w image. Preprocessing involved movement
correction,43 high-pass filtering (10 Hz), SNR computation
[Eq. (3)], maximum distance identification, and optode effi-
ciency correction [Eqs. (5)–(8)].

Topographic EAC maps (axial views) were obtained for each
of the five subjects. To evaluate the reliability of the measure-
ments, the optodes used for estimating EAC were split randomly
into two groups and two EAC images were generated for each
subject. The average difference and image correlation between
the two images were estimated for each subject. This random
split of the optodes was only used to estimate reliability.
Note that, although the optodes used were different for the
two images, a random sampling of a large, high density, number
of optodes, created two equally spread optode montages cover-
ing all the scalp with a reasonable density. This aspect, together
with the low resolution of the procedure, allowed us to test the
reliability using this procedure. For all other analyses presented
in this paper, all “good” channels (i.e., those yielding sufficient
light) were used to maximize the SNR. To evaluate the consis-
tency of these maps across subjects, image correlations were
computed between each subject’s maps and the map obtained
by averaging the four remaining subjects. The EAC measure-
ments computed from the recorded data using the multidistance
approach presented here were then compared to the simulated
EAC estimates, derived from standard FEM models based on
T1w image tissue segmentation. They were also compared
with a similar model in which veins, derived from MRI veno-
grams, were added.

3 Results

3.1 EAC Values

A simulation was run to determine that Eq. (1) is valid across a
wide range of optical parameters as applied to a homogeneous
semi-infinite medium and to estimate the possible EAC values
found in vivo.

Figures 3(a) and 3(b) report the analytic solutions for light
reflectance [multiplied by the r2 term, left-hand side of Eq. (1)]
as a function of distance between sources and detectors located
on the medium surface. Figure 3(a) reports results obtained
with a fixed reduced scattering parameter (μ 0

s ¼ 1 mm−1) and
variable absorption coefficients (from μa ¼ 0.005 mm−1 to
μa ¼ 0.041 mm−1, with 0.002 mm−1 increments). Figure 3(b)
reports results obtained with a fixed absorption parameter
(μa ¼ 0.01 mm−1) and variable reduced scattering coefficients
(from μ 0

s ¼ 0.2 mm−1 to μ 0
s ¼ 2 mm−1, with 0.1 mm−1

increments).
Figure 3(c) reports the EAC estimates obtained by regressing

the log light reflectance (multiplied by the r2 term) as a function
of interoptode distance, based on interoptode distance values
between 20 and 60 mm. A minimum distance of 20 mm was
chosen in order to make the assumption r ≫ 1

μeff
hold for all

the optical properties considered. The EAC estimates are
reported as a function of the absorption and reduced scattering
coefficients (from μa ¼ 0.005 mm−1 to μa ¼ 0.04 mm−1 and
from μ 0

s ¼ 0.2 mm−1 to μ 0
s ¼ 2 mm−1). EAC values can vary

in vivo between the values of 0.05 and 0.5 mm−1. The maximum
error of the estimated EAC based on Eqs. (1) and (2) across the
optical values considered was ∼1% with an intercept standard
deviation of 0.2. In order to test the linearity of the log light
intensity as a function of distance, correlations were also com-
puted between interoptode distances (20 to 60 mm) and the
diffuse optical reflectance (adjusted for the r2 term) for all the
combinations of optical parameters considered. The average
absolute correlation obtained was 0.999 (SD ¼ 0.0005). The
lowest absolute correlation obtained was 0.997. These results
strongly support the linearity of the relationship between
source–detector distance and the log of the intensity of the
light reaching the detector [corrected by the r2 term, Eq. (1)].
These data also support the claim that Eq. (1) is valid for
semi-infinite, homogeneous media across the source–detector,
absorption, and reduced scattering values typically found in
diffuse optical imaging applications.

Note that, although the head structure is optically not homo-
geneous, it has been extensively proven using the FDMDmethod
that the linearity assumption holds locally when in vivo head
measurements are performed, both in infants and adults.16,44,45

A second simulation was performed in order to estimate the
effect of a curved, finite space (such as the head) on EAC esti-
mates. Figure 4(a) reports the reflectance (multiplied by the r2

term) derived from FEM simulations as a function of Euclidean
interoptode distance in a spherical geometry (μa ¼ 0.01 mm−1

and μ 0
s ¼ 1 mm−1). Different colors represent reflectance values

obtained with different sphere radiuses (from r ¼ 50 mm to
r ¼ 170 mm, with 20 mm increments). The continuous line
depicts the reflectance obtained in a flat geometry. Figure 4(b)
reports the percent distance in EAC estimates (compared to
flat-surface estimates) as a function of the sphere radius.
Smaller radiuses (high curvature) decrease the estimated EAC
up to a few percentage points. The average absolute correlation
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obtained between the reflectance [corrected r2 term, Eq. (1)] and
the Euclidean interoptode distance across all sphere radiuses
was 0.9965 (SD ¼ 0.00055). The weakest absolute correlation
obtained was 0.9955. No clear effect of sphere radius on the
linearity of the problem was found (within FEM noise level).

