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1 Introduction

The introduction of cDNA microarray technolofyallows
thousands of gene expression values to be measured simult
neously, thereby providing insight into the global gene-

Abstract. A microarray-image model is used that takes into account
many factors, including spot morphology, signal strength, background
fluorescent noise, and shape and surface degradation. The model
yields synthetic images whose appearance and quality reflect that of
real microarray images. The model is used to link noise factors to the
fidelity of signal extraction with respect to a standard image-extraction
algorithm. Of particular interest is the identification of the noise fac-
tors and their interactions that significantly degrade the ability to ac-
curately detect the true gene-expression signal. This study uses statis-
tical criteria in conjunction with the simulation of various noise
conditions to better understand the noise influence on signal extrac-
tion for cDNA microarray images. It proposes a paradigm that is
implemented in software. It specifically considers certain kinds of
noise in the noise model and sets these at certain levels; however, one
can choose other types of noise or use different noise levels. In sum, it
develops a statistical package that can work in conjunction with the

existing image simulation toolbox. © 2004 Society of Photo-Optical Instrumen-
tation Engineers. [DOI: 10.1117/1.1755232]
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expression patterns of cell§issue$ being studied. The ap-
proach is powerful for studying the myriad transcription-
related pathways involved in cellular growth, differentiation,
and transformatioA.® The quality of each gene-expression
value detected from this measurement technology depends in-

tricately on the image-processing algorithm and interactions.
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Numerous image-processing tools have been proposed to ex- Signal Intensity, (R, G)
tract signal intensity from the cDNA arrays. A method that - .
uses a statistical test to segment the hybridized region from g Edga Noies, Ne

the background and the inner hole is used in our stufly.
better quantify the extracted data, metrics have been intro-
duced to better understand the data generétion. 3 Badius’ s
Despite the extensive application of cDNA technology,
few studies have been devoted to examining the quality and yoee v
reliability of gene expression signals in terms of how close the
detected signals are to the true gene expression levels in a
biological sensé.Linking various noise conditions to the sig- \ g:grttegx'i*;'gv
nal extraction has been the goal of most image-extraction al- ’
gorithms, the purpose being to develop better algorithms.
Most proposed imaging methods are based on intuitive evi-
dence. This study employs a microarray-image model that
takes into account many factors, including spot morphology,
signal strength, background fluorescent noise, and shape and
surface degradatioh.The model yields synthetic images

Chord
Placement
Angle, 6

Chord Depth, L

focused primarily on optimizing the yield of information on ~ Sefetch Mol

the biological tissue samples of interest relative to the refer- Spaghett Notse

ence sampf@tand on assessing within and between array

variability. In this study, we use factorial experiments to sys-

tematically identify factors and their interactions that signifi-

cantly affect the accuracy of detecting the expression signal. Fig. 1 Microarray spot model.

Because noise—factor interactions can affect the quality of

signal detection in unpredictable ways, a systematic examina-

tion of these interactions is needed. package to work in conjunction with the existing image simu-
Two points need to be kept in mind regarding the statistical |ation toolbox.

analysis. First, it is generally true that signal detection algo-

rithms can better recover the true signal for images with less . .

severe levels of noise. Thus, when we compare signal estima-2 Image Simulation

tion for low noise with estimation for high noise, the actual This section describes the noise conditions used in the current

error of estimation should be less for low noise—and this will study. A detailed description of image simulation is given in

be borne out. Our concern here, however, lies in a different the original papet.Figure 1 shows the cDNA spot and model

direction. We want to examine the significance of different generation with various noise conditions. The addition of

levels of various kinds of noise on signal estimation. If there noise to the array is broadly divided into three levels: array-

is no significant effect on estimation error relative to different level, block-level, and spot-level noise. Detailed distributional

levels of a particular type of noise, then reducing the noise in descriptions of the various types of noise are given in the

the image to a lower level will not significantly affect signal appendix. Throughout this section, when describing a type of

detection; however, if there is a significant effect, then it noise, we refer to the appendix for specific distributional in-

would be worthwhile to try to reduce that type of noise. formation. The reference uses the simulation number. Our ex-
A second point is that we are proposing a paradigm imple- periments involve three noise settingsi, 0, and+1, where

mented in software, and not simply providing results. We the increasing ordinal numbering corresponds to worst to least

have chosen to consider certain kinds of noise in the noise noise(Table 1.

model and to set these at certain levels. One can choose other The analysis of a detection algorithm begins with a ground

types of noise or use different noise levels. Clearly, bringing truth. Here that ground truth refers to a “true” expression

the noise levels closer will reduce the significance of noise intensity that must be estimated by the detection algorithm. A

effects, whereas moving them farther apart will increase the microarray containindN gene expression spots with intensity

significance. What we have done is to develop a statistical levels|, for k=1,...N, is simulated by an exponential dis-

Smoothing

whose appearance and quality reflect that of real microarray | o hene
. . . t
images. Here we use the model to link noise factors to the en o
fidelity of signal extraction with respect to a standard image- N GereoEtle
extraction algorithnf.” Of particular interest is the identifica- I — :
tion of the noise factors and their interactions that signifi- Sirmulation Horee
cantly degrade the ability to accurately detect the true gene- T TR
H H H H H H H | Spot Simulation ng]al‘ -
expression signal. This study uses statistical criteria in e Normalization
conjunction with the simulation of various noise conditions to it Bl B _,| et
. . . . 1 intenst
better understand the influence of noise on signal extraction > ot Froceing g’;m
. . IVE
for cDNA microarray images. L
Although some pr|_nC|pIes of exp(_enmental design have Ly insge Generaion
been proposed for microarray experiments, they have been (TIFF format)
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Table 1 Settings for noise parameters.

