Journal of Biomedical Optics 7(1), 130-147 (January 2002)

On Wiener filtering and the physics behind statistical
modeling
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functions of the SNR. Spurious correlations and other practically im-
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1 Introduction parent. Also, all relevant measures of prediction quality can

Biomedical and other optical measurements are often based®® Shown to be functions of a single basic quantity, viz., the
on so-called multivariate calibration. For this, an instrument aPPlication-specific signal-to-noise raiéNR.

measures a set of multiple input signals first, e.g., light absor- It turns out that current chemometrics’ practices can be
bance values at different optical wavelengths, and then aniMProved in many ways. Practical pieces of “how-to” infor-

algorithm is used to transform the many input numbers into mation that_can be gath_ergd from this article include how to
one user-desired output number. Multivariate calibration, also Make effective use d priori knowledge about the pure com-

known as(aka chemometrics, is the process of determining ponent spectrum and/or the spectral noise; how to interprgt a
that algorithm. The most popular calibration method is linear Prédiction slope smaller than one and how to “correct” it;
regression of the so-called “statistical” or “inverse” model. how to effectively deal with spurious correlations; how to
This approach, however, so far has suffered from lack of un- make conscious decisions about whether or not to utilize un-

derstanding of the underlying physics and thus has been con-SPecific correlations; how to build up closed-loop communi-
sidered a statistical or “soft-modeling” tool. cations between the hardware people and the application de-

In this article, the closed-form solution of the statistical VElOPers in a company; how to select a “good” wavelength
calibration model is given as a function of the pure compo- "@N9e; h.ow to define the coordlnatg system that.bre{aks the one
nent SpeCtral Signal, the SpeCtra' nOise, and the Signal andmultlvarlate measurement .dOWn into many univariate ones;
noise of the reference method. The solution is a fairly com- NOW to effectively rank noise sources; how to measure the
plex formula which does, however, provide a wealth of prac- duality of a measurement system and quantify progress made
tical benefits in several ways. First, it can be used to speed up@nd Progress needed; and very importantly, how to reduce the
the convergence against the desired, optimum Wiener filter. In NUmber of expensive calibration experiments. _
particular, the effects of spurious correlations and reference _ 'n€ chemometrics field encompasses a wide variety of ap-

noise can be eliminated. Second, it can be used to guarantedlications, each with a different set of practical problems.

specificity. Third, it makes the calibration process fully trans- Without any ranking or claim for completeness, this author’s
list of encountered calibration problems includésinstation-
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arity of spectral respons€2) nonlinearity of spectral re-
sponse;(3) outliers; (4) ill-posed spectral responsés) low
spectralSNR,; (6) low referenceSNR; (7) unknown shape

of the pure component response spectr(Bnspurious corre-
lations and/or overfitting(9) unspecific correlations; and0)

bad quality of the estimate of the future spectral noise. In this
article we address probleni$)—(10), and touch upori3), but

do not addres§l) and(2) at all. The latter means, mathemati-

On Wiener Filtering and the Physics . . .

processing community has recently developed interest in the
thematic and has started to use the total-least-squares tech-
nique as a vehicle to incorporate right-side ndised at least

one contribution by the chemometrics field has been nade.
The chemometrical literature contains a series of papers on
the net analyte signdNAS), which is defined as that part of
the pure component spectrum that is orthogonal to all other
spectré® The NAS concept points in the right direction, i.e.,

cally speaking, that it is assumed throughout the article that it tries to quantify how much of the pure component spectrum
the linear and stationary model, E@), is valid. Practically is useful in calibration, but it suffers from a basic insuffi-
speaking, it means that the results reported will have a directciency. In a Gedanken experiment, the more spectra are in-
and major impact on many i||_posed measurement app“ca_ cluded in the list of “other SpeCtI’a,” the smaller the NAS will
tions, where the signals are too small to cause any nonlinear-9et. even if the spectra included have very small amplitudes.
ity and the samples are stationary, e.g., many biomedical in- The severeness of spectral overlap is obviously governed by

frared (IR) applications; whereas in other applications,
notably those in industrial process control, potential
nonlinearity/instationarity problems first have to be solved be-
fore they can reap the full benefit.

[We briefly define nonlinearity and instationarity of spec-
tral response here by citing a paper by Schmitt and Kumar.
The authors give quantitative expressions for the effective op-
tical pathlength in diffuse reflection experiments using fiber
probes. For example, in the case of large fiber separation,
Ler=V3ust/4p, p Where ug, and w, are the transport scat-
tering and absorbance coefficigmim 1) of the sample ang
is the fiber separatioimm). Thus, the measured “absor-
bance,” —log Ryifoc Vraitst iS nonlinearin w, and can be
nonstationary over timaith changes in the scatter coefficient
Mst- A hardware design method by which to minimize these
effects is also given by those authdr®ther practical meth-
ods to minimize nonlinearity and nonstationarity are physical
reduction of the sample variability to the extent that the linear
and stationary approximation, Eql), becomes valid and
various mathematical data pretreatments, see, e.g., Ref. 3.

Publications in the fields of statistics, chemometrics, and
time-signal processing were reviewed for this article. The
closed-form solution, Eq(12), seems to be new. Many pub-
lications on time-signal processing were found to be not di-

both the spectral shape and the magnitude of the interfering
component, so NAS is incomplete. It will be shown below
that NAS is basically identical to the “classical” model, and
the inferiority to the Wiener filter will be interpreted in terms
of the assumptions that these approaches implicitly make
about the spectraBNR,. Still, NAS and related concepts
have been successfully applied in a number of different appli-
cations, including chemometrical calibratiof{s? estimation

of sinusoidal frequencies in signal processtgnd hyper-
spectral image processing.

A summary of various empirically proposed measures of
SNR in chemometrics has recently been giVemowever,
these definitions focus exclusively on instrument noise in the
spectra. It will be shown below that, in order to arrive at the
closed-form solution, the definition of “spectral noise” must
include both instrument noise and the interfering spectra from
the other components, and treat them as indistinguishable.
Also, the definition of reference “signal” and “noise” must
be made in the particular way given in E§) below.

In order to simplify the discussion and to assign physical
units to the quantities involved, the biomedical application of
infrared blood glucose sensing will be used as an example,
with the glucose concentration measured in unitgnod/dL)
and the infrared spectra measured in units of absorbance
(AU). The discussion, however, is not restricted in any way to

rectly relevant to chemometrics because the electronic noise isglucose sensing or to IR spectroscopy but applies to all mul-

usually assumed to be “white(hot correlated from one sam-
pling moment in time to the nekti.e., its covariance matrix is

a (scaled identity matrix. In chemometrics, however, the co-
variance matrix of the spectral noiggefined below is typi-
cally highly structured due to the correlations between wave-
lengths. Likewise, many of the publications in the statistics

tichannel measurement systems in which noisy input data are
measured and linearly calibrated to produce an output num-
ber.

2 Notation
Upper case bold letters denote matri¢egy., X) and lower

field are also not directly relevant, because chemometrics is acase bold letters denote column vect@sy.,b). The index in

physical measurement problem, not a problem of finding sta-
tistical relationships. The following literature review will fo-
cus on publications with emphasis in two are@sthe use of

X(mxk) means that the matrix has rows andk columns. The
following indices will be usedm is the number of calibration
spectrak is the number of channels or “pixels” per spectrum,

knowledge about the pure component spectrum in the contextandn is the number of future prediction spectd denotes

of “statistical” calibration and(b) the effect of noise in the
spectra, i.e., on theight side variables of the regression
model, Eq.(1). We start with the latter.

the transpose{X"X) ! an inverse:X* the Moore—Penrose
inverse;l the identity matrix;1 a vector of ones(1,1,1,..)";
0 a vector of zer0s(0,0,0,..)"; ||b|| the Euclidean length of

There seems to be no standard method used by statisticianyectorb; anda=b meansa is equal tob by definition.

to deal with noise in the right-side variables, except for the

Useful terminology for describing calibration and predic-

univariate casé The fact that the estimates of the slope coef- tion errors is introduced schematically in Figure 1 where a
ficients are decreased by right-side noise in both the uni- andstraight line has been least squares fitted through the predic-
multivariate cases has been known for many years in tion scatter plota posteriori Scatter plots, by convention,
statistics, however, the effect seems to be of little importance show the concentrations measured by the infrared method on
to most statistical applications. On the other hand, the signal- they axis and the “true” concentrations measured by a refer-

Journal of Biomedical Optics ¢ January 2002 * Vol. 7 No. 1 131



Marbach

400 : : : : : , lished clinical analysis reference method, the glucose concen-
trations of the blood samples are also determined. The follow-
ing linear regression equation is the so-called multivariate

“statistical” calibration model:

W
g
(=]

w
[=]
(=]

yR:X’b+e, (1)

whereyg(myy is the vector of glucose concentration references
(in units of mg/dl), Xy is the matrix of infrared calibra-

tion spectra AU), by, is the regression vectgmg/dL/AU),

and ey is the error vectokmg/dL). (The term “multivari-

ate” is commonly used in the chemometric community. Read-
ers from different backgrounds should be aware that the ma-
jority of spectrometric applications are actually better

| Mean Ref described by what they call “multidimensional” or “multi-

i channel” measurements, because the input data comes from a

ol ; i ; . ; : physical measurement and not from a statistical selection of
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The task is to find a solution for the regression vectob or
. ) . o vectorb which minimizes the length of the error vec®and
Fig. 1 Schematic of a scatter plot with an identity line (dotted) and an . L
o ) . ° . o performs well in future predictions.
a posteriori least-squares fitted line (solid). In this example, the bias is . - .
45 (arbitrary concentration units) and the slope of the fitted line is 0.7, . The standard procedure is to, first, mean center the calibra-
with the line rotated around the point where the two means meet. tion data,

X=X=L(ma) X, 2)
ence method on the axis. The terms are the following. o
1. Thebi (mg/dL) is the diff bet th REIRTIR, )
. The bias error (mg is the difference between the —r — .
average predicted concentration and the average refer-Wherex andyg denote the mean m_frared spectrum ?”d the
mean glucose reference concentration of the calibration data

ence concentration; the bias, by mathematical defini- o .
tion, is zero for the calibration fit and the goal is to keep set, respectively; and' then, second, to estintateom the
least-squareflS) solution,

it zero during future predictions.