These data indicate that the presence of a curved surface pro-
duces a small but systematic bias in the EAC estimates obtained
from Eqs. (1) and (2), with a tendency to underestimate EAC for
regions of higher curvature (smaller radius). This effect, how-
ever, is less than 10%, even for the spheres with the highest
curvature. Note that the radius of an adult human head is of
the order of 80 to 90 mm whereas that of a newborn is of
the order of 45 to 50 mm. An in-depth evaluation of curvature
effects as a function of the population considered (from neonates
to adults) can be found in Ref. 46.

3.2 Topographic Two-Dimensional Image
Reconstruction

Figure 5(a) reports the topographic image of EAC obtained with
a neighborhood radius of 20 mm, based on simulated data.
Figure 5(b) reports the same image with a neighborhood radius
of 40 mm. The white circles represent the original inhomoge-
neity position projected onto the medium’s surface. The pro-
cedure used to derive these topographic images was able to
correctly retrieve the position of the inhomogeneity, with a
resolution dependent on the neighborhood sphere radius. Note
that the spatial localization power was tested in these images.
Consider that this particular simulation was affected by the
partial volume effect, because of the small inhomogeneity used
and the low resolution of the procedure. This is evident when

Fig. 3 (a) Analytic solutions for light reflectance [multiplied by the r 2 term, left-hand side of Eq. (1)] as a
function of source–detector distance for a semi-infinite homogeneous medium (semilogarithmic plot).
Different curves represent different absorption coefficients of the medium (from μa ¼ 0.005 mm−1 to
μa ¼ 0.04 mm−1, in steps of 0.001 mm−1, arrow depicting ascending values). The reduced scattering
coefficient was fixed at μ 0

s ¼ 1 mm−1. (b) Analytic solutions for light reflectance [multiplied by the r 2

term, left-hand side of Eq. (1)] as a function of source–detector distance for a semi-infinite homogeneous
medium (semilogarithmic plot). Different curves represent different reduced scattering coefficients of the
medium (from μ 0

s ¼ 0.2 mm−1 to μ 0
s ¼ 2 mm−1, in steps of 0.1 mm−1, arrow depicting ascending values).

The absorption coefficient was fixed at μa ¼ 0.01 mm−1. (c) EAC estimates obtained using a multidis-
tance regression approach using interoptode distances between 20 and 60 mm. The EAC estimates are
reported as a function of the absorption and reduced scattering coefficients (from μa ¼ 0.005 mm−1 to
μa ¼ 0.04 mm−1 and from μ 0

s ¼ 0.2 mm−1 to μ 0
s ¼ 2 mm−1).
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comparing the two images obtained with different neighborhood
radiuses [Fig. 5(b) presents a less intense reconstructed inhomo-
geneity when compared to Fig. 5(a)]. A bigger inhomogeneity is
needed to test the accuracy in reconstructed EAC values (refer to
Fig. 8 presented later in this paper). Figure 5(d) reports the full
width half maximum (FWHM) resolution estimate of the image
reconstruction procedure as a function of the neighborhood
radius: the resolution of the image is positively correlated
with the neighborhood radius. Figure 5(e) reports the average
number of channels and related standard deviation that were
involved in the computation of EAC as a function of neighbor-
hood radius. Note that the standard deviation bars are nonzero
because of the finite geometry employed. In a semi-infinite
medium with an infinite, regularly spaced optode montage on
the surface, there would be no variability in the number of chan-
nels for each EAC computation at a given neighborhood radius.
This number is positively correlated with (the square of) the
neighborhood radius (when a fixed optode density is consid-
ered), and it is an important parameter to take into account
when applying the algorithm to recorded data. For recorded
data applications, including more channels for each EAC com-
putation leads to better EAC estimates (as it will be discussed
later, see Fig. 7), generally losing spatial resolution because of
the increased neighborhood radius. Another way of increasing
the number of channels considered in each EAC computation is
to increase the optode’s density, which will increase precision
without sacrificing spatial resolution. Consider that for this

simulation, the optode density chosen was particularly high,
and as such it can be considered a best-case scenario. Note,
finally, that the closest source–detector pairs (15 mm distance)
were not used for EAC computation.