Level +1: Level O: Level -1:
Index Noise Type Good Average Bad
1 Sig./background 3 2 1.5
noise(SigBack)
2 Expresser or outlier 0.1 0.25 0.5
probability rate (Outl)
3 Spike noise (spike) 0.01, 0.015, 0.06,
(Lopi s ttspi s Wipi) (500,700), (700,1000), (900,1200), (6,10)
(2,5) (2,5)
4 Snake noise (Snake) 0.15, 0.20, 0.25, (50,90),2,12
(Ksn s Ls s Wen Naeg) (10,50),1,2 (40,70),1,5
5 Parabolic background with 1, (10, 12) 1, (15,17) 1, (25, 27)
deviation (ParaB) (ych .
75h2)
6 Spot radius: deviation 10 20 30
(Spot) ()
7 Inner hole (InnH) (4,7,5,8),(4,7, (10,20,5,10),(10,20,5,10) (35,45,10,20),(35,
(h,oh 1,00 , 45,10,20)
8 Foreground noise (0,0,4,7), (0,0,5,10), (0,0,10,15),
(ForeN) (0, 0,4,7) (0,0,5,10) (0,0,10,15)
(am, al)
9 Edge noise (EdgeN) (6.q) 0.3 0.1 0.03
10 Chord noise (Chord) (0.9,0.07, (0.75,0.15,0.05,0.05) (0.2,0.35,0.20,
(Po.P1,P2,P3 P4 0.03) 0.15,0.1)
11 Scratch noise (Scratch) 2.5,(9,35),3,2 3.5,(15,45),5,4 4,(25,65),7,10
(Kscl LsNU[Lscl /Lsc2]r Wsc:
NSC)
12 Signal deviation (sigSD) 0.15 0.25 0.35
(a)
13 Flat background with 0, (10,12) 0, (15,17) 0, (25,27)
deviation (FlatBack)
(Ve 1 Yeh2)
tribution. Base intensities for the red and green chanmgls, f(x)=ag[ag+x(1—e ¥3)2]; a;>1.

and G, respectively, are generated from two independent

normal distributions having a meap and standard deviation

al,, wherea is a common coefficient of variation. R’ andG’ are transformed by the detection system response
A particular geng(RNA) may be over/or underexpressed, characteristic function defined big(x) or f5(x) to obtain

and this will show up in the redtes) channel. We refer to realistic fluorescent intensities. The resulting observed fluo-

such a gene as an expresser or outlier. These are found ranrescent intensities}|, = fr(R;) andGy=fs(Gy) are the true

domly in the model by selecting a gene from the entire mi- mean intensities across tkih spot.

croarray with a probability,ier to be an outlier. If gené& is Normally distributed foreground noise of intensity is

selected, then a scaling factgr= 1P« is applied, whereb, added pixelwise on the spotsimulation 9 in the appendjx

satisfies a beta distributiob,~B(1.7,4.9, and where thet This foreground noise typically has zero mean. It results in

sign is selected with equal probability. Based on the scaling spot intensitiesSR=R};+1;; and SG=G+1,. Figure 2

factor, the individual channel intensities are given By shows noise addition at various levels. In this figure, and in all

=Rty and Gy= G/t subsequent figures illustrating noise, all other noise factors are
The dyes commonly used for microarray experiments set at the best levdless variant than+1 level.

show nonlinear response characteristics, and different dyes Owing to laboratory dust that may stick on the arrays and

give different responses. This effect is modeled by the nonlin- fluoresce on laser excitation to give high-intensity spikes, or

ear function high-intensity points caused by cDNA precipitation, spike
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Foreground Noise at +1 level Foreground Noise at O level

200

200

Fig. 2 Foreground noise variation illustrated at three levels: +1, 0, -1.

noise, at a preset raté,;, is added randomly across the multidirectional snake noise has been generated consisting of
entire slide area. Once a pixel is selected for spike noise, thesome numberNgey, of segments. Analogously to scratch
adjacent pixels have a higher probability of being affected. noise, the intensity is parameterized as a ratiQ, giving the
This is fixed by a random number chosen from a uniform rate, average signal-to-snake noise intensity level, the number of
Wspi, Which gives a count of pixels randomly chosen to be snakes, snake thicknes#’s,, and a random lengthl. g,
influenced by this noise. The intensityg, of the spike noise given as a multiple of the spot size. Figure 5 shows snake
is governed by an exponential distribution with meag,; . noise at different levels.
Figure 3 shows spike noise added at different levels. The cDNA deposition spot is considered to be circular,
Physical handling of the array slides can result in scratch with a random radiuss (simulation 1 in the appendixThe
noise(surface scratchgswhich typically results in low inten- ~ mean of the radius is set according to the array density, and its
sity levels. Scratch-noise intensity is parameterized as a ratio,variance relates to the consistency of spot size. The standard
Ksc, giving the background-to-scratch noise intensity level. deviation is a predetermined proportidq, of the mean. The
Other parameters are the number of strips, strip thicknessradius mean is set for every block, and randomized over a
Ws., and a random strip length, . (simulation 24 in the small range within the arraysimulation 12. Depending on
appendix. These scratches are placed at random positions onthe robot arm and printing ability of the pins, the interspot

the array and are inclined according tddiscrete uniformly distanceGs,, may vary. Owing to the physical mechanics of
random angle, 6s.€{0,45,90,135,180 Figure 4 shows the robot arm, the block sizéixel unit9 is fixed in most
scratch noise at different levels. cases. The interspot distance can be set to accommodate spot

Fine dust particles on the slides can create snake noisesize and random variations in spot radii. The spot variability
upon laser excitation. These snake-noise strips are typically ofat three levels is shown in Fig. 6.
higher intensity than the signal level. To simulate this noise, Owing to the impact of the print tip on the glass surface, or

Fig. 3 Spike noise variation illustrated at three levels +1, 0, -1 (left to Fig. 4 Scratch noise variation illustrated at three levels: +1, 0, =1 (left
right). to right).
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Fig. 5 Snake noise variation illustrated at three levels +1, 0, =1 (left to Fig. 7 Inner hole noise variation illustrated at three levels: +1, 0, -1
right). (left to right).

possibly to the effect of surface tension during the drying
process, a significantly lesser amount of cDNA can be depos-
ited near the spot center. An elliptical shape models this inner
hole with random horizontal and vertical axed, and V
(simulation 3. Interarray variability in the distributions df
andV is modeled by uniformly distributed meapsg; and wy
(simulation 14. The choice of the parameters governs the
hole shapes. The center position of a hole is allowed to drift
over a ranggsimulation 4. The shape is unaffected by the
drift because the contact of the mechanical print tip to the
surface is unaffected. Figure 7 shows the noise at different
levels.

The irregularity of RNA washout during slide preparation
is modeled by chord noisehord removal The numberN,,
of chords to be removed for a spot is selected from a discrete
distribution,{0,1,2,3,4, where the elements of the distribution
occur with probabilitiepg, p1, P2, P3, andp,, respectively.

For images with very few pieces cut off, the zero-chord prob-
ability po is very high, and the three- and four-chord prob-
abilities are close to Qpossibly equal to 0 To model inter-
array variability, the probabilities can be treated randomly.
This noise parameter is set once for every block that is not a
spot level noise. Once the number of chords for a spot is
determined, the distanck, of each chord center to the edge is
selected from a beta distribution, with interblock variability
for the beta distribution being uniformly modelésimulation

5). Finally, the chord locations are chosen uniformly ran-
domly according to an anglé between 0 and 2. Figure 8
shows chord noise at different levels.