2. The slope (unitless is the slope of thea posteriori A+ — (YT — 1% T
least-squares fitted line and is almost always smaller b=X"Yr=(X"X) " X¥r. @
than 1, a fact which is referred to atope deficiency [Note that Eq(4) assumex to have full column rank, which

3. The slope error (mg/dL) of a particular prediction  for (m—1)>k it will virtually always have because of ran-
sample is the difference between the identity line and dom hardware noise in the spectra, and that in practice the
the bias-corrected posteriorifitted line at that sam-  full-rank inverse is often replaced by some form of a rank-
ple’s reference concentration value; the slope error reduced inverse, i.e., principal component regres$ROR
causes the above-average concentrations to be consisor partial least square®LS). We will not concern ourselves
tently underestimated and vice versa; the slope error of With the type of inverse issue here, but the discussion will
the whole prediction data set is the root sum of squares return to it later} The glucose values of the calibration fit are
(RS9 over all samples. then given by

4. The scatter error (mg/dL) of a particular prediction o~ A
sample is the difference between the predicted value Yit=YrT X*b, )

and thea posterioriline; the scatter error of the whole  and likewise for the future prediction SPecka e
prediction data set is the RSS over all samples.

7 b Y™
Mathematical definitions for the terms will be given below. Yored= YR (Xprea™ 1na) - X')b- ©)

Suffice it to say here that bias, slope, and scatter errors can allEverything said so far is good and when applied to a well-
be easily measured individually by fitting tleposterioriline designed calibration data set generally produces solutions
through a given scatter cloud; that the total prediction error, near the theoretical optimutdescribed below as the spectro-
aka PRES% is the root sum of squares of the bias, slope, metric Wiener filte}. Thatoptimum cannot be improved upon
and scatter errors; and that the slope error decreases and thany further, but the method of arriving at it in practice can be,
scatter error increases with an increase of the slope. significantly as also can the interpretation and the decision

making about where one is in the development process and

what to do next.

3 Theory Historically, the assumption has generally been that the
Let us assume a set of blood samples is available for calibra-whole errore in Eq. (1) is due to inaccuracies in the glucose
tion. In the calibration experimeniy infrared spectra withk referenceg/r whereas the specttd are assumed to be noise

channels each are measured. Simultaneously, using an estalfree in most statistics textbooks. This assumption, however, is
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invalid in many chemometrical applications where the spec- are actually quite common in practice, not because of faulty
tral signal of interest is often buried underneath much larger reference analyzers, but because of sample issues. For ex-
interfering spectra. We therefore split the calibration spectra ample, in noninvasive glucose sensing in the skin, the average

into the glucose signal and “spectral noise:” glucose concentration in the probed tissue volume is lower
than the concentration in the blood used for the reference
X=X,+y-g", (7) analyses? say, (mg/dLssud = 1/2(mg/dLy000) . Equation(4)

will automatically adjust for this kind of internal scalingAs
opposed to another form of scaling, viz., scaling by the user, a
trivial example of which is a unit change, e.g., plotting

glucose concentrations in the calibration sampfies/dL). (mmol/L) vs (mg/dL).] Wherever the scaling comes from, the
(The response spectrugnis the spectral signal caused by a ,qint s we should not call it “noise.” Instead, we need to be

change in glucose concentration assuming that everything else.,ef and to clearly divide the responsibilities between the

stays constant; as suogl,gengrally depends on the nature of | tarence method and the infrared measurement.

the sample, e.g., gas vs solid, and the nature of the measure-  gjas and slope errors of the reference method with respect

ment, e.g., transm|ss.|on vs diffuse reflectjon. to the actual sample concentrations are the mere responsibility

After mean centering we have of the reference method. From the point of view of the infra-

-~ red calibration, only the scatter of the reference method, i.e.,
X=X, +y-g". (8 the part of the vectdyy that is not correlated witff, can be

called reference noise. We therefore spjitas follows:

wherexn(mxk) is the matrix of spectral noiseAU); gy the
glucose response spectrymU/mg/dL); andymy the actual

Here, like in many other applications, only a small pariXqf

is noise from the instrument hardware and mosXpis spec- T
tral interference from other components in the blood, i.e., wa- VR:%’VR_F
ter, proteins, etc. From the point of view of glucose measure- y'y
ment, however, spectral noise by definition is everything that \ynere
is not glucose. The usefulness of this definition will become
clear in the following. V&Y

Next we need to consider the different types of “errors” S= T~R (the scaling factor between the sample
that can affect the reference valugs. Our interest is to y'y
describe the effect of reference noise on the calibration. Sim-

.yT
vy

<

_|‘

)VRES(YH%). ©

< ' and the reference concentratiphsand (10
ply defining reference noise as, say—Yy, does not make
sense. Assume that the clinical reference method always mea- 1 ST
sured exactly 90% of the true values, iyz=(0.9)y. As far V= _( | — %)VR
as the linear regression is concerned, this would still be per- S y'y

fect reference, although now even a perfect infrared calibra-
tion would be biasedhias=(—)0.1)y, and slope deficient,
slope=0.9, with respect to theactual values. Of course,  The scaling factof5, like most everything else in calibration,
these errors would not show up on any of the result plots and, is determined by variances in the concentration signals, and
in fact, could not be detected unless a second, better, referenceot by their average values. Inserting into E4). and apply-
method became available. These systematic reference erroring the Sherman—Morrison formdfayields

(the reference noise vector in mg/dL (11)

b=[(X]+g¥N(X,+¥-gN 1" *X+ 9V ST+Vn)

dsrl, ¥ ( XIV) m( Xy)]( izmzvn) -
= o [ Xt 9t o YY) 9T = gt —— y'y
gy ) y'y y'y y'y
~ o~ -1 ST~
S AP XV | o
Xl 1= K| |0t == | D)
B y y'y .
- —_ T —_ ..
ol EK o Y Y XY
1+(yTy)(g+ — | (X3 1= |Xa| |0+ =
y'y y'y y
~ -1 I T~ ST\ T
S VY o | Xpy Xpy
Xal 1= ==X, (yTy)(g+ — (g+ — o 1-1
y'y y'y y'y otl . IV | orn
S| kxk o . I oo [ Kl =S [ Xl XaYn
~T~ Xny ST y'y < Xny y y
I+ 9+ | [ Xal 1= [ Xn ] | 91 o
y'y y'y y'y

12
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Equation(12) is the main result of this article and it describes been repeatedly mentioned in the chemometric literdftte;
the dependence of thevector on the glucose sigrigdg’, the however, because E¢l2) was not available, means for the

spectral noiseX,, the reference concentrations and their directinsertion of priori physical knowledge about the spec-

L~ ~ | : « s T tra were not available.
noise,Yr=S(¥+V,), and the spurious “correlationsXy. - : .
Notice that the effect of the reference noise on the calibration, We now proceed by defining the spectral signal-to-noise

. =T ratio of the calibration data set as
in the second summand ViX.y,, is usually completely

dominated by the effects of the spurious correlati&ﬂ?,‘/.

Electrical engineers may already recognize the similarities be- ST AT TS V-1

tween Eq.(12) and the famous Wiener or “matched” filter SNR= \/(y Y)g (XnXn) TG (14)

used in time-signal processing applications, e.g., in cellular

phones. SNR, is application specific, i.e., it is different for glucose
than it is for, say, cholesterdBNR, is very different from the

. . various types of “hardware SNRs” that are typically in units

4 Fine-tuning the Theory of [dc V/root mean squarérms) V] or (dc AU/rms AU),

Equation(12) looks complicated because it contains all the where dc means an average value, and which typically reach

adverse effects that the user is trying to get rid of in his values of 1000G80 dB) or higher. Values foSNR,, on the

calibration experiment. If we now make the assumptions that other hand, are much lower. In biomedical applications,

the user has succeeded in sampling a calibration data set inSNR =10 s fabulous and many reference methods are just a

which, first, the effect of the reference noise is zeXqy, little aboveSNR,=5. (The main reason for the low values is

=0 (this assumption will be made throughout the rest of the that the concentrations in the body do not change much to

article); and second, the effect of spurious correlations is zero, begin with. The important consequences for the development

XT§=0. [The discussion will return to spurious correlations ©f new biomedical methods will be discussed further bejow.

later. It can be seen below that spurious correlations can easily Inserting Eq.(13) for b back into Eq.(5) for the fitted

be built back in into all formulas, cf., e.g., to EQ0), but for glucose values yields

simplicity of discussion we throw them out her@hen Eq.