3.3 Estimating EAC from Recorded Data

Two main assumptions are considered when computing EAC
from recorded data. First, the SNR of the recorded data is mainly
influenced by quantum/shot noise and can provide a good esti-
mate of light intensity in the absence of quantitative measures of
intensity. Second, the noise introduced by O-S coupling can be
diminished by considering a sufficient number of channels for
each EAC computation and by statistical correction procedures.

Figure 6(a) reports a typical spectrum of the logarithm of the
SNR for signals recorded in vivo. The spectrum can be divided
into two regions. In the first region (lower frequency ranges,
below 10 Hz), spectrum peaks can be related to physiological
fluctuations of the signal (such as hemodynamics, respiration,
Mayer waves, and pulse waves). Above 10 Hz, the spectrum
is practically flat, and its power is mainly related to quan-
tum/shot noise if a sufficient number of photons are detected.
In fact, Fig. 6(b) reports the SNR2 (computed above 10 Hz)
for a particular channel during an in vivo measurement where
the integration time of the detector was manipulated (between
1 and 5 ms). At a constant source power, the integration time
increases the number of photons detected, and the high linearity
of the SNR2 versus integration time (r ¼ 0.99, p < 0.001) sup-
ports the assumption of shot noise prevalence in the frequency
band considered [Eq. (3)].

Figure 6(c) reports the logarithm of the SNR (multiplied by
the r2 term) for each channel as a function of interoptode dis-
tance, obtained from a set of data recorded from one subject. The
vertical line shows the maximum distance used in our compu-
tation. The maximum distance separates the scatterplot into two
regions. In the left region, the SNR decreases linearly with dis-
tance (with variability due to the heterogeneity of the human
head and O-S coupling). In the right region, the SNR plateaus
because light intensity is very low and the shot noise is small
compared to other sources of noise. Equation (3) is assumed
to be valid for channels with distances below the maximum dis-
tance chosen. Therefore, only these channels are included in the
computation of EAC. An outlier identification procedure further
identified channels with very low levels of light and removed
them from the computation algorithm. Specifically, after the
identification of the maximum usable interoptode distance,
the data were linearly interpolated and the residuals were exam-
ined. Channels that had a residual value greater than five times
the SD of the residual distribution were excluded from further
computations. Figure 6(d) reports the logarithm of the SNR as a
function of interoptode distance obtained from good channels
(below 60 mm interoptode distance). Note that the SNR values
do not lie on a straight line due to both tissue inhomogeneities
and O-S coupling. However, the data provide good homoscedas-
ticity, further supporting the implemented statistical procedure
for noise dampening. Assuming O-S coupling as the only source
of noise, we estimated the O-S coupling for the five in vivomea-
surements that presented similar results as the ones reported in
Fig. 6(d). O-S coupling was estimated from the residual of
a linear interpolation of the data [as shown in Fig. 6(d)] and
their Gaussian properties were tested with a Kolmogorov–
Smirnov test (average noise SD ¼ 1.5, all p’s < 0.01). This pro-
cedure can be considered to represent a “worst case scenario”

Fig. 4 (a) Simulated reflectance [multiplied by the r 2 term, left-hand
side of Eq. (1)] as a function of interoptode distance obtained using
FEM in a spherical geometry (μa ¼ 0.01 mm−1, μ 0

s ¼ 1 mm−1, semi-
logarithmic plot). Different colors represent different sphere radiuses
(from r ¼ 50 mm to r ¼ 170 mm, in steps of 20 mm, arrow depicting
ascending sphere radius). The continuous line depicts the reflectance
obtained with a flat geometry. (b) Percent distance in EAC estimates
as a function of sphere radius.

Neurophotonics 021103-9 Apr–Jun 2017 • Vol. 4(2)

Chiarelli et al.: Low-resolution mapping of the effective attenuation. . .



since it yields overestimation of both intensity and departure
from normality of O-S coupling.

