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Abstract. Measurement accuracy for predicting glucose in whole
blood was studied based on near-infrared spectroscopy. Optimal
wavelength regions, preprocessing, and the influence of hemoglobin
were examined using partial least-squares regression. Spectra be-
tween 1100 and 2400 nm were measured from 98 whole blood
samples. In order to study the influence of hemoglobin, which is the
most dominant component in blood, 98 samples were arranged such
that glucose and hemoglobin concentrations were distributed in their
physiological ranges. Samples were grouped into three depending on
hemoglobin level. The results showed that glucose prediction was
influenced by hemoglobin concentrations in the calibration model. It
was necessary for samples used in the calibration model to represent
the entire range of hemoglobin level. The cross-validation errors were
the smallest when the wavelength regions of 1390 to 1888 nm and
2044 to 2393 nm were used. However, prediction accuracy was not
very dependent on preprocessing methods in this optimal region. The
standard error of glucose prediction was 25.5 mg/dL and the coeffi-

cient of variation in prediction was 11.2%. © 2006 Society of Photo-Optical
Instrumentation Engineers. [DOIl: 10.1117/1.2342076]
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1 Introduction

Since the introduction of infrared as a dream beam,1 infrared
spectroscopy has been applied for measuring blood glucose
noninvasively. There have been even some premature an-
nouncements of a noninvasive glucose monitor in the market,
but still hope for and doubts of this technology prevail with-
out a commercial product available at this time. There have
been many investigations, for example, from an early scien-
tific investigation by Robinson et al.” and several papers have
reviewed this technology.”

Initial investigations for noninvasive glucose monitoring
used a wavelength region of 700 to 1300 nm that contains
higher orders of glucose overtone regions.””* However, this
wavelength region shows very little glucose absorption, for
example, less than 0.1%, compared to the fundamental ab-
sorption region of 9 to 9.6 wm. Naturally, other glucose ab-
sorption regions were explored. They are the combination
spectral region between 2.0 and 2.5 wm and the first overtone
band of 1.52 to 1.85 wm. Based on the measurements at these
bands, studies have been made with aqueous solutions mixed
with some blood substances,”' with blood"*'* and in vivo
experiments. 1316
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The fundamental glucose absorption band lies in the mid-
infrared (MIR) region. Due to interference with other sub-
stances, 9.0 and 9.6 um are expected to be the most promis-
ing wavelengths to predict glucose absorption in the MIR
region when interferences by other blood substances are also
taken into account.'” There have been various investigations
on measuring glucose using the MIR region.lg’21 Unfortu-
nately, the MIR region may not be used for in vivo monitoring
because light penetration is limited to only several scores of
micrometers depending on specific wavelengths.

The near-infrared (NIR) 1.5 to 2.5 wm band appears to be
a suitable region for noninvasive glucose monitoring because
it has higher glucose sensitivity compared with the second or
third overtones and deeper penetration compared with the fun-
damental region. Basically, difficulties lie principally in weak
glucose absorption, strong light scattering, and the interfer-
ences by other blood substances as well as other tissues. Ini-
tial enthusiasm from successful experiments with cuvette
samples was often replaced by frustration when researchers
performed in vivo experiments. A powerful tool, multivariate
analysis, such as partial least-squares regression, may convert
spectra to glucose fitting erroneously according to temporal or
environmental correlation.”**

Is it possible to achieve noninvasive glucose monitoring
particularly using NIR absorption spectroscopy? What would
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be an order of achievable maximum accuracies? As one of the
steps toward noninvasive glucose monitoring, whole blood
samples were investigated in this study. Interestingly enough,
there has been little investigation on glucose prediction using
whole blood. Amerov et al. used bovine blood from a single
blood matrix."* They had varied glucose concentrations. How-
ever, other blood components were the same. In our case, we
used human whole blood. Our samples had different concen-
trations of glucose and hemoglobin as well as other blood
substances. Because our research aim was to know how accu-
rately blood glucose can be monitored, we used the different
blood samples instead of a single matrix. Other human whole
blood research that we are aware of was by Haaland et al."?
They prepared blood samples from only four persons. Twenty
samples from each person were made. Predictions in terms of
the standard error of prediction (SEP) using the samples made
from the same person ranged from 30.5 to 37.9 mg/dL. How-
ever, predictions based on the calibration model using a dif-
ferent individual were poor and they did not even reveal the
numbers. They stated that different blood compositions were
sufficiently different among the four subjects. In our study, the
number of different blood samples was increased so that dif-
ferent blood chemistry was taken into account. We examined
which optimal wavelength regions should be used to predict
glucose concentrations in the NIR region. We also studied the
effect of data preprocessing and the influence of hemoglobin
that is the most dominant component in blood.