(12) shrinks to

. (X3Xn) 193"y
~re Y= — eyl
A (XTX.) " g(y'y) Yiie=Yiit—YrR=(Xnty:9) - S——————————
b=s— " ———— (13) 1+ (M (XX 'g
1+ (99" (XX g o oo
SNR _ Xy(X3Xo) 93"y

which is the spectrometric incarnation of the celebrated =5 v ' (15)
Wiener filter. That is, the solution, E13), minimizes, first, 1+ SNR 1+ SNR

the least-squares error of the calibration fit and, second, to the

extent thai(y'y)/m and (X;X,)/m represent théco-) vari- where the factoSNRZ/(1+ SNR) in the first term explains

ances of the future spectral signal and noise, respectively, als
the mean-square prediction error of the future spéétra.

The Wiener filter is optimal among ab vectors in the
mean-square err@dMSE) sense. Wiener filtering has been ex-
tensively used for many decades and in various technical dis-
ciplines, mostly time-signal processing. Spectroscopic appli-
cations are different from the mainstream in one important
point. In time-signal processing, e.g., when detecting the that a goodnfrared method can be better than the reference

height of an incoming pulse signal, the impulse respdibse method i.e., ”Sy_yf“” can be smaller thaﬂ'SY_YR”’ pro-
vectop of an electronic Wiener filter is basically determined Vided that theSNR; is high and a good calibration experiment
by the shape of the pulse sigr@), because the amplitude of ~ With X{y,=0 and X;§=0 is performed. Of course, the fact
the electronic noise is usually small and its covariance is that the secondarinfrared method is better than the primary
“flat,” i.e., uniform and uncorrelate& !X, /m= 2. On the (referencg method cannot be proven unless a second, better

: P ference becomes available.
other hand, in spectrometry the principal reason why people re N . .
use multivariate techniques is because their pure component gor Lhe saket c;f 5|mIpI|f|ed_”dt|)scuss!tc;n, Ii(QS)thhas ?Eent"
signal is buried underneath a large amplitude of spectral noise@Nd Subsequent formulas W_' €, written for _ S catibration
which, in combination with the fact that the spectral noise is case and not for the case of independent predictigpg. Of
not flat, means that the shape of thevector is dominated by ~ course, there is a world of difference between calibration and
the covariance structuréeigenfactors of the spectral noise ~ Prediction, but this difference is not amenable to concise
andnot by the signalg. This situation has two consequences. Mathematical description. The intentions of this article are
First, it makes interpretation of thevector result itself much ~ believed to be better served by the relatively concise formulas
harder(see Sec. 6 And, second, in the past it reduced the derived for the calibration fit because these formulas are prob-
Wiener filter to an abstract concept rather than a real-world @bly more helpful in discussing the prediction case than the
procedure. The fact that E() converges against the Wiener mathematically more cumbersome formulas contairdpgg.
filter when the number of calibration samples increases hasAfter all, calibration and prediction results are the same in the

Ghe slope deficiency caused by the spectral noise and the sec-
ond term is the scatter error caused by the spectral noise. The
spectral noisé&,,, which appears on the right side of H@),

pulls down the magnitude of the vector whereas the refer-
ence noise does not. In fadt, does not even appear in Eq.
(15 which is a fascinating result in itself because it means
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probability limit (meaning, forlarge numbers of calibration  ferred by this author, however, because it is easier to interpret.
and prediction spectyaf the calibration and prediction spec- One can “feel” the huge difference amor@8\NR=1, 10, and

tra are measured in identical wafrmeaning, if the calibration 100 whereas =0.71,0.995, and 0.99995 is much harder to
and prediction spectra come from the same underlying distri- interpret. Also, the term “signal-to-noise ratio” is a constant
bution). In practice, there are many reasons why the calibra- reminder of the fact that the quality of a calibration depends
tion and prediction spectra may not be measured in identical on both the signal and noise, and that simple comparisons
ways but the goal is that they are. The most important reasonbetween calibrations are fair only at identical signal levels
for differences in practice is probably the potential for long- \§'y.

term drift in the instrument and/or sample, causing a “slowly The slope error is

increasing bias” in the predictionéNotice that the distinction
between bias error and scatter error is a purely practical mat-
ter and that a mayfly and a Galapagos turtle would have dif-

slope erroe= \/(VR— slopeVR)T(VR— slopeyg)

ferent opinions on the subjerBias will not get much cover- = 1+ SNR§+ SNRE
age in this article, however, it is important to realize that, in = VYRYR 1+SNF§+SNF€+SNR§ SNRf
ill-posed systems in particular, control of bias is a problem
second to none and often constitutes the ultimate engineering 1
challenge. To repeat, long-term independent prediction perfor- = \/YEVR 1+ SN2 (20)
mance is the goal and here we will use the calibration case
only as a vehicle to talk about this goal. Slope error is always present but becomes evident only when
Two more definitions are needed. The signal-to-noise ratio the SNR is worse than about 5. In the extreme case in which
of the reference method is the SNR approaches 0, the slope has to turn to zero because
the best the Wiener filter is left to do is to predict the flat
vy averageyg.
SNR= ;/T;n (16) Thg sb(/:gtter error is
n

and the total SNR of the calibration data set is scatter erroe \/(Vﬁt—slope yR)T(yfit_Slope Vr)

| SNRSNR _ =— SNR. SNR

Now, then, when we measure the slope what we do is plot X \/1+8N§+ SN%

(Vi +VYr) Vs (Vr+Vr) and LS fit a straight line through the

scatter cloud. Here, the reference ngisenters back into the _ \/W SNR _ (21)
picture because, even though theector is not affected by, RIR 1+ SNR

by virtue of the assume¥;y,,=0, after some lengthy algebra The total prediction error, aka PRE$Sis (assuming zero
the measured slope comes out to be biag

y}gyR_ SNR,  SNR SNR?

= = - PRES$?= (¥~ Vr) " (Vit—Vr)

(18) = {/slope errof+scatter error
So the slope is pulled down twice. First, the spectral n¥ige - 1+SNR;+SNR
pulls down theb vector and thereby the predictions and, sec- = VYRYR 1+SNI§+ SNR3+SNRE SNRf
ond, the reference noigg decreases the slope at the time at
which the line is fitted in the scatter plot. - 1
The correlation coefficient between the predicted and the =\VpYr ——, (22
reference concentrations is V1+SNR
T and is the minimum RSS prediction error that can be achieved
= YiitYR _ \/ SNR; SNR? for a given SNR, i.e., it is the Wiener filter result. The Wiener
o \/(ymm)(ﬂ%) 1+ SNRE 1+ SNRE filter achieves its optimality by trading off scatter versus slope
error in a RSS-optimum way. In some applications, however,
SNR? it is reasonable to require a prediction slope of one even when
= V1iisNE (19 the SNR is low, because the price paid in increased PRESS

is considered worth the improved accuracy when measuring at
The infrared method is responsible f8NR,, the reference  the low and high ends of the concentration range. In situations
method is responsible f@NR,, and the calibration is left to  in which slope compensation is an issue, therector can
cope with both, SNR. Equatio(l9) corresponds to the ex-  simply be multiplied by ascalar>1, which can be defined at
pectedr?=rr? wherer;=SNR/(1+SNR;) and the same  the user’s discretion. The multiplication will, of course, dis-
for rf,. Correlation coefficient and SNR are synonymous con- turb the optimality of the Wiener filter; e.g., the “100%-slope-
cepts that measure the same thing. The use of SNR is pre-corrected” prediction error,
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is larger than the Wiener filter result. Equati¢®3) is an 05 ”
intuitive result, saying that the total noise in the calibration £
data set is the scatter around the 100%-slope-corrected, aka / \
identity, line. Of course, there is no such thing as a “correct” o3
slope. The physics of the pure component spectra and the
spectral noise are manifested in steapeof the b vector, not

in its magnitude. By default, so to speak, the slope is at the g4 ™
Wiener value, but, in general, users are free to find their own 4+ ,// *i —a
best trade-off between the mean-square prediction error and 10" o o
end-of-range accuracy. In the following, we will therefore ap- SNR

ply the term “Wiener filter” loosely to both the original and

its slope-corrected versions. Fortunately, slope correction be-
comes an issue only when tisNR<5.