Figure 6(e) reports the logarithm of the SNR as a function of
interoptode distance obtained after O-S coupling correction. As
expected, a reduction in the variance of the data is present in this
figure. Figure 7(a) reports the standard error of the slope as a
function of the number of independent samples used with vary-
ing residual sample noise [Eq. (4)]. Since the standard error in
Eq. (4) depends also on the independent variable values (inter-
optode distances in this particular case), we considered a homo-
geneous distribution of distances between 20 and 60 mm in this
analysis. The thicker line in the graph represents a residual sam-
ple noise of SD ¼ 1.5, which is similar to the level of noise
found in vivo.

Note that the standard error of the slope represents the error
of the implemented EAC mapping. This error needs to be com-
pared to the EAC values generally measured in vivo (the actual

slope of the regression), and it is generally at least an order of
magnitude smaller when a sufficient number of independent
samples (channels) are employed. However, the measurements
are not completely independent (each optode can be involved in
multiple channels), and a further optode efficiency correction
procedure can be introduced [Eqs. (5)–(8)]. To quantify the
effects of channel numerosity and of the correction procedure
for suppressing the effect of O-S coupling on the accuracy of
EAC computation, we ran a simulation where Gaussian noise
was added to the log intensity data of each source and detector.
Figure 7(b) shows the EAC error as a function of the number of
channels averaged in the process, separately for uncorrected
and corrected data. As the figure shows, the EAC estimate
error was reduced to 2% to 3% when a large number (∼20
or more) of neighboring channels and the correction algorithm
were employed in the EAC computation. As stated before, in
order for the O-S coupling correction procedure to work, it is

Fig. 5 (a and b) Topographic images of EAC obtained with simulated FEM data on a cubic
medium (200 mm × 200 mm × 200 mm, 15 mm minimum interoptode distance grid, μa ¼ 0.01 mm−1,
μ 0
s ¼ 1 mm−1, with a cylindrical 10-mm-diameter absorption inhomogeneity, μa ¼ 0.04 mm−1, up to

40 mm depth). (a) Topographic image obtained with a neighborhood radius of 20 mm. The white circle
indicates the actual position and shape of the inhomogeneity. (b) Topographic image obtained with a
neighborhood radius of 40 mm. The white circle indicates the actual position and shape of the inhomo-
geneity. (c) Optode array used for the simulations (15 mmminimum interoptode distance grid). (d) FWHM
of the image reconstruction procedure as a function of the neighborhood radius. (e) Average number
of channels, and related standard deviation, involved in the computation of each channel’s EAC as
a function of the neighborhood radius.
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important that the parameter k0 [Eq. (5)] does not change as a
function of tissue optical properties. We determined that, for a
homogeneous medium, the parameter k0 across a wide range of
optical properties had a SD ¼ 0.2. Note that this variability is
lower than that of the O-S coupling introduced in the simula-
tions (which we estimated from in vivo data, SD ¼ 1.5). Thus,
the correction procedure should improve the EAC estimation
reliability at a given number of channels when a flat homo-
geneous medium is investigated.

Both different medium geometries and tissue inhomogene-
ities can affect the variability of the parameter k0. This aspect
is difficult to address for in vivo head studies since the actual
properties of the different head tissues are not exactly known.
However, as a first step we simulated light intensity signals

and estimated the intercept parameter k0 on heterogeneous head
models using the optode montages used in vivo [Fig. 10(b)],
segmentations of the T1w images of the five subjects that under-
went the in vivo experiment, and a priori optical parameters.
For these particular simulations, the parameter k0 was found
to have SD ¼ 0.8. Note that this variability is still lower than
the level of variability found in vivo.

For practical purposes, the use of multiple channels for
each EAC computation (with a good combination of sources
and detectors) is mandatory in order to suppress O-S coupling
variability and to obtain a reliable EAC estimate. The O-S
coupling correction can be applied to further improve the
reliability of the EAC estimate when the intercept factor k
can be accurately estimated for each optode and the optical

Fig. 6 (a) A typical spectrum of the logarithm of the SNR for signals recorded in vivo. The spectrum is
practically flat above 10 Hz, and its power is mainly related to quantum/shot noise. (b) SNR2 (computed
above 10 Hz) for a particular channel during an in vivomeasurement, as a function of the integration time
of the detector. (c) Logarithm of the SNR (multiplied by the r 2 term) for each channel as a function of
interoptode distance, obtained from a set of data recorded in vivo. The vertical line shows the maximum
distance used in the computation. (d) Logarithm of the SNR (multiplied by the r 2 term) as a function of
interoptode distance obtained from good channels (below 60 mm interoptode distance). Note that the
SNR values do not lay on a straight line for both tissue inhomogeneities and O-S coupling. The inset
histogram reports the relative frequency of the residuals of a linear interpolation considering all the good
channels. (e) Logarithm of the SNR (multiplied by the r 2 term) as a function of interoptode distance
obtained from good channels (below 60 mm interoptode distance) after O-S coupling correction.
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parameter changes over space are assumed to be within rea-
sonable ranges.