2 Experiments

A NIRSystems™ 6500 spectrometer equipped with silicon
and lead-sulfide (PbS) detectors was used to measure the
spectra of 98 blood samples. Each blood sample was made by
pooling 3 to 5 EDTA whole blood samples where both blood
types (ABO and Rh) and hemoglobin concentrations were be-
ing checked. Pooling blood was required to ensure that there
was enough blood volume when preparing each sample that
was used not only for spectrum measurement but also for
reference value measurement. Glucose stock solution of
20 g/dL in saline was added to blood samples to control glu-
cose concentrations. Highly concentrated glucose stock was
added into a different blood sample to make a blood sample
with a particular glucose concentration. No dilution of blood
was made. First, we had information on hemoglobin concen-
tration for every extracted blood sample. We mixed (or
pooled) 3 to 5 extracted blood samples of similar hemoglobin
concentrations to make one blood sample. By doing this, we
had enough blood volume for each sample. Also during this
process, we could arrange the samples so that their hemoglo-
bin concentrations were distributed in the entire physiological
range. After that, we added glucose to assign different glucose
values such that glucose and hemoglobin concentrations are
not correlated to each other.

Spectra were measured by a Foss™ NIR 6500 system be-
tween 1100 nm and 2500 nm with a step of 2 nm. One scan
time was set to 1 s and 32 scan data were averaged to produce
a spectrum. The system signal-to-noise ratio of measured
spectrum was 1073 absorbance that was computed from two
consecutively acquired spectra. Each spectrum was obtained
between 1100 and 2500 nm. Whole blood was contained in a
0.5 mm detachable cell. The spectrum of the blood sample
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Fig. 1 (a) Whole blood spectra of 98 samples and saline spectrum; (b)
whole blood spectra are correlated with hemoglobin and glucose
concentrations at each wavelength and computed correlations coeffi-
cients are shown.

was measured. The spectrum without the cell was also mea-
sured and used for reference. The absorbance spectrum was
obtained from these two single beam intensities. Immediately
after each measurement, a portion of blood was centrifuged
and the plasma was frozen to measure glucose concentration.
A Beckman™ chemistry analyzer based on the glucose hex-
okinase method was used to measure plasma glucose. Using
another portion of the same blood, hemoglobin concentration
was measured by the HiCN method using a SYSMEX™
instrument.

Measured glucose and hemoglobin for 98 samples ranged
from 45 to 432 mg/dL and 7.5 to 16.6 g/dL, respectively.
Figure 1(a) shows measured transmission spectra. Whole
blood shows higher absorption than saline [see Fig. 1(a)]. In
our figures, values around 1940 nm, a very strong water ab-
sorption peak, are not shown in order to increase the dynamic
range of the y axis. Correlation coefficients between hemoglo-
bin or glucose values with respect to whole blood absorbance
for all the samples were calculated at each wavelength. Cor-
relation coefficients of hemoglobin and glucose with respect
to absorbance at each wavelength are shown in Fig. 1(b).
Correlation coefficients for hemoglobin are around 0.8 and
those for glucose are smaller than 0.1. This indicates that
measured absorbance spectra varied mainly depending on he-
moglobin level.

2.1 Wavelength Selection

The region between 1100 and 2400 nm includes the first
overtone and combination bands. It is necessary to choose a
specific wavelength region that minimizes prediction errors.
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Table 1 Predictions of glucose concentrations at various spectral regions. Spectra of all 98 samples were
used. The best SECV and VC¢y, were obtained when 1390 to 1888 and 2044 to 2392 nm were used.

Spectral region SECV© SEC® VCeyo?

(nm) N #f rCVal® rCal (%)

1100-2498 700 14 51.4 21.5 24.1
0.9008 0.9860

1100-1888 570 9 27.4 23.5 12.9

2044-2392 0.9728 0.9822

1390-1888 425 8 26.1 21.6 12.3

2044-2392 0.9755 0.9847

1516-1816 297 7 34.1 30.2 16.0

2062-2352 0.9575 0.9696

1100-1888 395 10 42.2 31.7 19.8
0.9345 0.9677

1390-1888 250 9 39.6 32.2 18.6
0.9425 0.9663

2044-2392 175 6 40.8 33.1 19.2
0.9389 0.9630

“N: number of variables used for PLSR analysis.
#f. optimal number of factors.

°SECV (mg/dL): standard error of cross validation.
rCVal: correlation coefficient of cross validation.