Because the user is free to correct for slope deficiency at
his own discretion, PRESSis not a unique measure of cali-
bration quality. On the other hand, the correlation coefficient
and SNR are unique measures of calibration quality because ]
the user changing the slope does not affect them. the SNR that suddenly “come out the noise” at and above

The total SNR of a given data set can be measured in aSNR=1. The Monte-Carlo generated example scatter plots in
number of ways using Eq$18)—(23). Which one to use is a Figure 3 demonstrate the rapid and quite dramatic improve-
matter of convenience and depends on the situation, howeverMent in the visual appearance of a scatter plot once the SNR
some caution is advised because some situations are tricky/mproves to above 1. The range from approximat8yR
For example, the calibration spectra are often more exten- = (0.9 to 2 is called the “cliff” by this author. Operating in
sively averaged than the later prediction spectra. This is com-this region is a tiring experience for the technical staff in
monly done to reduce spectral noise in the calibration data setmany companies.
and to trick the Wiener filter into producing higher slopes. In
this situation, where the calibration SNR is actually different . .
from the prediction SNR, a reasonable choice might be to use5 Discussion
the prediction slope to measure the calibration SNR and to useA number of practically important issues that typically come
the prediction correlation coefficient to measure the prediction Up in the practice of applying multivariate calibration tech-
SNR. niques to spectroscopic data are discussed next. It is hoped

Unfortunately,SNR, and SNR, cannot beindividually de-
termined from a single calibration experiment because the
calibration is only affected by their combined total, SNRy 400 400
the way, exchanging the andy axes of the scatter plot pro- , '
ducesslopg_,s—y=1.) For many applications, multiple cali- 6 0o o
bration experiments do not help either beca®¢R, and 200 0 Lo 200
SNR; scale identically with the signal. One trick that can be o
used to overcome this situation is to perform two calibrations, '
with different signal levels, and to intentionally degrade the o, 200 00 %
SNR, of one. This is, in fact, exactly what happens with many
of the “wet chemical” reference methods anyway, which are 400 S 400
typically dominated by multiplicative errors, i.e., small con-
centrations are measured with small errors and large concen-
trations are measured with large errors. Assume that two cali- 200
bration data sets have been collected under virtually identical
spectroscopic conditions, that one happens to have signifi- , v
cantly more signalyryr/m than the other, and that still the % 200 ) 200 w00 % 200 200
two SNRs come out to be the same. The typical explanation

0.2

i

Fig. 2 Calibration statistics as a function of the SNR: prediction slope
(¥%), correlation coefficient (A), slope error (X), scatter error (+),
PRESS'2= \/slope error’+scatter error?  (O), and slope corrected
PRESS!2 .., (O). The errors are all normalized by dividing by \/%.

slope=1

200

for this is that SNRESNR,< SNR, and SNR/ Fig. 3 Monte-Carlo geqerated example demonstrating the strong ef-
B \/:T~_ fect of the SNR on the visual appearance of the scatter plot: SNR = (A)
= constanfyYrYr) - 0.25, (B) 0.5, (O) 1, (D) 2, (E) 4, and (F) 8. A posteriori LS-fitted lines

The results of Sec. 4 are summarized in Figure 2, which (selid), identity lines (dashed). Bias and reference noise set to zero in
shows the other statistics to be highly nonlinear functions of this simlation.
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that here in Sec. 5 elucidating many of the consequences, andpieces ofa priori physical knowledge about the spectra with

opportunities, hidden in the mathematical sections above will
help.

5.1 Physics Behind the ““Statistical” Model

The Wiener filter solution, Eq13), of the statistical model,
Eqg. (1), makes perfect physical sense. To illustrate in a first
example, assume that the scaling factoSis1 and the rms
spectral noise is flat, i.e., uniform on all pixels and not corre-
lated between any two pixeléX!X,)/m=c2l ey (AU?.
Then define the rms signal @TV)/m:si (mg/dL)?. Equa-
tion (13) then reads

N
o2 1+s4go, )

[(mg/dL/AU],  (24)

where the shape of thevector isidenticalto the shape of the

any available measured data to estimate the pure-component
spectral signal and spectral noise separately, and then com-
pute the Wiener filter “manually” by plugging the results into
Eq. (13) (see Sec. b The effects of spurious correlations and
reference noise are eliminated right off the bat and the quality
of the estimate of the Wiener filter is limited only by the
quality of the initial estimates of the spectral signal and noise.
Specificity can be guaranteed because the spectral signature of
the signal(g) is under user control. Important trade-off deci-
sions concerning calibration transfer or long-term stability can
be made by adjusting the estimate of the spectral n@se,
whether or not to include instrument-to-instrument npise

a fortunate case in which bothand (X[X,)/m are known,
collection of further calibration spectra is not necessary at all
and users can directly compute the Wiener fifi@nd if de-

sired slope adjust it according to the exped@ty)/m in the

pure glucose response spectrum. As a second example, conapplicatiod. In a more typical case, spectral noise is not

sider the limit of disappearing spectral noise. Using &%)
and lettingo>— 0, we have the ideal,

b g% [(mg/dL/AUT. 25)

The reason that the shape of realectors does not look like

known and calibration samples will still have to be collected
to estimate the spectral noise, howeveference analyses are
not necessary as soon as the slope a known

Wheng is not known, then there are still multiple ways by
which to improve the quality of the estimate but now they are
not as obviouge.g., one can incorporate priori knowledge

the infrared glucose spectrum is that the real spectral noise isabout the spectral regions in whidhp does not have any

not uniform and is correlated between pixels. To conclude that
“statistical” models are not “physical” is wrong. In fact,

there is no fundamental difference at all because both ap-

proaches even follow the same basic idea, viz., to find the
direction of maximumSNR,. Consider a third example,
where two wavelengths are used to measure an “analytical”
absorption band at wavelengity in the presence of large
baseline variations. Here, wavelength is selected next to

the absorption band and the spectral noise(¥gX,)/m
=¢2(11) and the response spectrungis (3). Inserting into
Eq. (13) yields the Wiener filter

1(s,\?
R ey |
b: 1 2 -1/ (26)
1+ 2| ¢?
4\ oy

which, except for the slope correction, is identical to the ex-
pected physical result. Both statistical and physical models try
to point theirb vectors away from the direction of maximum
signal (g) and into the direction of maximun$NR,. The
basic difference is that the statistical models use an actua

measurement of the spectral noii’x%f(n, as presented in the

calibration data set, whereas the physical models rely on hu-

man intuition to describe the spectral noise. The two produce
virtually identical results in simple cases. When it comes to

spectroscopy of complex samples, e.g., near-IR, spectroscopy;

however, human intuition can no longer compete.

5.2 Is There a Better Way for Multivariate
Calibration?

bands. We defer to later publications, however, we do want to
mention that cases in which a good traditional calibration is
available as a “starting ground” are especially fruitful to work
with.

We also mention in passing that, mathematicailydoes
not have to be g@ure component response spectrum to apply
Wiener filtering. Any mixture spectrunfwhose scaled mix-
ture concentration might be of interest for some reasonld
be used as well. This situation is more common in process-
control applications; e.g., when measuring the concentration
of latex in paper coatings, the response spectrum of the latex
depends on its composition and thus on the manufacturer.

5.3 Is There an Optimum Wavelength Range?
No, mathematically there is no “optimumX range because

wider is always better/equal. This is becali@e(n is a posi-
tive semidefinite matrix, andSNR, will therefore always in-
crease or at least stay equal when the number of channels is

increased(The same reason why calibration results always
get better/equal with increasing numbers Yofchannels or

|PLS/PCR rank$.So the practical challenge is to find the most

SNR, bang for the least hardware bucks. Equatib#) can be
favourably used in the search of a “good” subset of wave-
length channels.

But there is also the basic limitation hidden in the word
“semi” above, viz., the limited information content of the
spectrum itself. Additionah channels can only improve the
SNR, if the added\ channels either contain new glucose
features, or contain spectral noise that is correlated with the
(still uncorrelated spectral noise in tha areas of the “old”
glucose features, or both. This theoretical limit can be relevant

Yes, one can help the statistical model converge against thein practice.[In the example, Eq26), we saw how theSNR,

Wiener filter faster. The ways in which to inseat priori

can be improved by including regions with zero glucose

knowledge are numerous and application specific, but the coresignal, viz., by subtracting out noises that are correlated be-

statement of this article is this: One can combine different

tween pixels]
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Spectral noiseX,, generally consists of three independent tral eigenvectors should resemble the glucose spedifitre
parts: sample noise, sampling nojsand instrument noise calibration is not seriously affected by spurious correlations
Sample noise is from spectral interference by the other com- The resemblance will be modest because of the algebraic con-
ponents in the sample, sampling noise is from variations in straints on the eigenvectors, but the peaks will be at the right
the sample handling, and instrument noise is from the hard- place and will have the right sign and magnitude. Since the
ware. Whereas the first two are typically correlated between SNR;;’s in Eq. (29) add up in squares the resulti@NR, is
pixels (broad spectral featurgsthe last one is typically not. ~ usually dominated by only a few spectral directions.

Since it cannot be subtracted out between pixels, the signal We point out here that a multivariate measurement can be
vector g\/m must peak out over the rms instrument ill posed regardless of whether or not the associated matrix

noise floor (AU) if the calibration is to stand any chance. inversion is “ill conditioned.” The two concepts are different.
Adding more and more pixels that do not contain glucose Statisticians interested in parameter estimation use the condi-

signals does not help the instrument noise situation. tion number but this measure is largely irrelevant in chemo-

metrics where the goal is prediction. For example, a calibra-
tion matrix made up of near-IR spectra of liquid samples
measured at\A =0.1 nmspectral resolution will be very ill
conditioned but just as well posed, or even slightly better
posed, than a matrix containing the same samples measured
at, say,AN=10nm.