We then investigated the validity of using the data SNR (to
estimate light intensity), multiple combinations of sources and
detectors (using a regression approach), and O-S coupling cor-
rections to estimate EAC in phantom data. Specifically, we com-
pared the EAC maps computed from data recorded from the
surface of a milk tank containing a known inhomogeneity to
maps obtained from FEM simulated data (keeping the montage,
medium and inhomogeneity constant for the two approaches).
Figure 8(a) (left image) reports the optode montage employed
in the simulated and real phantom data, together with the chan-
nel centers used to compute EAC maps. Figure 8(a) (right
image) reports the optode montage employed, highlighting
the sources (reported in yellow), the detectors (reported in
blue), the channels (represented as magenta lines), and the
center of the channels (reported as small black x’s) involved
in the computation of the EAC in the position marked by the
large gray “X,” using a neighborhood radius of 30 mm.
Twenty-four channels were employed in the computation of
the EAC in that particular point. Figure 8(b), top graph, reports
the log of the intensity (multiplied by the r2 term), computed
using FEM simulations, as a function of interoptode distance
for the channels involved in the computation of EAC in the
black x point [Fig. 8(a), right image]. Figure 8(b), bottom

graph, reports the log of the SNR2 (multiplied for the r2 term),
for real data in the same location. Although the real data showed
an increased level of noise, the EAC estimates for the real
and simulated data in the location of interest were identical
(EAC ¼ 0.24). The estimated standard error for the real meas-
urement was SE ¼ 0.02 [based on Eq. (4)].

Figure 8(c) (top) reports a topographic map of EAC obtained
using light intensity in FEM simulated data, whereas Fig. 8(c)
(bottom) presents the topographic map of EAC obtained using
the signal-to-shot noise ratio of recorded data. The white rectan-
gle represents the shape and position of the inhomogeneity.
Both images were obtained using a neighborhood sphere radius
of 30 mm. The similarities are clear both qualitatively and
quantitatively. The spatial correlation between the two images,
computed across all voxels, was r ¼ 0.9814 (p < 0.0001).
Note that this analysis also demonstrated the ability of the
procedure to correctly quantify the EAC across space (milk:
μa ¼ 0.005 mm−1 and μ 0

s ¼ 1 mm−1, EAC ¼ 0.122; phantom:
μa ¼ 0.02 mm−1 and μ 0

s ¼ 1 mm−1, EAC ¼ 0.24, at 830 nm
wavelength).

Figure 9 explores the different image reconstruction capabil-
ities of the procedure as a function of the neighborhood radius
employed (from 20 to 60 mm, 10 mm steps from top to bottom),
and the type of data (from left to right, FEM simulated, real data
uncorrected for the optode effect, and real data corrected for the
optode effect). Clear similarities can be noted between the simu-
lated FEM data and the real data (particularly for the corrected
ones), even for the smaller neighborhood radiuses. The location
and intensity of the optical inhomogeneity are correctly identi-
fied using real data. Moreover, a partial volume effect can be
noted when the neighborhood radius increases.

3.4 Full-Head EAC Maps from Human Subjects

Figure 10(a) reports topographic EAC images (based on 830 nm
light) projected to the axial surface of structural MRI images of
five subjects. Very similar images were obtained using 690 nm
light (average image correlation r ¼ 0.85, SD ¼ 0.10) with an
average small increase in EAC values (5% compared to the
830 nm). These images were obtained using an optode array
covering most of the scalp surface [Fig. 10(b)] and a neighbor-
hood radius of 30 mm (average number of channels for each
EAC computation: N ¼ 28, SD ¼ 6). Reliability tests were per-
formed on each subject by generating the EAC images twice,
employing half of the optodes available for each image compu-
tation (with optodes randomly chosen, and no optode shared
between the two images). Although the split-half data showed
decreased SNR (because of a decreased number of optodes), the
root mean square error between the two images across the five
subjects was 3%, SD ¼ 1%. For each subject we also computed
the correlation between the EAC values for each of the two
images (the correlation was computed across voxels). The aver-
age value of this correlation across subjects was r ¼ 0.86,
SD ¼ 0.06. Note that this correlation was based on images
computed using different optodes. Nevertheless the intrinsic
low resolution of the images and the high number of channels
employed allowed for this procedure to provide a lower-
bound estimator of the reliability of the EAC mapping method.
There are clear similarities in the patterns of EAC across partic-
ipants. In particular, dorsal and occipital regions appear to have
higher EAC values compared to lateral frontal and temporal
regions. Intersubject consistency analyses were performed on
the images by correlating each subject’s image with the average