Owing to the manner in which liquid dries, the spots usu-
ally do not have smooth edges. Edge noise is simulated via a
parameterized edge-noise algorithm adopted from digital
document processing. Edge noise is applied to the outer pe-
rimeter of the spotafter chord removal Figure 9 shows the
noise at different levels.

Many factors contribute to the fluorescent background ob-
served: autofluorescence from the glass surface or the surfac

of the detection instrument, nonspecific binding of fluorescent
residues after hybridization, local contamination from posthy-
bridization slide handling, etc. Background noise is simulated
by a normal distribution whose parameters are randomly cho-
sen to describe the process, and for multiple arrays, the inter-
array difference is modeled by a uniform distributi@imu-
lation 20.

Rather than be constant across the entire microarray, the
mean of the background noise may vary, owing to various
scanning effects. It can take different shapes: parabolic, posi-
tive slope, or negative slope. In this case a functifr,y) is
first generatedparabolic, positive slope, or negative slppe
form a background surface and normal noise is added to it
pixelwise. Figure 10 shows parabolic background noise at dif-
ferent levels.

The addition of various noise types makes the microarray
highly peaked, with high pixel differences. This stark irregu-
larity can be mitigated by smoothing the image with either a
flat or pyramidal convolution kernel. Our simulation study
uses a flat smoothing function.

Once a microarray image has been simulated, the signal
extraction toolbox Dearray uses statistical methods to seg-
ment the signal and the background pixeidDifferent levels
of significance can be set for this procedure. Once the signal
pixels are identified, a trimmed mean of their values gives an
estimate of the signal mean. Background information is ex-
tracted by taking pixel information from four corners of a
given spot to estimate its mean. Actual signal expression is
estimated by the difference between the two. If a spot’s ir-
regularity in shape and signérea of the spot, signal varia-
tion, etc) is reflected by a low-quality metric, then the spot
can be flagged. At the final step, a linear corrective normal-
ization procedure is carried out to compensate for variation in
the dye response. Ratio intensities are then computed. A loga-
rithmic scale applied to the ratios can be used to map the data
éo a desirable range.

Fig. 6 Spot radius deviation illustrated at three levels: +1, 0, -1 (left to Fig. 8 Chord noise variation illustrated at three levels: +1, 0, =1 (left
right). to right).
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Table 2 Experiments.

Experiment 1: Background-Noise Interactions

Noise Type

Index
1
Fig. 9 Spot edge variation illustrated at three levels: +1, 0, =1 (left to 2
right).
3
3 Experimental Design and Statistical Data 4
Analysis
The array model has more than twenty parameterized noise
conditions. We consider thirteen commonly occurring noise
conditions for this study. These are grouped into four catego-
ries, which then correspond to four experimerts). back-
ground noise(2) shape noisg3) surface noise, an@) weak Index

Sig./background
noise(SigBack)

Expresser or outlier level (Outl)
Spike noise (Spike)
(I-spi . lu‘spi~ U[e/ ﬂr Wspi~ U[g:
h1)
Snake noise (Snake)
(Ksn ’ I-sn~ U[Lsn] . Lan]/ Wsn ’ Nseg)

Parabolic background with
deviation (ParaB) (ych1 . Yeho)

Experiment 2: Shape-Noise Interactions

Noise Type

signal. Each category has five conditions, with some of the
thirteen conditions occurring in more than one category. The
experiments are described in Table 2. In experiments 1A
through 4A, each factor can take on two levels, 0 or 1. In
experiments 1B through 4B, the factors take on the levels

or 1. Assuming two levels for each noise factor, there are
thirty-two conditions for each category. For each condition, 8 3
replicate arrays are generated so there are 256 arrays per ex-
periment. Each array has 1600 spots in &40 matrix for- 4
mat. These numbers have been chosen to provide sufficient
replicates while not resulting in inordinate image-processing
time.

2

3.1 Experimental Conditions Index

Spot radius: deviation (Spot)
(o)

Inner hole (InnH) (uh, oh, &y,
o)

Foreground noise (ForeN)
(e, )

Edge noise (EdgeN) (6.4)

Chord noise (Chord)
(pO P1,P2.P3 IPA)

Experiment 3: Surface-Noise Interactions

Noise Type

The background—noise interaction involves noise that can al-
ter the background and thereby influence signal extraction. !
Parabolic noise generates a concave background, and at dif-
ferent levels the backgrounds are expected to show more de-
viation. A high signal-to-background noise ratio reduces the

gap between the average signal and background mean level
Spike and snake noise create surface noise. Expresser vari-
ability simulates spots with expresser gene expressions.

Noise degradations related to spot shapes are grouped to#
gether in the shape—noise interaction experiment. Noise re-
lated to spot shapes is grouped together. These include spos
radius, inner-hole variatioffrom no hole to close to half the
spot size, edge noise, and chord removal. To check the inter-
action of these with foreground noise, the latter is included.

The third experiment, surface—noise interaction, combines Index

Spot radius: deviation (Spot)
(o)

Inner hole (InnH) (wy,, oy, wy,
o)

Snake noise (Snake)
(Ksn ’ Lan U[Lsn] . Lan]/ Wsn ’ Nseg)

Scratch noise (Scratch)

(Ksc /LsN U[Lscl ’ Lsc2]r Wsc lec)

Chord noise (Chord)
(Po,P1/P2,P3,P4)

Experiment 4: Weak Signal-Noise
Noise Type

shape variation with surface noise, both snake and scratch.

Fig. 10 Variation in signal-to-background noise ratio (SigBack) and 5
parabolic background. SigBack is set at —1, while parabolic back-

Signal standard deviation
(SigSD) ()
Foreground noise (ForeN)
(o, )

Sig./background noise
(SigBack)

Flat background with
background deviation (FlatBack)
(’ychl ’ '}/chZ)

Spike noise (Spike)

(Lspi 1 Mspi™ U[e/ f], WspiN U[Q:])

ground is varied from +1, 0, -1, left to right.
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Table 3 Image-quality measurements for the experiments.