5.4 Orthogonalization into Many Univariate
Regressions and Visualization

With regard to the statement that “spectrum interpretation is
only an afterthought in the NIR 2 unfortunately, this is true

to a large extent. Probably the best way to tackle the visual-
ization problem is to think of the multidimensional regression 5.5 Small Spectral Signals Can Still Have High SNR
problem as a multitude of one-dimensional regression prob- (and Vice Versa) X

lems by using the singular value decomposition of spectral . .
noise, The concepts 0SNR, and ill posedness go hand in hand but

arenotidentical. Theoretically, e.g., the 20th eigenfactor of a
S1 noninvasive glucose measurement system could carry a very
g S, high SNR;, ;=10 (just an examplg this system would be able
Xo=U-SVT=(u; uy,...,.uy) . to predict with a perfecBNR,= 10 yet still it would be very
- ill posed, because the calibration would need to “dig away”
Sk 19 larger eigenfactors of spectral noise to get toSh&R, . In
reality, near-IR noninvasive glucose sensing belongs to the
X[Vy Vo, Vil T (27) :

1 V2se-Vkl tough class of problems that are both ill posed and have low
as the coordinate system. Here, theandyv; are the eigen-  SNR(. As far as the hardware is concerngd, the engineering
vectors in the time and spectral domains, respectively, rankedhas to solve two problems: the system noise must be reduced
in order of s,>s,>...=s,. By defining g,=VTg and b, to the point where some of the smaller eigenfactors can de-
liver the needed®NR, and spectral noise in the larger eigen-
factors must be prevented from ever spilling down into the
. S 2g,¥'Y) smaller, highSNR, eigenfactors. The capability to do the lat-
bV=S—1+ Y a'S 2g.’ (28) ter is one of the important characteristics that distinguishes a

Y'Va9S gy ;
good piece of hardware.

=VTb, Egs.(13) and(14) can be written in orthogonal form,

and
SNR=/(¥¥)a'S 2, 5.6 Number of Calibration Samples
5 > 5 The important question of how many independent calibration
_ \/ T | Gv1 | Gu2 Juk samples are needed is governed by many practical issues, in-
=\ Si + s_§+"'+ s_i ’ (29 cluding spurious correlations/overfitting, quality of the statis-

tical estimate of the spectral noise, and “riding the cliff.”
where SNR, ;= \/(¥'7)(g;i/s)) is the SNR, in the direction  These issues are discussed next. We point out that formal
of the ith eigenvector. The infrared measurement of blood statistical tests can also be perfornfedy., based on those in
glucose is called “ill posed” because the glucose signal Ref. 21) but here we will focus on the more practical aspects
WW'Y-|ld| is smaller than many of the larger singular valses instead.
of spectral noise. This means, first, that 8/&R, found in the
data must come from the “smaller” eigenfactors, and, second, 5.7 Spurious Correlations/Overfitting
that the naked eye cannot see any glucose features in theA
spectra(In this article, the terms larger and smaller eigenfac-
tors are used to refer to the eigenfactors of spectral noise with
larger gnd _smgller eigenvalues, respecti\)c_elyl practice, . noise is and then insert these estimates into @#8). Any
some visualization can be recovered by using the follgwmg physicala priori knowledge available about the spectral sig-
simple procedure. Compute the SVD of the measuxed  nal and spectral noise can be combined with any measure-
=X,+9¥-g"; then compute the correlation coefficients of the ments available, and used directly to estimate the optimum
resultant time eigenvectors with the glucose reference concen-Wienerb vector. The danger of spurious correlations is com-
trationsyg. The eigenfactors with the largest correlation co- pletely avoided. An example of this “direct” way of estimat-
efficients will dominate the prediction results and their spec- ing the Wiener filter will be given below. Still, spurious cor-

s discussed above, if the spectral sigg# known, then the
best way to eliminate spurious correlations is to have the user
himself define what the spectral signal is and what the spectral
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relations continue to be a challenge in situations in wigig and this is standard procedure in virtually &dlvitro experi-
not known and this case will be discussed next. ments. In some applications, e.g., noninvasive glucose sens-
Equation (12) says that, if||)~(Iy/(yT"y)||<Hg| , then the ing, effective randomization requires long calibration time pe-
calibration is guaranteed not to be affected. This indicates aods on the order of several weeks. The minimum time
catch-22 situation: in order tprovethat a calibration is not ~ required can be estimated as follows. Assume the true-signal
affected,g must be known. In the past, what was sometimes SNRis 2. In order to minimize the effect of spurious signals,
done to prove specificitg posterioriwas to plot the measured ~ the falseSNR, from spurious signal alone is required to be
XYk (or a scaled version of it called the property-correlation smaller Fhan, say, 0.4. Say that there are five slow time pro-
spectrurf and compare it to the shape of the known glucose cesses in the spec_tral noise that each could correlate spuri-
spectrum. If the two looked alike, then the calibration was CUSy- Say we require that each process only correlates with
judged good.(Mathematically, this procedure is not com- SNR of 0'4/\/%: 0.179which is equivalent ta =0.176.1n
pletely correct because the spurious correlation spectrumStafistics books' it is said that in order to Qchle\gérl
could happen to be exactly parallelgphowever, apart from <0.176between two sets of random numbers with 95% prob-

being very unlikely, this result would not change the shape of @bility, the number of random pairs needs to be larger than
the b vector, only its magnitude, which is subject to slope ~120. Thus, the calibration experiment should collect at least

correction by the user anyway. In practice, what is feared 120independentalibration samples.
about spurious correlations is changes to shapeof the b In the example above, 120 samples were enough to break

ST\ T

vy

SNR, = \/7'7

vector, not in its magnitudeln the case of infrared blood the_spurious:, co_rrelations to the slow spectral processes, which
glucose analysis and typical-size calibration data gets  tyPically reside in the larger eigenfactors, but 120 may or may
—100...300, this “visual test” typically ended positive on "t bé enough to also diminish the effectaferfitting This
mid-IR spectra but generally negative on near-IR spectra. (€M is loosely used in the chemometrical literature to de-
What was the conclusion when the test failed? None, incon- SCrib€ spurious correlations in themaller noisy-looking
clusive. The visual test is sufficient but is not necessary. The €igenfactorsas opposed to the statistical literature, where the
necessary and sufficient condition for spurious correlations to S&Me term is used to describe the inclusion of too many vari-
be negligible is that th&NR, _ with spurious correlations is ables in a statistical modelThe spurious correlation in each
only insignificantly larger th;F] thBNR, from the true signal small eigenfactor may be small,_but many of them can add Jp-
alone or, mathematically speaking A stgndard rule of thum.b used in s_tatlstlcs to control overfit-
' ' ting is to use at least five or six times as many samples as
I 1 variables, and the same rule is also recommended as standard
T(I( |- %))”(n} practice for chemometriosvhere variables are defined as ei-
ther wavelengths or PLS/PCR factpf$ Following this rule
- W: . ywll actually dq two things. FII:St, spurious correlations to the
VY9 (XaXn) "= SNR, (30 instrument noise aka overfitting is reduced and, second, the
What matters to calibration iSNR , which is equivalent to quality of the statistical estimate of the covariance matrix of
correlation, not covariance. For example, given a data set with spectral noise is improveee Sec. 5)8 A practical way to
a tiny glucose signal of, say, 10AU rms with SNR=2 and check for overfitting is described in connection with Figure
a huge humidity effect of 10 mAU rms witBNR=0.2,theb 8(b). If overfitting is a problem, then PLS or PCR can be used
vector will still lock onto the glucose information almost ex- advantageously to cut out affected eigenfactors. PLS or PCR
clusively, leaving the predictions virtually unaffected by hu- should not be relied on excessively in this regard, however,
midity. An example of this behavior will be given below. because the appearance of spurious correlations in the smaller
Equation(30) is a nice piece of background information eigenfactors usually also indicates bad quality of the estimate
but, wheng is not known, it does not provide a practical way of the true spectral noise, in which case the only way to pro-
in which to deal with spurious correlations. Therefore, ifmmo  ceed is to increase the number of calibration samples.
priori information about the spectral sigrais available, then
the only reliable way to safeguard against spurious correla- 5 8 Quality of the Statistical Estimate of Spectral
tions is to perform extensive randomized calibration experi- Ngise
ments in the “traditional” way, i.e., via Eq4). In practice, . . . .
the proof of the method then comes gradually over time when In the special case of the true EoT\Larlance rr;atnx being from
multiple such randomized experiments performed in a devel- Uniform, uncorrelated noise, i.€X;X,)/M— oyl (g for m

opment program consistently deliver identical lookimgec- — o0, there is a simple graphical “eigenvalue flatness test” of
tors, with the SNR coming from the same spectral eigenvec- the quality of the statistical estimate. Plotting the eigenvalues
tors. of (Y(IT(n)/m for a finite number of samplawn yields a sloped