Fig. 7 (a) Standard error of the slope as a function of the number of
independent sampled used with varying residual sample noise
[Eq. (4)]. Since the standard error in Eq. (4) depends also on the in-
dependent variable values (interoptode distances in this particular
case), a homogeneous distribution of distances between 20 and
60 mm was used for this analysis. The thicker line represents a
residual sample noise of SD ¼ 1.5, which is similar to the level of
noise found in vivo. (b) EAC error (%) as a function of the number
of channels averaged in the process, separately for data uncorrected
and corrected for optode effects.
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of the other four subjects (a single correlation was measured for
each subject using all the available voxels). The rationale of this
procedure was to show spatial similarities between EAC maps.
The correlations ranged from 0.4 to 0.85 (all p’s < 0.001) and
are reported in Fig. 10(c). The images were coregistered based
on their center. Due to small differences in the shapes of the
topographic EAC maps, only pixels where EAC was computed
for all the images could be used for the spatial correlation analy-
ses. No warping procedure was applied. In fact, on average, only
6% of the pixels (3% SD) were removed from each image during
this procedure. Given the relatively low spatial resolution of the

method, we would not expect major changes in the spatial cor-
relations if a warping procedure were applied.

We hypothesized that the major changes in EAC across the
head might be due to the presence of large veins in superficial
intracranial areas (venous sinuses). Figures 11(a)–11(c) show
EAC maps (projected to the axial surface) based on (a) measure-
ments recorded from a participant; (b) simulated measurements
based on segmentation of the same subject’s T1w image; and
(c) simulated measurements where veins (obtained from a seg-
mented venogram from the same subject) were added to the T1w
segmentation. Figure 11(d) shows the spatial correlation of the

Fig. 8 (a) Left image: Optode montage used for the simulated and real phantom data, together with the
channel centers (midpoints). Right image: Optodemontage with sources (yellow), detectors (blue), chan-
nels (represented as magenta lines), and the centers of each channel, reported as black x’s, involved in
the computation of the EAC at the position indicated by the thick gray X, using a neighboring radius of
30 mm. (b) Top image: Logarithm of the intensity (multiplied by the r 2 term), computed using FEM sim-
ulations, as a function of interoptode distance, for the channels involved in the computation of EAC at the
gray X point [Fig. 8(a), right image]. Bottom image: Logarithm of the SNR2 (multiplied for the r 2 term), for
real data at the same location. Although increased noise was found for in vivo data, the EAC estimates at
the location of interest were identical (EAC ¼ 0.24). The estimated standard error for the real measure-
ment was SE ¼ 0.02 [based on Eq. (4)]. (c) Top image: EAC maps obtained using light intensity in FEM
simulated data. Bottom image: Topographic map of EAC obtained using the signal-to-shot noise ratio of
recorded data. The white rectangle represents the original inhomogeneity position and shape (50 mm
thick, 40 mmwide, and 100 mm long). Both images were obtained using a neighborhood sphere radius of
30 mm (average number of channels for each EAC computation ¼ 30, SD ¼ 5).
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two simulated results with the actual measurements for each of
the five subjects. Positive and statistically significant (p < 0.01)
spatial correlations were obtained for each subject when veins
were added to the model, whereas negative spatial correlations
were obtained when only skull/scalp, CSF, and white and gray
matter were considered. Thus, considering only the tissue layers
available with a standard T1w image results in largely inaccurate
estimates (based on a spatial correlation metric) of local varia-
tions in EAC across the head in our dataset. This problem is
greatly ameliorated by the inclusion of the vein compartment
in the forward model.

4 Discussion
Accurate characterization of fNIRS imaging data requires some
knowledge of the optical properties of the imaged tissue. The
EAC (which is a combination of the absorption and reduced
scattering coefficients) could be a useful tool for understanding
how light propagates through the head, as EAC is the main
parameter affecting light propagation in deep structures (for
depths exceeding few mm). Here we reported on a procedure
that estimates the EAC of tissues directly at a low level of res-
olution, in the same subjects who participated in a high-density
fNIRS study. This procedure can produce 2-D maps of EAC and
does not require additional measurements beyond the data that
are recorded for a standard fNIRS study. With this procedure,
EAC is derived from the slope of a regression function linking
the log of light intensity to the interoptode distance. This means
that EAC can be computed using CW systems, which are more
common than FD or TD systems, although the computation still
requires a high-density recording array. In this paper, we present
a series of simulations and phantom studies indicating that this
procedure yields accurate results (with an error significantly
lower than 10%), provided that several issues are accounted
and corrected for.