Noise Levels for Experiment 1

Quantitative Measures Good (+1 Level) Average (O Level) Bad (-1 Level)
E[SR_S.Dev] 1176.52 1178.82 1320.937
E[SR_SNR] 111.269 66.143 17.921
E[SR_Q] 0.7333 0.7807 0.9775
E[SR_bkDev] 17.884 32.315 131.853
E[SG_S.Dev] 1181.09 1178.237 1328.67
E[SG_SNR] 105.290 61.987 17.655
E[SG Q] 0.7514 0.8017 0.9793
E[SG_bkDev] 19.134 34.613 134.66
E[[Error]] 0.0714 0.1402 0.2843
E[Pro.Areq] 0.9622 0.9509 0.8491
E[TotalQ] 0.7131 0.7495 0.8744
E[CV] 0.0478 0.1108 0.1805
Noise Levels for Experiment 2
Quantitative Measures Good (+1 Level) Average (O Level) Bad (-1 Level)
E[SR_S.Dev] 970.14 727.107 569.103
E[SR_SNR] 96.750 77.082 52.770
E[SR.Q] 0.9956 0.9894 0.9528
E[SR_bkDev] 16.83 16.415 16.158
E[SG_S.Dev] 971.78 733.498 575.78
E[SG_SNR] 78.434 64.192 45.785
E[SC Q] 0.9956 0.9894 0.9504
E[SG_bkDev] 21.079 19.90 18.767
E[[Error]] 0.1675 0.2473 0.5212
E[Pro.Areq] 0.9405 0.8775 0.7606
E[Total-Q] 0.9627 0.9489 0.8989
E[CV] 0.0423 0.0423 0.0531
Noise Levels for Experiment 3
Quantitative Measures Good (+1 Level) Average (0 Level) Bad (-1 Level)
E[SR_S.Dev] 987.017 747.165 576.904
E[SR_SNR] 99.803 86.568 60.511
E[SR.Q] 0.9927 0.9878 0.9222
E[SR_bkDev] 17.205 18.097 20.328
E[SG_S.Dev] 989.46 746.12 584.234
E[SG_SNR] 79.880 69.825 50.435
E[SC_Q] 0.9998 0.9880 0.9234
E[SG_bkDev] 21.470 21.65 22.925
E[Error]] 0.1121 0.3274 0.4992
E[Pro.Areq] 0.9350 0.8586 0.7343
E[Total-Q] 0.9904 0.9483 0.8744
E[CV] 0.0419 0.0417 0.0477
Noise Levels for Experiment 4
Quantitative Measures Good (+1 Level) Average (O Level) Bad (-1 Level)
E[SR_S.Dev] 1160.35 1125.47 1134.62
E[SR_SNR] 48.610 23.032 8.772
E[SR.Q] 0.9905 0.9768 0.9568
E[SR_bkDev] 39.331 87.582 261.48
E[SG_S.Dev] 1160.29 1131.83 1140.364
E[SG_SNR] 41.620 20.620 8.3094
E[SC_Q] 0.9906 0.9768 0.9569
E[SG_bkDev] 46.343 98.420 275.703
E[|Error(] 0.1474 0.4607 0.8199
E[Pro.Areqd] 0.9432 0.8993 0.83707
E[TotalQ] 0.9243 0.8355 0.61612
E[CV] 0.1209 0.1980 0.2493
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In the last experiment, weak signal—noise interaction in- background standard deviation, which improves the SNR, and
volves alterations in signal level, including foreground noise, therefore improve&[ Total-Q].
spike noise, background unevenness, and signal-to-
background ratio. This grouping is good for analyzing the o )
effects of weak signals on the signal estimation process. 3.2 Statistical Analysis of Data

The quality of microarray images is typically assessed by a For each set of experiments we use@'afactorial design,
trained microbiologist in the laboratory after image scanning. with k=5 experimental factors. Each factor consists of two
In this study, the noise-level parameters used for the different levels*?*3 Since our primary objective is to determine how
factor levels correspond to the kinds of noise distributions the experimental noise factors affect the accuracy of detecting
seen in practice. As noted in the original simulation pdper, gene expression, the appropriate basic response variable con-
the exact parameters will vary, depending on the technology, sidered for analysis is the absolute difference between the
and the ones used in this paper correspond to general condidetectedestimategiand the true expression ratio at each spot.
tions observed over many years of application since the de-Because the distribution of these measurements tends to have
velopment of Dearray in 19967Although metrics have been a long right tail, we therefore analyze the response variable in
proposed to quantify microarray qualftythere is no direct  the log-log scale for the analysis of variance modeVore
way to determine the effect of each noise level on the metrics. Precisely, a constant 1 has been added to a response before
This is mostly attributed to the multivariate influence of the taking the log transformation. The goal here is to reduce the
various degradations on the estimated signal. While it is no Potential dominating influence from extremely large re-
doubt true that individual statistical results obtained in this SPoOnses, yet not to dramatically increase the transformed ab-
paper may not apply for different noise distributions, the gen- Solute differences when the true expression ratios are close to
eral methodology will apply, and we believe that the conclu- 0, noting that log0) goes to negative infinite. Here, taking a
sions drawn here are indicative of what one might expect with different transformation can be viewed as evaluating the re-
similar technology(for specific issues regarding parameters, SPOnses at different scales. One advantage of considering the
refer to the original papgr absolute difference rather than the original difference, beyond

To quantify the relation between the factor levélsl,O, its being a meamngful measurement, is that the responses are
+1), noise levels, and image quality, Table 3 provides mea- "W all positive so that regardless of what monotone transfor-

sures corresponding to the different experiments and factoranat'On IS t?kﬁn' the relz;tlve k(])r(:]er among responses 1s kipt'
levels. All measures, except for the coefficient of variation, ecause of that, even though the outcomes are not transfor-

are defined at the spot level, and therefore have been averaget :tloz;ér]l\éz:irgnasrigsgg[or\]/\(/)arl]rltljntehaer Q}%?:;O;irgﬁgimggggn;
across all spots over all replicates. The table includes the y )

meangs(expectationsof twelve measurements. There are four Igfrtr"na\il;/'inhsa;z CZﬂd;sCtrZ?]kagggsgs;nﬁ&%sthfr (r:]ocnhc i\;i;;at?;
measurements for the red chann®@RS.Devis the standard conclulsion of ,E'r\]'e analvsis remains unchan’ IedW !
deviation of the signal intensity3RSNRis the signal-to-noise . ysIS rem ged. .