°SEC (mg/dL): standard error of calibration.

frCal: correlation coefficient of calibration.

IVCeyaql (%): coefficient of variation in cross validation, SECV /mean x 100.

We performed partial least-squares regression (PLSR) analy-
sis by using PIROUETTE™ 2.6 software (Infometrix Inc). All 98
samples were examined. Before calibration, spectra were
mean-centered. We used all the sample data. Loading vectors
were analyzed to examine the influence of wavelength. Our
previous work,” has more detailed descriptions on loading
vector analysis and wavelength band selections. A similar ap-
proach was adapted in this investigation. In choosing the
wavelength ranges, a region between 1.5 and 1.8 um (first
overtone band) and a region between approximately 2 to
2.4 pum (combination band) were considered. Also, the entire
range of 1.1 to 2.4 um was included as one of the regions. A
region around 1940 nm has a higher water absorption peak
and hemoglobin absorption increases toward 1100 nm. There-
fore, the elimination of 1940 and 1100 nm peaks produced
further wavelength regions (Table 1). Table 1 summarizes glu-
cose prediction at various spectral regions. For each spectral
region, we computed the standard error of cross validation
(SECV), correlation coefficient of cross validation (rCVal),
standard error of calibration (SEC), correlation coefficient of
calibration (rCal), and coefficient of variation in cross valida-
tion (VCcyy). An optimum number of factors used in the
regression were determined by the leave-one-out cross valida-
tion and F test with a significance level of 5% among the
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factors. The best result was obtained using the regions of 1390
to 1888 and 2044 to 2392 nm where SECV is the least.

Over 1100 to 2392 nm, except for a water absorption peak
around 1940 nm, we plotted the first through third loading
vectors and regression vectors of a glucose calibration model
that used all 98 samples (Fig. 2). Loading vectors are shown
together with glucose spectrum [Fig. 2(b)] and hemoglobin
spectrum [Fig. 2(c)] whose values were measured from saline
solutions. Therefore, a spectrum of glucose or hemoglobin in
Fig. 2 was calculated by subtracting saline spectra. Hemoglo-
bin was prepared by the blood cell lysis method described in
the Ref. 25.

2.2 Data Preprocessing and Enhancement

Various data preprocessing methods have been utilized to im-
prove calibration and prediction modeling. In this study, mul-
tiplicative scatter correction (MSC)26 and standard normal
variate (SNV)27 were tested in order to minimize the scatter-
ing effect of blood cells. In addition, the second derivative
method that has been widely used to remove baseline varia-
tions was applied. Fifteen or 25 points smoothing was made
before differentiation to reduce noises. After preprocessing,
mean centering was applied for data enhancement. Figure 3
shows final spectra processed by MSC, SNV, and the second
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Fig. 2 Calibration modeling based on the PLSR analysis was done for
third loading vector, and (d) regression vector.

derivatives. In order to study the effect of preprocessing, glu-
cose concentrations were predicted. In this case, we used the
wavelength bands of 1390 to 1888 and 2044 to 2392 nm that
produced the best results in Sec. 2.1. The results were sum-
marized in terms of SECV and VC,,, as shown in Table 2.

2.3 Influence of Hemoglobin Level

Hemoglobin is the most dominant component in blood, and its
concentration level is more than 100 times of glucose. Its
absorbance becomes increasingly strong toward short NIR
and visible wavelengths. Even though hemoglobin absorption
peaks do not interfere with the peaks of other components, its
influence is by no means negligible due to its high
concentration.*!” Therefore, it is expected that calibration and
prediction modeling can be substantially influenced by hemo-
globin level.

To study hemoglobin influence, 98 samples were divided
into several groups. First, the entire samples were divided into
two groups that are the calibration set (63 samples) and the
prediction set (35 samples). Both groups were arranged so
that hemoglobin and glucose concentrations were evenly dis-
tributed. Next, all the samples were grouped into three groups
depending on hemoglobin level (Hbpg: 16.6 to 13 g/dL;
Hb,iq: 12.8 to 10.9 g/dL; Hby,,: 10.7 to 7.5 g/dL). Each of
three groups had glucose concentrations evenly distributed in
the entire range. Table 3 summarizes the groups, ranges of
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second derivatives.
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Table 2 The effects of spectral data preprocessing in terms of SEC: all 98 samples were calibration
modeled using different preprocessed spectra at the wavelengths of 1390 to 1888 and 2044 to 2392 nm.