The core of the spurious correlation problem with tradi- trace of eigenvalues, instead of the ideal flat one. Thus, the
tional calibrations usually is that some of the larger time higher the number of calibration samples, the flatter the eigen-
eigenvectors of the spectral noise are not rapidly fluctuating value trace of the instrument noise floor sampled, which is a
aka “random” functions of time but are slowly undulating graphical expression of thex5rule mentioned above. The
drifts (slow on a human scalelf the characteristic time con-  flatness test can be used as a practical guideline for the num-
stant of a slow process is, say, 3 h, then independent sampleder of calibration samples required in real data sets. Using
can only be measured &t3 h intervals(Nyquist's sampling MATLAB notation, try plot(1:k,svd(randn(m,k))/sqrt(m))
theorem. Slow spectral noises therefore need extra attention with different values ofmto find your own tolerance level for
to decorrelate them frofjiy . The best way is to randomizg flatness. Fortunately, flatness of thmaller eigenvalues can
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often be improved by repeated measurements. For example, iraround an average of 14 g/dL. Assume that the calibration
the previous example, performing 120 measurement sessionssignal can be increased to, say, 1.5 g/dL rms by selecting more
with three repeats each will yield 360 independent measure- patients from the ends of the concentration range and that the
ments of the fast instrument noises in the smaller eigenvaluesdevelopment effort has achieved a promisi@BhR=1.5 at
whereas, of course, there will still be only 120 independent that signal level. Further assume that the development process
realizations of the slow spectral processes in the larger eigen-works by conducting a series of randomized calibration ex-
values. A more accurate description of how many independentperiments with, say, 20 patients eagHemoglobin has large
samples it takes to estimate the eigenfactors of a particularabsorbance signals in the visible so systems can use very few
multidimensional measurement system in a statistically reli- wavelengthg.Even if spurious correlations are assumed to be

able way is given in Anderson’s theorém. negligible, the laws of statistics will still work against the
company because of the low number of calibration samples.
5.9 Cross-Validation Say that the signal level can be reproduced at that value of 1.5

g/dL rms from experiment to experiment. The standard devia-
tion of noise, however, will varyl+0.32 g/dL rms just by
random chanc€5% confidence limjtmeaning that the SNR

The issue of cross-validation, e.g., “leave-one-out” cross-
validation, is closely related to the issue of spurious correla-

o e e ueel o " samplc i any experment can vay anynere from 11t
o p preci '2.2, causing dramatic differences in the appearance of the
depends on whether or not the reduced-subset calibrations arg . plot(Above, we used the rule of thumb that the stan-

affected by spurious correlations and whether or not the left o e
out and predicted spectra can take direct advantage of theSt?dr 3red gg\::g%n (;’g\fgfij;awﬁgjg\?ﬁgoﬁﬁobg 02frrt1hce)f itr?c(lae-

spurious correlations. By far the most notorious example of endent samplesA lot of management decisions, includin
cross-validation run amok is the oral glucose tolerance testP d g ol b 9 d h . gh
(OGTT) used for noninvasive blood glucose calibration. In PR and HR decisions, can be as random as the noise that
such an OGTT, a diabetic patient drinks sugar syrup causing caused them. It ShO.UI.d be noted here. that the current
standard* calls for a minimum of 24 calibration samples and

his glucose concentration to go up and, after insulin injection, . . X
back down again. The whole exercise mayt & and may the PO"?t h_e“? IS that_ 24 is too low when the SNR of the
application is in the cliff.

result in hundreds of skin specttiafrared or other collected
during that time period. What we have (i§ a multitude of
slow spectral processes well above the instrument noise floor
sampled with fewer than 10 independent samghegquis; 5.11 Unspecific Correlations

(ii) fewer than 10 independent samplesyaf(Nyquisd; and A very important issue is what this author calls “unspecific
(iii ) left out an.d predicted spectra that can take full advantage correlations,” as opposed to spurious ones. Mathematically,
of any spurious correlations. Single-day OGTT CIOSS- the two can be considered identical, but practically they
validation will produce nice looking scatter plots that “pre-  gifferent. Whereas spurious correlations change randomly
dict” virtually any Y time profile under the sun. Inthe hands  from experiment to experiment, unspecific correlations are
of an inexperienced user and without the background of a physically unspecific but statisticallyeproducible Again,
prior good calibration experiment, OGTT results are generally gjycose is not a good example here, and we will use albumin
worthless. On the other hand, and concluding this discussionjnstead. Imagine the task of calibrating ianvitro IR spectro-
with one positive remark about cross-validation, for experi- gcopic blood analyzer to albumin. Albumin does not vary
ments in which the sequence of samples is fully randomized, mch within a patient over time so the rms calibration signal
€.g., in manyin vitro studies, cross-validation results can be pag to come from patient-to-patient variations in the calibra-
close to truly independent prediction results, with the excep- tjon set. However, the patient-to-patient variation of albumin

tion of bias, of course. correlates well with that of total proteifr>0.9), and this
correlation is statistically reproducible from data set to data
5.10 Riding the Cliff set. In the traditional way of statistical calibration, the algo-

There is another effect, called “riding the cliff” by this au- rithm is therefore never told to only use albumin’s pure com-
thor, which is not as well known as spurious correlations but Ponent spectrum as a “signal,” and to shrink thevector in

is the second most-frequent reason for wild goose chase R&Dthe subspace affected by the other proteins’ absorbance fea-
efforts. Riding the cliff occurs whenever the true SNR is in tures because they are “noise;” instead, the traditional solu-
the region of the cliff(cf. Figure 2 and small changes in the tion utilizes absorbance features from the other proteNins to
calibration SNR—due to the large appertaining changes in the predict albumin. We quantify this by rewriting E8) as X
visual appearance of the scatter plots—trigger a series of = (X, +,00) +¥10] , where¥,q] is the spectral signal of
wrong conclusions, always one step behind the latest result.the analyte of interegalbumin and the term in parenthesis is
Anything that affects the sampled calibration SNR can cause the spectral noise, now consisting $g (the sum of the

Ith|sk egf(;ct, e.g.,.l S?#r'OL;fS ?[orrelitlonsj[ b#t It |s.often o_verl- other proteins and X,,, (the spectral noise from all other
ooked how easlly the effect can be Set off even In Seemlngythings). We define the correlation coefficientr,

“innocent” situations. Glucose is not a good example here, — _1_ 1 /55, (75,) and assume that the spurious correla-
and we will use hemoglobin instead. Hemoglobin is a typical _ Y2Y1/ VY1Y1){(¥2Y2 P

; CAaST e T o —
biomedical analyte that varies very little between patients and tions are zero, i.eX,y1=0 and X,.j,=0, and that the ef-
within a patient over time. The normal physiological range is fects from the reference noise are zero, i¥%),y,,=0 and
from about 12 to 16 g/dL yielding signals of abdig/dL rms (V293) "Y1 =0. Inserting into Eq.(12),

140 Journal of Biomedical Optics * January 2002 * Vol. 7 No. 1



On Wiener Filtering and the Physics . . .
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shows that unspecific correlatiomsinnotbe avoided in the cations dd-® To repeat, the only thing that counts when
traditional method of calibration Whenevlezlr2>0 because the  solving Eq.(1) is the SNR, so the only pretreatments that
correlated part of the other proteins will be added to the signal have value are those that improve the SNR. When the data are
and subtracted from the noise. In order to produce a chemi-linear and stationary, then there is no point in applying any
cally specific calibration for albumin, the direct way of cali- more linear math to the spectra like first or second derivatives
bration must be employed, i.e., the spectral signal and theor other spectral filtering methods, because by definition they
spectral noise must be estimated separately and the Wienecannot improve upon what the optimum spectral filter aka
filter computed manually, with,, set to zero. Incidentally, the ~ Wiener filter will find in the data anyway. Like with PCR- or
fact that the glucose concentration in diabetic patients under- PLS-factor selection discussed above, there is limited use as a
goes such violent and rapid swings is actualligesy positive vehicle to inserta priori knowledge into the calibration and
point from a calibration point of view because it allows the help the solution move closer to the Wiener result, but the
construction of chemically specific calibrations even when the result can never be better than what would have come from
shape of the glucose response spectrum is unknown. In manygood calibration anyway. On the other hand, pretreatment
other applications, the issues in the future will be the follow- methods that do more than just linear math on the spectra can
ing: Now that the math is spelled out and conscious decisions potentially improve the SNR, e.g., the familiar spectral base-
about the use of unspecific correlations can be made, will the line correction methodsgreduction of spectral noise in the
various customers and regulatory agencies continue to be relalarger eigenfactops

tively forgiving for the use of unspecific correlations? Some

intense discussions about the meaning of that phrase, “spe-5.14 Limitation Due to SNR,

cific in this application,” can be expected in the future. This limitation is best explained by using an example. Bio-
L. ) medical applications can be especially tough for many rea-
5.12 Which is Better, PLS or PCR? sons. One important reason is that SNRs are typically limited

There is no difference in quality between PLS and PCR. Any by a lack of signal, because the concentrations in the human
calibration is only as good as the SNR in the data, and that is body hardly vary around their physiological averages to begin
what the algorithms use when they predict at their “optimal” with. Established biomedical reference methods therefore
ranks. Arguments are often construed that one is better thanwork at SNRs of typically around 5, which is well above, but
the other in terms of the number of factors necessary to build also not too far from, the cliff. If the goal is to develop a new
up a goodb vector, but the relevance of that is very limited. method with, saySNR=4, compared to a reference method
Eliminating a PLS or PCR factor from the inversion is equiva- which suppliesSNR,=5 to the new calibration, then the new
lent to defining theSNR, in that spectral direction as zero. method itself must measure with &R =6.8[Eq. (17)]. In

This can make perfect physical sense and can help the solu-other words, the closer the reference method pushes one to the
tion to become closer to the Wiener result, e.g., overfitting can cliff the harder it is to not fall down. This means that in many
be reduced by eliminating smaller eigenfactors that are known biomedical applications there is hardly any room left for los-
to represent nothing but electronic noise. The fact is, however, ing correlation to the reference because of sample or sampling
that elimination of factors does not help the hardware people. issues.