. L ; . . . . To further avoid the situation that outlying observations
ratio, which is defined as the ratio of the mean signal intensity

L s have a dominating influence on the estimated main or inter-
to the local b_ackgrognd standa}rd dewan@RQu_allty Is the action effects, we adopt the following screening procedure in
channel quality metric defined in Ref. 7, which is formed as a

minimum of four component lities involving ar back- our analysis. First, data points with an estimated expression
um ot four component qualities INvoving area, back= 5, larger than 30 are excluded from the analysis. Such high-
ground, consistency, and saturation; &RIBkDevis the stan-

dard deviati f the back 4 intensity. Th ; ratio points are often excluded in practice. Second, we have
ard deviation ot the background Intensity. There are four performed a regular least-squares estimation procé&danel
analogous measures for the green chanr@GS.Dey

i d K h ; produced studentized residulfor each observation. A data
SGSNR SGQualiy, an SGBkDev There are four common — point with an absolute studentized residual greater than 4 is
measurementgError| is the absolute error for the signal es-  ¢,nsidered as an extreme outlying observation and is further
timation; Prop.Areais the proportional area relative to the

k ‘ . e excluded from the main analysis. The chance of having an
mask size;Total-Q is the total quality, which is based on the

. . ; : ) ~absolute studentized residual greater than 4 is lessBah
intensity quality of both channels and the signal-to-noise ratio (for normally distributed dataThe use of studentized residu-
of both channels, an@V is the coefficient of variation of the

) i g als gives us a statistically meaningful way to exclude points

intensity. In all experiments, the mean err&{Error|], of with very high estimated ratios without requiring a subjective

the actual to estimated signal ratios increases as the degradacytoff point lower than 30. This two-part screening procedure

tion increases. eliminates about 1% of the total observations in each experi-
While most of the measurements in Table 3 show straight- ment.

forward effects, there is an apparent anomaly in experiment1, we fit an analysis-of-variance model with main effects,
which treats background characteristics. The mean Val’iationtwo_way, and three-way interactions to the remaining data.

of the background E[SR bkDev],E[SG bkDev]) shows
an increase from+1 to —1 level, along with the mean SNR
(E[SR SNR],E[SG SNR]), which goes from good to bad.

Results for the main effects and two-way interactions based
on F-tests are obtained. We test the significance of the five
main affects and all ten first-order interactions simultaneously

Some decrease in the proportional area of the spots is alsofor each experiment. Thus, we have a total of 15 hypothesis

seen. A paradox occurs with respect to total quality:
E[Total-Q] increases as the levels go frofl to —1. This

tests per experiment. We use the Bonferonni adjustthémt
control the family wise error ratFWER) in multiple testing

is due to the effect of the parabolic background on spots in the (testing main and first-order interactiongé\t «=0.05 level,

central portion of the array. There the image gets a very low
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this gives 0.0033 as the significance threshold for each test.
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Fig. 11 Box plots for absolute differences between the true and esti-
mated expression ratios in a log-log scale. For each experiment, only
the responses in the most extreme level (all =1 for Bs and all 0 for As)
are plotted. Each box contains the central 50% of the data. The solid
dot in the middle gives the location of the median. The top and bot-
tom whiskers reach the largest and smallest nonoutlying observations,
respectively, while the circles indicate the locations of outlying obser-
vations.

Thus, the probability of erroneously rejecting any null hy-
pothesis is controlled at 0.05.

When there are two levels in each factor, as in all of our
experiments, we construct an equivaletest for each of the

Noise factor analysis for cDNA microarrays

15F-tests. By equivalence, we mean that fhealue of an
F-test is the same as that of the corresponding two-sided
t-test. Thet-test statistics with sign and the values, when
significant, are reported. For each main effect, thest
statistic is the difference, standardized by its standard
error (S.E), between the estimated effects of the two noise
levels. Even though the S.E.s are not identical among all
main effects, a consequence of using robust regression proce-
dures, they are within 0.5% of each other. In other words, the
size of thet-test statistic reflects the magnitude of changes
associated with the noise factor. All the main effédest
statistics are positive and this simply indicates that the
presence of a high noise level creates more damage than that
of a low noise level. For each two-way interaction, thtest
statistic is the standardized difference between the estimated
cell mean when both high noise factors are present and that
cell mean predicted based on outcomes from individual noise
factors, assuming no interaction. A positivdest statistic
indicates a “synergistic” interaction; that is, the damage
caused by the presence of both noise factors is worse than
the additive effect from individual noise factors. A negative
t-test statistic stands for an “antagonistic” interaction—
the opposite of “synergistic” interaction. Finally, through-
out, the experimental unit is the individual spot in each
array.

Table 4 Experiment 1: Background noise.

Exp. 1B Exp. 1B Exp. TA Exp. TA
Source All Levels Low Levels All Levels Low Levels
Main Effects
SigBack 32.60(<0.0001) 15.65(<0.0001)  35.38(<0.0001)  21.81(<0.0001)
Outl 106.80(<0.0001) 42.32(<0.0001)  24.79(<0.0001) 4.02(<0.0001)
Spike 104.77(<0.0001) 94.09(<0.0001) 2.37 5.72(<0.0001)
Snake 3.17(0.0015) 2.99(0.0028) 0.10 0.69
ParaB 28.27(<0.0001) 13.85(<0.0001)  21.57(<0.0001)  11.40(<0.0001)
Interaction
SigBack* outl -2.10 -3.65(0.0003) 0.85 -0.95
SigBack* spike -17.25(<0.0001)  -12.44(<0.0001) 2.81 3.38(0.0007)
SigBack*snake -0.37 0.22 -2.05 1.31
sigBack*paraB 11.20(<0.0001) 7.15(<0.0001) 4.22(<0.0001) 0.44
outl*spike 73.19(<0.0001) 42.35(<0.0001) 3.12(0.0018) 4.05(<0.0001)
outl*snake 0.66 0.40 -1.87 0.83
outl*paraB -6.57(<0.0001) -5.67(<0.0001)  -0.10 -1.55
Spike*snake -1.92 -1.27 -0.26 1.73
Spike* paraB -11.61(<0.0001) -6.50(<0.0001) 1.77 -0.35
snake* paraB -2.29 -0.10 -1.47 0.35
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In this paper our interest goes beyond this general state-
ment; it is to determine the kinds of noise reduction that sig-
nificantly affect signal estimates. For instance, in experiment
1, concerning background noise, if there is a significant dif-
ference between levels1 and 1 for the parabolic background
factor (p<<0.0033, then lessening the curvature of the para-
bolic background significantly improves estimation at level
a=0.05. We reach this conclusion because the response for
the factorial experiment is the absolute difference between the
estimated and actual signal values.