Preprocessing SECV SEC VCeyal
method #f rCVal rCal (%)

Mean centering 8 26.1 21.6 12.3
0.9755 0.9847

MSC 6 26.7 23.8 12.5
mean centering 0.9746 0.9810

SNV 7 26.9 22.0 12.6
mean centering 0.9738 0.9810

Second derivative (15) 9 41.6 26.8 19.5
mean centering 0.9367 0.9768

Second derivative (25) 9 55.1 27.5 25.9
mean centering 0.8850 0.9754

hemoglobin and glucose, and their standard deviations. It is
important that hemoglobin and glucose concentrations in each
group are not correlated. All five groups were checked for the
correlation between hemoglobin and glucose concentrations,
and we verified that the correlations were negligible as can be
seen in terms of the correlation coefficient, r (Table 3).
Calibration modeling was performed using the four cali-
bration groups (Hbyyj, Hbyign, Hbyig, and Hby,y,). Wavelength

bands of 1390 to 1888 nm and 2044 to 2392 nm with mean
centering were applied in PLSR analysis. The results were
shown in Table 4. Table 5 displays SEP and correlation coef-
ficient of prediction (rp,.). Because glucose values are differ-
ent among the prediction sets, prediction accuracy was ana-
lyzed in terms of the coefficient of variation in prediction
(VCpye). VCpy is defined as (SEP/mean value of glucose)

Table 3 Concentration distributions of hemoglobin and glucose in different sample groups.

Standard

Group % Component® Min Max Mean deviation r

Hbyg1al 98 Hemoglobin 7.5 16.6 12.1 2.2 -0.0504
Glucose 45 432 213 119

Hb 63 Hemoglobin 7.9 16.6 12.2 2.2 -0.1310
Glucose 45 432 205 121

Hb,e 35 Hemoglobin 7.5 16.3 12.0 2.2 0.1066
Glucose 54 428 228 116

Hbygh 36 Hemoglobin 13 16.6 14.4 1.1 -0.0514
Glucose 50 424 207 115

Hb,iq 31 Hemoglobin 10.9 12.8 11.9 0.7 0.0027
Glucose 46 432 213 121

Hby.,, 31 Hemoglobin 7.5 10.7 9.7 0.8 0.0228
Glucose 45 428 221 125

M is the number of samples.

bThe units are g/dL for hemoglobin and mg/dlL for glucose.

¢r: correlation coefficient between hemoglobin and glucose.
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Table 4 The result of calibration models for glucose determination
from the four calibrations sets of different hemoglobin levels. PLSR
was performed using the bands of 1390 to 1888 and 2044 to 2392 nm
with mean centering.

Mean value
of glucose SECV SEC VCeval
Group (mg/dL) M #f rCVal rCal (%)
Hb.q 205 63 8 275 20.9 13.4
0.9829  0.9870
Hbng, 207 36 7 364 25.1 17.6
0.9477  0.9807
Hbong 213 31 7 383 25.6 18.0
0.9470  0.982¢6
Hbow 221 31 8 290 16.4 13.1
0.9724  0.9937

X 100 expressed as a percentage. The results are summarized
in Table 5.

3 Results and Discussion

Before further analysis of data preprocessing and hemoglobin
influence, an optimal wavelength region that provided the
least calibration errors was obtained. SECV varied widely be-
tween 26.1 and 51.4 mg/dL, while various wavelength re-
gions in 1100 to 2498 nm were tested (Table 1). The best
results were achieved when the regions of 1390 to 1888 nm
and 2044 to 2392 nm were used. The regions contain both
first overtone and combination bands. The optimal region in-
cluded a water absorption peak at 1440 nm in the first over-
tone band, but excluded a water absorption peak of 1940 nm
and wavelengths shorter than 1390 nm.”® As can be observed
in Fig. 1(a), the region between 1100 and 1390 nm shows

Table 5 Prediction of glucose concentrations based on the four cali-
bration models.

Calibration  Prediction ~ Mean value VCp,e©
set set of glucose SEP? (rpro)® (%)
Hb,y Hbyre 228 25.5(0.9764) 112
Hbpigh Hb,, 4 213 23.1(0.9817) 108
Hby,, 221 48.7 (0.9279) 22.0
Hb,, 4 Hbpigh 207 39.3 (0.9465) 19.0
Hb,, 221 46.9 (0.9328) 212
Hbye,, Hbpigh 207 74.2 (0.8672) 358
Hb,,4 213 33.8 (0.9603) 159

9SEP (mg/dL): standard error of prediction for glucose.
rpre: correlation coefficient of prediction.
VCp,e (%): coefficient of variation in prediction of glucose, SEP/mean x 100.
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different slopes between hemoglobin and glucose. Absorption
of saline decreases as the wavelength becomes shorter. This is
a typical feature of the water absorption spectrum. On the
other hand, blood absorption increases toward 1100 nm. This
reflects hemoglobin absorption. When 1100 to 1390 nm was
included, SECV increased from 21.6 mg/dL to 27.4 mg/dL.