First, the linearity assumption (critical for regression) is only
accurate for interoptode distances ≫5 mm, as it requires a
diffusion regime and negligible boundary effects. This should
not constitute a problem for human studies, where longer dis-
tances are typically used in order to image the brain’s cortical
surface. Second, the medium’s optical properties are not the
only determinants of the amount of light reaching the detector:
geometric properties of the medium, and in particular the surface

Fig. 10 (a) Topographic EAC maps obtained from five adult subjects
(18 to 30 years), with a neighborhood radius of 30 mm. The results
were obtained using 830-nm light. (b) Example of the optode montage
used for optical recording, overlaid over a subject’s structural MRI.
(c) Image correlations between each subject’s EAC map and the
average map of the other four subjects.

Fig. 11 (a) Recording helmet seen from the top (inset); EACmap (top
view) obtained from one participant (S1); (b) MR T1w segmentation of
the same subject (inset; purple: scalp and skull; turquoise: CSF; red:
gray matter; yellow: white matter); simulated EAC map (top view)
based on a standard four-layer model of optical tissue properties,
derived from the segmented T1w image of the same subject;
(c) MR T1w segmentation combined with the MR-derived venogram
of the same subject, superimposed over a gray matter rendering
(inset); Simulated EAC map (top view) in which the veins have
been added to the four-layer model. (d) Spatial correlations between
recorded and simulated EAC maps for each subject. Positive and sta-
tistically significant (p < 0.001) correlations were obtained for each
subject when veins were added to the model. Negative correlations
were instead obtained when only the T1w-segmented structures were
considered.

Fig. 9 Different images reconstructed using the developed EAC
estimation procedure. From top to bottom images differed for the
neighborhood radiuses employed (from 20 to 60 mm, in 10 mm
steps). From left to right columns indicate different data types
(FEM simulated data, real data, and real data corrected for optode
effects, respectively).
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curvature, are also relevant. This effect is typically limited (less
than 10%), but it can also be corrected if the curvature is known.

When applying the EAC estimation to recorded (rather than
simulated) data, we also had to solve two additional problems.
First, we needed to deal with the problem of estimating the
intensity of the light reaching the detectors when detectors
vary in their amplification factor. We show here that this prob-
lem can be addressed by estimating light intensity from the shot
noise existing in the data. Shot noise itself is estimated from the
variability of high frequency (>10 Hz) intensity data (or from
the variability of phase data available for FD instrumentation).
Phantom data showed that this procedure is effective, allowing
for light intensity estimation across a wide range of interoptode
distances. Second, we had to suppress O-S coupling effects,
which generate noise in the estimation process. Two statistical
approaches were used for dealing with this problem and damp-
ening its effect. The first involved increasing the number of
optodes (both sources and detectors) employed in each EAC
computation; the second involved considering the O-S coupling
as a random covariate and, therefore, subtracting it from the
intercept of the regression function used to compute EAC.
Simulated and phantom studies indicate that these approaches
can reduce the EAC estimation error to a few percentage points
(Figs. 5–7).

Based on this strategy, we developed procedures for 2-D
(topographic) EAC mapping. These procedures are based on
computing the EAC for each channel based on a set of neigh-
borhood channels. To determine the validity of this approach,
we ran both simulated and phantom studies. They show that
the procedure is accurate in estimating EAC and in localizing
inhomogeneities, although spatial resolution is limited to a
few cm (this resolution depends on the radius used to define
the neighborhood over which the regression is computed).