Let us consider experiment 1 in detail, the results being
given in Table 4. The four columns of the table correspond to
experiment 1B for all signal levels, 1B for low signal levels,
4 Experimental Results 1A for all signal levels, and 1A for low signal levels. For each
As noted in the introduction, signal-detection algorithms can experiment, data in the low signal level comprise the one-
recover the true signal more easily for images with less severethird of the original data points whose true signal values are in
levels of noise. Thus, when comparing experiments 1A to 4A their lower tertile. We have considered low signal levels as a
with experiments 1B to 4B, with the noise level(lgss se- case in their own righi{besides being included among all
vere and noise level-1 (more severg respectively, we ex-  signal levelg because signal detection is made more difficult
pect that the true gene expression can be more accuratelywhen a signal is low. The table is broken into main effects and
estimated in experiments 1A to 4A. This means that for data interactions. For experiment 1@vel —1 versus level Lus-
with more noise(—1; experiments 1B to 4Bthe difference ing all signals, all five effects are significant. This means that
between the estimated and true expression ratio is greaterreducing any of these effects can be helpful. They are also all
This is shown in Fig. 11, where, for all experiments, the dis- significant for low signals. Note that all five factors in the
tributions of these absolute differences at their most extreme experiment directly affect pixel values, either raising or low-
noise level(all 0, or all —1) in log-log scale are presented by ering them for the affected pixels, and the difference in de-
box plots. The top and bottom edges of each box correspondgrees between levels1 and 1 significantly affects signal
to the upper and lower quartiles of the measurements, respecestimation. The magnitude of thdest statistics suggests that
tively. The solid dots in the middle give the locations of the the high outlier and spike noise levels are more damaging to
medians. Figure 11 clearly shows that the medians and upperthe image than the others.
quartiles of 1B to 4B are larger than the corresponding medi-  If we now consider experiment 1éevel 0 versus level )1
ans and upper quartiles of 1A to 4A. for all signals, both spike and snake effects become insignifi-

Fig. 12 Signal-to-background and parabolic noise at (+1,+1), (0,0),
(=1,-1) level, from left to right.

4
x10

SN-Bg, Spike at (+1, +1) level SN-Bg, Spike at (0, 0) level

x10

x10

Fig. 13 Signal-to-background and spike noises at different levels.
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Table 5 Experiment 2: Shape noise.

Exp. 2B Exp. 2B Exp. 2A Exp. 2A
Source All Levels Low Levels All Levels Low Levels
Main Effects
Spot 39.83(<0.0001) 24.19(<0.0001) 9.89(<0.0001) 5.32(<0.0001)
InnH 96.02(<0.0001) 54.21(<0.0001) 19.43(<0.0001) 11.78(<0.0001)
ForeN 71.22(<0.0001) 39.65(<0.0001) 21.31(<0.0001) 11.79(<0.0001)
EdgeN 2.41 0.77 3.91(<0.0001) 1.33
Chord 15.65(<0.0001) 8.27(<0.0001) 5.42(<0.0001) 2.21
Inferaction
spotR*innH 26.31(<0.0001) 14.95(<0.0001) 3.99(<0.0001) 1.49
spotR*foreN -0.98 -0.41 1.82 0.71
spotR*edgeN 4.96(<0.0001) 3.36(0.0008) -0.10 -0.33
spotR*chord -6.52(<0.0001) -3.55(0.0004) -0.45 -0.10
innH*foreN 12.17(<0.0001) 7.60(<0.0001) -2.01 -0.70
innH*edgeN 0.70 0.41 3.00(0.0027) 2.82
innH*chord 9.01(<0.0001) 4.33(<0.0001) 4.26(<0.0001) 4.13(<0.0001)
foreN*edgeN 0.45 -0.30 -0.22 -1.15
foreN*chord 3.80(0.0001) 2.37 1.69 0.55
edgeN*chord -3.74(0.0002) -2.25 -0.41 -1.01

cant. This means that, relative to snake or spike noise, signalfect throughout all four scenarios. A similar type of interaction
estimation is not significantly different at these two levels. is observed when both signal-to-background noise and
Looking at the fourth column, we see that spike noise is still parabolic-background noise levels are high. Figures 12 and 13
significant for level 0 versus level 1 for low signals. For these, illustrate the mixed visual effects between signal-to-
there is a significant difference in performance of the algo- background noise and parabolic-background noise and spike
rithm relative to spike noise. noise, respectively, with the underlying true spot-intensity dis-
Interpretation of interactions can often be difficult, but in tributions being the same in each part and with only the noise
some cases it can be revealing. For instance, confining our-factors contributing to the differences.
selves to the case of all signal levels, in experiment 1B we see  For experiment Zshape noisg in Table 5 we see that four
that there is interaction between the signal-to-background of the factors are significant for experiment 2B, for all signals
noise and the parabolic effect. This is not surprising becauseor just low signals. Among them, the strongest factors are the
the ratio is affected by the background. The interaction of the inner hole size and the foreground noise. The effect of fore-
outlier effect and spike noise is also reasonable since bothground noise is similar to background noise in that it directly
produce extreme values on the microarray. The large positive affects pixel values. The effect of low spot radius, large inner
t-test statistic suggests a strong “synergistic” interaction ef- hole size, and excessive chord removal is to lessen the signal

Fig. 14 Spot radius deviation and chord noise at (+1,+1), (0,0),
(=1,-1) levels, from left to right.

Fig. 15 Spot radius deviation and inner hole at (+1,+1), (0,0), (-1,-1)
levels, left to right.
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variance estimator, and therefore a low variance will tend to
make theF-statistic significant. Because the variance is very
low in experiment 2A in contrast to experiment 2B, signifi-
cance in the former and lack of significance in the latter is a
reasonable consequence and does not imply that the differ-
ence in damage between two levels in experiment 2B is less
than that in 2A. The damage effect of edge noise starts to
show in 2A when the effects of inner hole size and foreground
noise are not as dominating as they are in 2B. In experiment
2B, the effect of edge noise is still present in its significant
interaction with both spot radius and chord noise. Figure 14
shows the mixed visual effect between the spot radius and
area, thereby reducing the pixel area over which the signal is chord noise.

to be estimated. Chord removal is not significant in experi-  Regarding interaction in experiment 2B, the three dis-
ment 2A for low signals, which means that at level 0 there is tinctly geometric factorgspot radius, inner hole, and chord
insufficient chord removal to significantly affect signal esti- noise interact significantly for both the overall signal and

Fig. 16 Inner hole and chord noises at (+1,+1), (0,0), (-1,-1) levels,
left to right.

mation relative to level 1. The fact that edge noise is not
significant in experiment 2B indicates that the imaging algo-
rithm can deal equally well with spot detection at both levels
relative to handling edge noise.

low-signal cases. This is reasonable because each affects the
area over which signal estimation takes place. Interaction is
greatly reduced in experiment 2A, particularly for low signals,
where only interaction between the inner hole and chord re-

There is an apparent anomaly with regard to edge noise inmoval is strongly significant. Figures 15 and 16 show the

experiment 2A: edge noise is significant relative to levels 0 mixed visual effects of the inner hole with spot radius and
and 1, but not with respect to leveisl and 1. This phenom-  chord noise, respectively.

enon is an “apparent” anomaly because one cannot compare Whereas experiment 2 mixes shape effects with fore-
p values across different experiments with full confidence— ground noise and edge noise, experiment 3 mixes them with
although we often do make such comparisons in a heuristic scratch and snake noise. Table 6 shows a fair amount of con-

mode. Recall that the denominator of thestatistic contains a

sistency between the two experiments with regard to the three

Table 6 Experiment 3: Shape-surface noise.