The Wienerb vector is what it is, and hardware will be

needed to measure at all the pixels that sparbthector, with 5.15 “/Classical” Model

the SNR theb vector needs, whether or not somebody applies any calibration method can be interpreted as an attempt to
PLS or PCR. Setting the noise to zero in some mathematical estimate the Wiener filter by looking at the mathematical de-
subspace does not make the noise go away in reglitgi- tails and analyzing what assumptions are implicitly made
dentally, all equations in this article also apply to rank- apout the spectral signal and spectral noise which, when

reduced _invers_es, e.g., when only the _first PLS factors are plugged into Eq(13), give the particular method’s prediction
used for inversion. In this case, the data in the complementaryagits. Consider the so-called classical model,

subspacéthe unused factoyshave to be thought of as effec-
tively set to zerq,

AT
z +T, (32

Xored= (9 K)
5.13 Data Pretreatment
Data pretreatment methods are often claimed to improve theWheréXpeq,  is the column vector of new spectrum to be
quality of calibration but in practice rarely do unless the mea- predicted(AU), K=[k; K;,....Kr]kxr is the matrix of inter-
surement suffers from serious nonlinearity and/or nonstation- fering spectra or spectral effect&U/mg/dL), Try) is the
arity problems, which many industrial process control appli- vector of concentrations of the interfereritag/dL), T ) is
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the vector of residuals of the spectral(#U), and, as before,  closer to the Wiener filte? but this approach has a long way
g (AU/mg/dL), the glucose response spectrum Jn@ng/dL) to go and will be much harder in practice than the direct
the sought-aftescalay glucose concentration &,eq. For approach via the statistical model route.

consistency in notation, Ed32) has been written in mean- Equation(34) was first presented to the chemometric com-
centered form(where the mean spectrum is defined by the munity by Lorbef where it formed the basis for the net ana-
use) but this is not vital and could be dropped in the follow- lyte signal concept. In later years, the NAS solution, &4),

ing discussion. The classical model is basically Beer’s law in was erroneously claimed to also be the “ideal” result that the
matrix notation. We assume here tlagpriori physical knowl- b vector of the statistical model converged against. However,
edge about the response spectra of the interfering componentshe b-vector result of the statistical model, EG), is Eq.(12),

and other spectral effects, e.g., baseline variations, is avail-which is completely different from Eq34). As far as predic-
able. Prediction oi,eq means that Eq(32) is solved in a tion is concerned, classical modeling is basically identical to
least-squares sense, yielding an estimate of the entire compoNAS calibratiod and its various derivativé$™ with differ-
sition |y T'| of the sample. The first question is, What is the ences only in the definition of the projection matrix,
equivalenth vector that the classical model uses to predict the K(KTK) XK. This fact was recently pointed out by Kailey

glucose concentratioh? and llling?’
The LS solution of Eq(32), which minimizes the SSE of .. L. .
the spectral fit, estimates the glucose concentration as 5.16 Limit of Multivariate Detection

The spectral signal-to-noise ratio Ed4) can be written as

gT -1 gT R
(KT)(g K)} (KT) }T(predzblc?(pred / yTy ” ”
m—1 ¢
1

Vpred:[(lv 0,....0

33 AU
@ Re [< JRus )
where the vecto(l, 0,...,0 is simply used to pick the glucose (AU)rwms
concentration out of the entire composition. Straightforward, g’ %))t 9
yet tedious, algebra simplifies the above expression to = [ n ”] =
lol (m=1) gl
. [1-K(K'K)"*KT]g — m
qu_gT[|_K(KTK)7lKT]g’ (34) yy (_g>
m—1 dL RMS
where matrixk (KTK) 1K T is the projection matrix into the ~ SNR= 1 mg (147)
R-dimensional subspace spanned by the modeled interfering - - (—)
spectra. The next question is, What assumptions aSbiR, X%, * dL/cus
would a Wiener filter, Eq(13), have to make in order to g’ m—1 g
produce theb-vector result, Eq(34)? Comparison of Egs.
(34) and(25) shows that the classical model is equivalent to a where the numerator is the rms signal and the denominator is
Wiener filter that(wrongly) assumes that the rms effective noise, in absorbance or in concentration
units. The denominator of Eq14’’) can be considered the
1. theSNR; in subspac& (KTK) KT is zero(no part of limit of detection of the multivariate measurement. The rms

g in this subspace is uspeegardless of the size of the  prediction error(PRES$?) in a scatter plot aproaches this
amplitudes of the interfering spectra relative to the glu- valueif spurious and unspecific correlations are zero and the

cose signal; and slope is one and the reference noise is zero. The covariance
2. the SNR, in orthogonal subspace- K(KTK) KT is matrix of the spectral noise transforms into the scalar effective

infinitely goodregardless of the instrumental noise floor noise in a peculiar way that is similar to a harmonic medn

or, worse, any unmodeled interferents. over inverse’), which is the mathematical reason why the

effective noise is often much smaller than believed possible

This is why the classical model has not performed well in  when looking at a measurement problem for the first time.
demanding applications in the past and should generally not . .
be used for concentration prediction. Whereas the result, Eq.5-17 Economic Opportunities
(12), of the statistical model does converge against the Wiener The best thing about Eqél3) and(14) is that they mean net
filter for an increasing number of calibration samples, the re- present value to companies because they point to a multitude
sult, Eq. (34), doesnot converge against the Wiener filter of opportunities by which to reduce cost and time of develop-
regardless of how much effort is put into estimating interfer- ment programs. Today’s R&D efforts are characterized by a
ing spectr&. In fact, putting too much effort into defining sequence of calibration experiments that are time consuming
will invariably result into too large a number of modeled in- and expensive and, too often, inconclusive. The results in this
terferents andlegradeprediction performance, because noth- article can be used to reduce the number of experiments
ing of g is left to predict with. Besides, knowledge of the needed to reach the goal. First, significant savings are possible
individual interfering spectr&, (r=1,2,...R) is not needed  whenever the pure component response specttgmis
anyway because only the projection matkixK 'K) ~KT is known. All that is needed then is an estimate of the spectral
used for prediction. Recently, efforts have begun that are noise and this may be possible under lab conditions, thereby
equivalent to moving the solution of the classical model avoiding the expense of collecting situ calibration spectra.
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The calibratiorb vector can be determined in a direct way by 015 g g g g g ; g ! !
inserting the estimates for the spectral signal and spectral : : 1 : ; : : : 5
noise into Eq.(13), guaranteeing specificity and eliminating
the danger of spurious correlations altogether. If the pure
component response spectrum is not known, then many other %1
opportunities still exist, especially when one good calibration
experiment is performed as a starting point. The effect of
additional noise sources on ti8NR, of an existing calibra-
tion can then be assessed quantitatively using (E4). For
example, imagine a single instrument is calibrated to a pro-
cess and the task is to transfer this calibration to other instru-
ments. One way to do this is to take a population of instru-
ments and measure the instrument-to-instrument noise in the
lab and on an average sample, then “harden” the existing
calibration by adding the instrument-to-instrument noise to
the spectral noise, and decide whether the hardened calibra ; ; : ; : ; ; : ;
tion still has enougldNR, left. Other opportunities arise from 1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800
intelligent optimization of the measurement hardware and cm”
process, always by assessing the effecSHR, in Eq. (14).
This allows quantitative trade-offs between, e.g., the number - . P

. D the spectroscopic reference: (A) average calibration spectrum and (B)
C_’f Wavele_n_gth Channel_s used and the f|n{_;\| p_redlctlon correla- standard deviation of the calibration spectra (enlarged and offset by
tion coefficient. It also improves communication between the _g.05 AU)
hardware developers and the applications people by answer-
ing many of the questions from the hardware department

without having to perform another calibration experiment,. 0 tion of the calibration spectra can be compared to the glucose
an extent that a closed-loop feedback path can be establlshe%i(‘:}nmS shown in Figure 5, where trace C is the result of the

between hardware changes and system performance effects. It 1oy manipulating trace B to what he wished. The five ab-

also avoids wasting time on ineffective issues like trying t0 g5rhance bands between 1200 and 950 care specific to

improve the baseline stability of a glucose analyzep.f glucose. Trace A in Figure 5 is the property-weighting spec-
levels(the SNR, in the spectral baseline direction is virtually ., m (PWS of the calibration spectra(200 mg/dL
zero because of varying amounts of interfering spectra from

other blood components anywaynstead, attention will be
focused onto efforts that increase and protect the spectral di-
rections with highSNR,. In summary, there are a multitude
of ways in which Eqs.(13) and (14) can bring significant
savings to companies working in a number of different fields,
and the amount of potential savings is great compared to the
scale of the markets involved. A variety of very useful meth-
ods is described in a patent application by this author.