Figure 2 shows loading vectors between 1100 and
2392 nm. The first loading vector appears to represent a spec-
tral profile of blood to some degree [Fig. 2(a)]. The second
loading vector is similar to hemoglobin spectrum, but it is a
mirror image [Fig. 2(b)]. A spectral pattern of glucose looks
similar to that of the third loading vector although there is a
mismatch at wavelengths shorter than 1390 nm [Fig. 2(c)]. It
is interesting to note that the exclusion of 1100 to 1390 nm
produced better glucose prediction. Figure 2(d) illustrates re-
gression vectors. The high absolute value of the regression
vector indicates high contribution to glucose calibration at
that wavelength. No contribution of 1100-1390 nm is again
observed in Fig. 2(d). However, strong influences by two wa-
ter absorption peaks (1440 and 1940 nm) are depicted in
Fig. 2.

Applying scattering correction methods of MSC and SNV
did not improve the prediction accuracy as can be seen in
Table 2. Figure 3 shows preprocessed spectra by MSC, SNV,
and second derivatives. In the case of the second derivative
method that has been widely used for baseline correction, the
results were the worst and produced higher numbers of fac-
tors. For the second derivatives, negative peaks appeared at
1420, 1458, 1690, 1742, 1782, 2056, 2170, 2290, and
2348 nm. Peaks at 1420 and 1458 nm belong to the water
absorption band and the rest are close to the peaks in the
second derivative spectra of hemoglobin (1690, 1740, 2056,
2170, 2290, and 2350 nm) given by Kuenstner and Norris.?
This indicates that whole blood spectra are dominated by he-
moglobin spectra. Hemoglobin features appear to be more
enhanced than glucose features during differentiation.

The influence of hemoglobin concentrations in the samples
was summarized in Table 4. Calibration modeling using Hb,,
had SECV of 27.5 mg/dL and VCg¢y, of 13.4%. When cali-
bration models from the sets of high, medium, and low hemo-
globin levels (Hbpigy, Hbpig, and Hbygy, respectively) were
performed, SECV ranged between 29 and 38 mg/dL and
VCeyy varied from 13.1 to 18.0%. Glucose concentrations
were predicted and the results were summarized in Table 5.
Based on the calibration model using 63 samples (Hb,), glu-
cose values of the other 35 samples (prre) were predicted.
SEP was 25.5 mg/dL where the mean value of glucose was
228 mg/dL and VC,,, was 11.2%. Cross predictions among
the different groups of hemoglobin levels were made. SEPs
varied a great deal depending on the groups. We observed
SEPs of 23.1 to 74.2 mg/dL and VC,.s of 10.8 to 22%
(Table 5). The more difference in hemoglobin level between
the sets, the higher prediction error appeared to be. For ex-
ample, VC,,. was 35.8% when Hby;g, was predicted based on
the calibration model of Hb,,,. When the calibration model
based on Hby,, predicted glucose concentrations of Hbygy,
VC,. was 22%. The highest values were 35.8 and 22%. It is
observed that hemoglobin distribution in the calibration or
prediction model influenced the accuracy substantially. It is
expected that the calibration model should use a sample set
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consisting of all physiological ranges for hemoglobin levels.

4 Summary

First overtone band or combination band alone was not a suf-
ficient wavelength region in predicting glucose in whole
blood. The region including both bands, but excluding a water
absorption peak of 1940 nm, gave better prediction. A simple
mean centering as a data preprocessing method produced
good results in the optimal wavelength region. However, we
may have to limit our statement to our particular case of
PLSR analysis and whole blood samples because the gener-
alization about preprocessing may be dependent on a particu-
lar multivariate method and samples. When whole blood was
dealt with, hemoglobin concentrations in the calibration
model should represent an entire range of hemoglobin. We
have not found previous investigations where the actual he-
moglobin concentrations were analyzed either for blood
analysis or for in vivo experiment. We obtained a SEP of
25.5 mg/dL where blood glucose ranged between 45 and
432 mg/dL. The coefficient of variation in prediction was
11.2%. For noninvasive glucose monitoring, person-to-person
blood chemistry as well as tissue variations make situations
more difficult. When individual calibration (i.e., personal use)
is adapted, the problem of person-to-person variation can be
avoided. The personal calibration is recommended as a first
step toward a noninvasive glucose monitor.
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