Exp. 3B Exp. 3B Exp. 3A Exp. 3A
Source All Levels Low Levels All Levels Low Levels
Main Effects
Spot 32.80(<0.0001) 20.70(<0.0001) 6.40(<0.0001) 4.10(<0.0001)
InnH 103.75(<0.0001) 22.13(<0.0001) 15.87(<0.0001) 8.94(<0.0001)
Snake 0.68 1.81 0.17 0.20
Scratch 1.26 5.50(<0.0001) 0.37 0.69
Chord 20.68(<0.0001) 13.55(<0.0001) 1.65 0.40
Interaction
spotR*innH 23.47(<0.0001) 14.44(<0.0001) -0.14 -0.71
spotR*snake -6.46(<0.0001) -4.05(<0.0001) -2.86 -1.31
spotR*scratch -3.04(0.0023) 0.57 -0.17 -1.09
spotR*chord 16.56(<0.0001) 8.71(<0.0001) 2.61 0.81
innH*snake -3.06(0.0022) -1.51 0.00 -0.44
innH*scratch -1.79 1.87 0.10 -0.79
innH*chord 14.60(<0.0001) 7.70(<0.0001) 0.17 -2.38
snake* scratch -3.49(0.0005) -2.12 -5.49(<0.0001) -4.24(<0.0001)
snake*chord 8.84(<0.0001) 5.53(<0.0001) 0.92 0.00
scratch*chord 1.66 0.84 2.78 2.04
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Table 7 Experiment 4: Weak-signal noise.

Exp. 4B Exp. 4B Exp. 4A Exp. 4A
Source All Levels Low Levels All Levels Low Levels
Main Effects
SigSD 77.19(<0.0001) 20.87(<0.0001)  20.21(<0.0001) 0.35
ForeN 7.85(<0.0001) 3.52(0.0004) 5.58(<0.0001) 2.16
SigBack 55.55(<0.0001) 25.82(<0.0001)  46.33(<0.0001)  26.34(<0.0001)
FlatBack 67.22(<0.0001) 30.82(<0.0001)  42.74(<0.0001)  24.38(<0.0001)
Spike 74.96(<0.0001) 68.49(<0.0001) 3.01(0.0025) 2.84
Inferaction
sigSD*foreN -1.41 -3.48(0.0005) -0.22 1.04
sigSD*sigBack -4.86(<0.0001) -4.43(<0.0001) 0.22 0.00
sigSD*flatBack -5.44(<0.0001) -5.42(<0.0001)  -2.80 -4.13(<0.0001)
sigSD* spike 44.79(<0.0001) 24.89(<0.0001) 0.30 -1.00
foreN*sigBack -0.42 0.82 2.86 2.19
foreN*flatBack 0.17 0.49 -0.77 -3.72(0.0002)
foreN*spike -2.29 -0.81 0.57 1.09
sigBack*flatBack 21.72(<0.0001) 11.84(<0.0001) 3.23(0.0012) 1.59
sigBack* spike -17.92(<0.0001)  -16.97(<0.0001) 1.69 2.33
flatBack* spike -21.68(<0.0001)  -17.62(<0.0001)  -2.49 -2.10

geometric factors relative to both main effects and interaction. 5 Conclusion

One notable change is that the intera_ction betwee_n _spo_t raCIiuﬁzactorial analysis has been applied to simulated microarray
and_ cho'[dzretmog/a.l chenges fr_o? Pe_)mg antggon{st\;’c Ig] ex- images to study the effects and interaction of noise types at
perimen 0 DeINg "Synergistic in expenment s. EVEN ik rent noise levels. This type of analysis provides a general
though the order of estimated cell means in the four noise . . N - o

paradigm for investigating the effects of noise within a com-

level combinations remains the same in both experiments, in . . . . -
- . . prehensive simulation environment, thereby providing a tool
experiment 3 the estimated cell mean when both noise factors . o . . >
by which one can quantitatively determine which kinds of

are present is much higher than in the other three; conse-"~ . o . ; .
noise should be mitigated in microarray technology. For in-

quently, a significant “synergistic” interaction is observed. ; h sis d ibed in thi ) b
For the most part, snake and scratch noise show no significantStance. from the analysis described in this paper, it can be
concluded that elimination of the inner hole and the stabiliz-

main effects. The exception is scratch noise for low signals in ; X -
experiment 3B. This is quite plausible because scratch noisei"d Of spot radius will have a strongly beneficial effect on
causes a strip of low values, thereby reducing an already low Signal stimation. Additional " information can be found
signal. Note also the interaction of snake and scratch noise in@nline:

three of the four experiments.

Experiment 4 concerns signal conditions, in particular, sig-
nal deviation, signal-to-background ratio, and foreground
noise. These conditions are bound to affect signal estimation,
and the main-effects part of Table 7 demonstrates this. The
only exception is for low-signal values when comparing lev-
els 0 and 1 in experiment 4A. Since signal deviation is tied to
the signal mean, a low signal diminishes this deviation and
signal deviation is not significant for low signal values. Figure
17 shows the mixed visual effects between signal-to-
background and spike noise. As has been common through-
out, overall interaction between the factors is much less rela- fig. 17 Signal-to-background and spike noise variation at (+1,+1),
tive to levels 0 and 1 than with respect to leveld and 1. (0,0, (=1,=1) levels, left to right.
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Appendix

Parameter settings for the microarray simulation. The notafiga b) denotes the normal distribution with mearand variance
b; U[a,b] is the uniform distribution on the intervga,b]; U{a,b,c,...} is the uniform distribution on the indicated set of values;

B(a,b) is the beta distribution with parameteasandb; andexp(a) is the exponential distribution with mean

Level

Simulation

Parameter Descriptions

Distribution

Spot

1. Spot size

2. Spot drift

3. Inner hole size

4. Inner hole drift

5. Chord
removal

6. Spot intensity

7. Expresser
or

outlier’s
intensity

8. Channel
conditioning

9. Spot signal variation—
foreground noise

S: Spot radius with fig,02)