0.05

Absorbance

Fig. 4 ATR spectra of blood plasma in the mid-IR with water used as

X(T(TY/R)/(VEVR) and it has striking similarity to the pure
glucose absorbance. However, some residual correlation to
the protein bands in the 1500—1700 chrange is also vis-
ible. The correlation coefficient between the glucose refer-
ences and the total-protein references of the calibration
samples wag 1,=0.126, which is very low and it is only

6 Example

The example chosen is the relatively simple case ofithe
vitro measurement of glucose in blood plasma in the mid-IR
spectral range. A data set of 126 plasma samples from differ-
ent, mostly diabetic patients was measured using an IFS-66
Fourier transform infrared(FTIR) spectrometer(Bruker,
Karlsruhe, Germanyand an ATR micro-CIRCLE cellSpec-

tra Tech, Stamford, CT The plasma samples were measured
in a random sequence over a period of 8 days, including 6
measurement days. The reference concentrations of eight dif-
ferent analytes were determined, including glucose and total
protein. Experimental details of this are given in Refs. 28 and
29. For our purposes here, no spectra are removed as outlier:
and the first 100 spectra collected are used to calibrate and the ; ; L L ; ; :
last 26 spectra collected are used as the prediction test set 1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800
The glucose calibration signal ig(YxYr)/100=289.7 mg/dL em”

rms. Plasma absorbance spectra using water as the spectrqz

. . . ig. 5 (A) Property weighting spectrum of glucose; (B) spectrum of
scopic reference are shown in Figure 4. The measuremen aqueous glucose solution (offset —2 mAU); and (C) user-manipulated

problem is slightly ill posed because the glucose spectrum .iS spectrum of aqueous glucose solution (offset —4 mAU). All scaled to a
overlapped by other blood components. The standard devia-concentration of 200 mg/dL.

milli-Absorbance
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Fig. 6 b vectors of calibration scenarios (i)-(iv) described in the text.
The results of the traditional and modern methods overlap almost
perfectly. The b vectors in the expanded wavelength range are offset
by —-1.5e5 (mg/dL/AU).

because of the large amplitude of the protein absorbance
bands that the PWS is visibly affected in the 1650 ¢rre-
gion. In fact, the value of 0.126 is not even statistically sig-
nificantly different from zero so that the correlation is very
likely not a small unspecific correlation but, rather, a spurious
effect of this calibration data set. Does this spurious correla-
tion have any significant effect on the glucose prediction?
This question is addressed below. Four different scenarios
were used for calibration:

(i) the traditional way in the “specific” wavelength
range=1198.2—951.4m * with 7.7 cm ! intervals
(k=33 channelj

(i)  the direct way in the specific wavelength range;

(i)  the traditional way in the “expanded” wavelength
range=1198.2—-951.4and 1697.1-1604.5 cm
with 7.7 cm t intervals (k= 46);

(iv)  the direct way in the expanded wavelength range.

To repeat, the “traditional” way means that the data mea-
sured were plugged into E¢4) to generate thé vector, and

450 T T [ l T T l 6
AOOF - T : ,,,,,,,, J
o (i) traditional, specific range : :
asol..| * (i)modem specificrange | i T |
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Fig. 7 Prediction scatter plots of scenarios (i)—(iv) described in the text.

case of a well-designed calibration data set. The results for
scenario(iii) demonstrate that the spurious correlation to the
large protein bands around 1650 cthseen in the PWS is not
significant in the calibration, because correlation counts not
covariance. Scenari@v) in Figure 6 demonstrates that the
nonzero wiggle of thé vector in the protein region is not
caused by the spurious correlation there, but is caused by the
true glucose signal when it is weighted down by the inverse
matrix of the spectral noise.

Figure 8 is shown for completeness. Figufe)&hows the

singular values of the 100 calibration speckain the ex-
panded wavelength range and Figute)&hows the correla-
tion of the time eigenvectors to the glucose reference concen-
trations. The second and third factors clearly dominate the
calibration. Figure &) also shows that overfitting is no prob-
lem in this particular data set because the time correlations of
eigenfactors higher than rank 10 are all virtually zero. Thus,
using PCR or PLS to eliminate these eigenfactors would have
been redundant here. Figur&cBshows the shape of the first
few spectral eigenvectors and demonstrates the recovery of
visualization possible in ill-posed measurement systems.

In Refs. 28 and 29 it was hypothesized that reference noise
was the dominant contribution to the inaccuracy of the mid-IR
glucose measurement because of the shape of the scatter plots,
which showed large errors at the high concentration end and

the “direct” way means that the glucose spectral signal and vice versa. The reference analyses were performed in tripli-
spectral noise were estimated in a first step and then the esticate at a certified clinical reference laboratory in the Diabetes
mates were plugged into EQL3) to generate thb vector. For Research Institute in taseldorf, Germany, which also ran
the direct way, trace C in Figure 5 was used as the glucose«“gold standard” controls at regular intervals. Based on the
responsey; the reference concentratiofig were used to es-  results of these controls and using a fairly detailed anaf§isis,
timatey, and the differenc& —yg" was used to estimate the the SNR, of the calibration data set was estimated &NR,
spectral noise. All matrix inversions used in this example are of 9.8. We now quantiffSNR, by plugging the estimates of
full rank, i.e., no PLS or PCR but plain least squares. The spectral signal and noise into E44), which gives &SNR, of
1650 cm ! region does not contain any glucose signal but was 12.5. The two results plugged into E@.7) show the total to
intentionally chosen to demonstrate tfiesignifican} effect be at a SNR of 7.7, which is excellent for a biomedical appli-
of the residual spurious correlation to the large protein bands. cation. Figure 7 is the realization of a scatter plot with 26
The b-vector results are shown in Figure 6 and the indepen- points from a SNR of 7.7.

dent prediction results are shown in Figure 7. The results of  So, was it necessary to collect blood samples from diabetic
the traditional and direct methods are virtually identical in this patients to do this calibration? No. Since the response spec-
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trum of glucose was known, the direct way of calibration
could have been used and the spectral noise could have been
measured from nondiabetic blood.

So, given that glucose is pretty easy to measure in the
mid-IR, would not it be even easier to calibrate, say, albumin,
which has much larger absorbance signals? As discussed in
connection with Eq(31) above, in the past the answer was
“no” because of the strong unspecific correlations between
the different proteins in the blood. Today, the answer is
“maybe.” The fact that the absorbance values of albumin are
large is good but has limited value in itself, because correla-
tion counts not covariance. Sure, the albumin measurement is
better posed than the glucose measurement and instrument
noise is of less concern, however, whether or not the strongly
overlapping spectra of the other proteins leave enough useful
correlation akaSNR, is up for grabs in a future study using
the direct way of calibration. All results published so far
based on the traditional method are corrupted by unspecific
correlations.

If there is one important point to take away from Sec. 6 it
is this one:b vectors are hard to interpret. Even though the
mid-IR glucose measurement is simgla the research Iab
and only slightly ill posed, thé vectors in Figure 6 still do
not look “right.” It is the spectral noise that makes them hard
to interpret, though, even when the spectral signal has been
very accurately identified. This author recommends modera-
tion in trying to read physics frorb vectors. For one thing,
the human imagination does not work ifthree-dimensional
(3D) space. Also, instead of trying to visually solve the diffi-
cult inverse problemCould thisb vector be right for my
analyte?, it is much easier to visualize the forward problem
(OK, if this is my signal and this is my noise, then | guess this
has to be myb vector).

7 Summary

The so-called statistical calibration models are grounded on
the physics of the pure component spectra. There are no fun-
damental differences between statistical and physical calibra-
tion models because both approaches are merely different at-
tempts to realize the same basic idea, viz., to pointtihe
vector into the direction with maximum spectral signal-to-
noise ratio(SNR,). This solution is the spectrometric Wiener
filter and it is optimal in the mean-square prediction error
sense. The rms pure component spectral signal
JT¥)/mg(AU) and spectral noiséX'X,)/m(AU? are

the two main physical building blocks that make up the spec-
trometric Wiener filter.

The closed-form solution, Eq12), of the statistical cali-
bration model, Eq(1), is given in terms of the pure compo-
nent spectral signal, the spectral noise, the signal and noise of
the reference method, and a scaling factor between the sample
and reference concentrations. Equati@®) shows in detalil
how the traditional solution, Eg4), converges against the
Wiener filter with an increase in the number of statistically
independent calibration samples. Specifically, convergence re-
quires that)~(l”yn—>0, which means zero effect of reference
noise; andX;y—0 which means zero spurious correlations
and zero unspecific correlations. Spurious correlations have
been the biggest challenge and cost driver for many practical
applications of multivariate calibration in the padtor com-
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pleteness, we should also state the obvious requirement thatforts, the riding-the-cliff effect, was also discussed in quanti-

in order to insure optimum performance in theure the tative terms.
calibration signal (¥'y)/mg and calibration noise The results in this paper can provide significant net present

value to companies in various fields using multivariate cali-
statistics encountered in the future prediction speltra. bratlons, €.9., companies deve_lop_lng mfrare_d spectrometric
instruments and applications. Significant savings in cost and

The closed-form solution, E12), provides a wealth of time for instrument calibration and calibration maintenance
practical benefits. First, it can be used to speed up the conver-

. . . . can be realized by reducing the number of expensive calibra-
gence against the Wiener filter. Second, it can be used to.. . -
rant ificity. And third. it makes th libration oro- tion experiments and by focusing hardware and process de-
guarantee specificity. ’ akes the calloration pro velopment efforts into areas that really count for system per-
cess fully transparent.

h by which to i iori knowled formance. The most important piece of physical information
The ways by whic to |n§§rm priori knowleage areé nu- - gnq the key to the most significant savings is knowledge of
merous and application specific, but the core statement is this:y,o shape of the pure component response spectrum of the

Different pieces ofa priori physical knowledge about the  anaivte of interest. In addition, there is an opportunity for

spectra can be combined with any available measured data tQncreases in revenue due to increased customer acceptance of
estimate the pure component spectral signal and the spectratgjipration-based products.

noise separately, and then compute the Wiener filter manually
by plugging the results into Eq13). The effects of spurious

correlations and reference noise are eliminated and the qua"tyAcknowledgments
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