Finally, we applied the 2-D EAC mapping procedure to opti-
cal data recorded from five participants using a high-density,
extended optical montage, made up of 1536 channels. The
intrasubject and intersubject consistency of these maps was
evaluated and found to be high. These EAC maps, however,
clearly differed from those predicted on the basis of a four-layer
model derived from segmented MR images (including skin-
skull, CSF, gray matter, and white matter compartments31),
even at the low level of resolution afforded by the procedure.
The main difference was a high EAC level observed in dorsal
and occipital regions, which was not predicted by the standard
four-compartment model. We hypothesized this difference to be
due to the presence of large veins in these regions, which are not
included in the standard model. We therefore added veins
(derived from MR venograms obtained in the same participants)
to the model, and obtained much improved fits of the model to
the data. We take this finding to indicate that the standard model
of baseline optical properties was inaccurate because it failed to
account for the major role that large cerebral veins (and in par-
ticular the venous sinuses on the surface of the brain) exert on
the diffusion of photons. Moreover, the procedure, although pro-
viding spatial distributions of EAC not predicted by standard
models of head optical properties, produced EAC values across
the head that are compatible with absorption and reduced scat-
tering coefficients typically found in vivo.38

Using our approach, EAC maps can be derived directly from
each subject in the study. In fact, the data used for EAC estima-
tion can be obtained during standard fNIRS recording, since
they are based on shot noise estimation. This may be used to

account for individual variability in brain and vascular anatomy.
It also eliminates the problem that unforeseen EAC phenomena
may be present in a particular individual (e.g., those due to
arterial-venous malformations).

The main requirements for obtaining EAC estimates are that
a high-density optode array and a high-sampling rate be used in
the recording (based on the Nyquist theorem a sampling fre-
quency above 20 Hz is needed). As the procedure is based
on a multidistance logic,18–20 the optical montage needs to con-
tain a mix of channels with different interoptode distances (pref-
erably between 20 and 60 mm). Even with such a montage, the
spatial resolution of the procedure is limited because it requires
combining data from multiple channels. For instance, in our data
set, based on a very large montage (768 channels per wave-
length), the spatial resolution is still a few cm.

Although further research is needed, it is clear that EAC is a
critical determinant of the differential sensitivity of diffuse opti-
cal measurement to phenomena occurring at various locations
within the brain. In fact, with zero-boundary conditions and
source detector distances above ∼1 cm, light sensitivity can
be approximated as depending only on the EAC. Therefore,
improved knowledge about EAC in the human head may greatly
improve estimates of light sensitivity patterns and DOT image
reconstruction. Here, we introduced a procedure that allows us
to derive such estimates from CW high-density diffuse optical
imaging recordings without the need of additional apparatus and
recording sessions.

In addition, the procedure described here can provide abso-
lute measures of EAC that can be used for functional purposes.
For instance, by computing EAC for light sources of different
wavelengths, it is possible to generate an EAC spectrum—and
in fact a low-resolution map of it. These maps could be used for
different purposes, by making some additional assumptions. For
instance, if the scattering coefficient is assumed, the procedure
could be used to generate absolute maps of absorption, such as
those needed to compute tissue oxygenation. Although in this
study the procedure was employed on healthy subjects, EAC
maps could be sensitive to pathological brain conditions (e.g.,
superficial hemorrhages, strokes, etc.). Further, if a specific
spectral dependence of the reduced scattering coefficients
could be assumed, the spectral dependence of the differential
pathlength factor could be assessed. This may reduce possible
crosstalk when estimating oxy- and deoxyhemoglobin fluctua-
tions with fNIRS.

Limitations of the proposed approach include: (a) the fact
that it is based on an equation derived from a homogeneous
model that it is applied to subregions of the head, thus volume
averaging of the estimate of the EAC in each subregion is likely
to occur; and (b) the relatively low resolution, combined with
the limited penetration of optical data (30 mm at most),30

which limits the depth resolution capabilities of the approach.

5 Conclusion
We have developed a procedure to generate EAC topographic
maps of the human head using an extended, high-density optical
recording array that, among other applications, could be used
for testing and improving forward models for fNIRS studies.
An important feature of our approach is that it can provide abso-
lute estimates of a combination of optical properties for each
participant and across the entire head (albeit of EAC, and not
separately of absorption and reduced scattering coefficients)
on the basis of continuous wave data. The procedure relies on
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the estimation of light decay as a function of source–detector
distance and it does not require independent calibration data.
This opens the possibility of using instruments providing
these types of data for recording not only differential effects
(as in most fNIRS work) but also baseline, absolute effects.
EAC maps with a resolution of 2 to 3 cm can be obtained.
Application of the procedure to human recordings indicates
the importance of venous sinuses in determining regional
EAC variations, a factor typically overlooked in the current lit-
erature. Moreover, the technology could be particularly useful
for empirically comparing different subject populations and
for clinical applications. Note that in the work presented here
we have focused on data obtained at a single wavelength.
However, EAC can be measured separately at different wave-
lengths, thus providing EAC spectra.
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