8¢, 6,1 Drifting level
d,, d,: Percentage of spot radius
Pp: Drift activation probability

D,, D,: Relative drifting
(X1,Y7): Drifted center coordinates

(X3,Y3): Second channel,

where (X,Y) are predefined spot
center coordinates

H, V: Horizontal and vertical
axis of the inner elliptical hole

Xc, Yc: Ideal spot center

Xg, Yg: First channel coordinates
X5, Yg: Second channel coordinates
where

8¢yg, 8y, Ocyg, Ocyg: drift level set

at the block level

Py : Chord removal probability

{px : probability of k chords to
be removed from a target spot

L: Chord length
6: Chord position

BB: Mean intensity for the
assumed cell system

Ry, Gy : k'th spot (fixed) signal
intensities for both channels
a: Coefficient of variation of
signal intensity in the system

Poutier- Outlier activation
probability

by : Outlier control level

t: Targeted outlier expression

ratio, with equal probability of * sign

R}, G/ : k'th outlier signal
intensities for both channels

R}, G{: Prenormalized signal
intensity of the spots on

red, green channels

agy, a1, a,, and a3, parameters for
response characteristic function
SRy, SGy: Pixelwise (x,y) signal
intensity
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S~N(ps,07)

Sxs 6y~ udd, dy)

D,=8.XSxU[—1,1]
D,=8,XSXU[~1,1]

X|=X+D, [X,=X|+U[-1,1]
Y{=Y+D, |Y;=Y{+U[-11]

H~N(py,on)
V~N(py,ov)

Xr=Xc+ 6
Yr=Yc+dc
Xg=Xc+ ey
Ye=Yc+ ey

Py, ={po.P1,P2.P3,ps}, where
Potpitpatpstps=1
N.~{0,1,2,34}

L~B(ay,BL)
0~U(0,2m)

Li~exp(B)

Ry~N (I, 07)
G~ N(Iy,07)
or=aXI;

Equal probability at 0.05 to 0.10
by~B(1.7,4.8)
tk= 1011”’<

Ri=Ry X\t
Gi=Gy /'t

Ri=f1(Ry)
Gi=/2(Gi)

f)=lag+x(1—e /") "2]ay;
where a;>1
SRy(x,y)~Ri+N(ugy,0%)

SGi(x,y)~Gi+N(ucy o)



10. Edge
enhancement

11. Edge noise

a, : Within-spot signal coefficient
of variation

W,;: Level of enhancement,
parameter (u,) set for the block
N, : Number of pixels enhanced

Apply edge noise at the set level
( ‘sed )

Noise factor analysis for cONA microarrays

prr=RiXay, ;o ~Ulfy fo]
| por=GiXay,;  ay,~Ulf,,f
op=RiXa,;  a, ~Ulf, fa]
{ 0c=GiXay;  a,~Ulf fi]

Wea~N(p,1)

Block 12. Radius s, k@ mean and radius deviation w~U(s,,sp)
parameters factor o~k X g
s,, sp: bounds of radius, set by
block size and interspot gap
13. Chord N.: Chord rate picked with equal N.eU{0,1,2,3,4} having weights
parameters probability {Po.P1,P2,P3, P4}
a;, B : Chord distributional a~U(ay,b,), B~Ulag,bp)
parameters
14. Inner hole My, My, O, oy : Parameters for pp~U(L, ,Ly) X g,
parameters inner elliptical hole pmy~U(L, ,Ly) X ug
mr : Mean spot radius in the block o= a1 X g, Oy=ayX ug
a;~ u(Prz er)r a;~ U(Pa /Pb)
15. Drift 8Cxg, 0y, OCxr, Ocyg: drift level oc~Ul1i,j]
parameters i, j: Percentage of the spot radius dcyg=ocXU[-1,1], dcyc=3dcxU[-1,1]
dc,g=0cxg T U[—1,1], dcyg= bc,c+
ur-11]
16. Enhancement l,, 1, : Range of intensity ratio. Set me~U(l, 1)
mean level of enhancement for a
block
Array 17. Physical B, , B): Block size—width, height Typical setting for an 8-block, 2-row

dimensions

18. Signal-to-
noise ratio

19. Interspot
distance

20. Background

(distance between first spot
centers of any two blocks)

M;, M,, M;, M, : Margin settings
(left, right, top, bottom)

Nyins Nyow: Number of pins in an
array, printed equally across

N ow number of rows

NS, , NS;,: Number of spots
along the width (NS,) and
height (NS)) of the block

SNR: Signal-to-noise level is set
for an array

G, : Interspot distance, set for an
array

Iy cn1s Iy cn2: Background intensity,
with par;ameters set for an array

¥: Background level

Parameter settings:

-Flat fluorescent background

array (in pixels):

B,, B,,=900
Ml/ Mr/ Mt/ Mb:100

Iy i~ Ny /0131)
Iy cno~N(pyp /ng)
y~Ula,b]

M=,
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21. Spike noise

22. Edge noise

23. Snake noise

24. Scratch noise

-Functional background g(x,y):
choice of parabolic, positive
or negative slant surface function

L,i: Level of spike noise (set in
terms of percentage of total pixels)
N, : Intensity of the spike noise
Mspi+ Noise rate

W,pi + Width of the noise cluster

8,4 Set the controlling parameter

Nieo : Number of snake tails in an
image

I, : Intensity of the noise tail

Ksy @ Average signal-to-snake
noise intensity level

Lg, : Length of the segment
expressed as multiples of

average spot size

W, : Width of the snake noise tail

N,.: Number of scratch tails in an
image

I : Intensity of the scratch noise
K¢ : Average background-to-
scratch noise intensity level

L,.: Length of the segment in
units of average size of the spots
W,.: Width of the scratch noise

6: Scratch noise inclination

mp=rXg(xy),
with
oy, = (ky, ), o, = (kp, i)

N.~exp spi)
Mspi™ u[erﬂ
Wspi~ U[g,h]

8,4 set as a percentage of maximum
intensity value

Nseg/ Ksn s Lsn ’ Wsn

Isan(Msn ro'sn)r
:u’sn:(lk / Ksn)/ O-snzksnxlu’sn

Lan U[Lsnl /st12]

NSC! Ksc s WSC/ 0

Lie~N(pse ,05)
Mse= (lu'b / Ksc)r Usc:kscx Msc

Lge~U[Lge1,Lyco]

9 e 11{0,45,90,135,180} deg
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