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Abstract. Spectroscopic assessment of whether a biological sample
has changed as a result of processing or degradation is generally car-
ried out by qualitative comparison of spectra, without statistical analy-
sis, resulting in a subjective evaluation of sample stability. Here, we
present a formalism for quantitative statistical comparison of signal-
averaged Fourier transform infrared spectra, commonly used to assess
molecular properties of biological samples. Expressions are derived
permitting the comparison of 1. single beam spectra; 2. transmittance
spectra obtained by calculating the ratio of single beam spectra of a
sample and background; and 3. absorbance spectra derived from
transmittance spectra. An application of these results to the degrada-
tion of cartilage is presented. Two absorbance spectra of a cartilage
sample taken in succession are found to be statistically identical with
respect to the ratio of the amplitude of the amide I band to the am-
plitude of the amide II band. However, a spectrum of the same sample
acquired after a 24-h degradation period, while similar to the spec-
trum of the fresh sample, is found to have an altered ratio of these
spectral band amplitudes, consistent with degradation of the cartilage
matrix.
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1 Introduction
It is axiomatic that comparisons cannot be made between
groups composed of a single sample. Even with highly precise
measurements, without an estimate of population variance
there is no way for a statistical comparison to be made.

However, certain questions pertain inherently to a single
sample. In the analysis of biological material, for example,
one often needs to determine whether a particular sample has
degraded over time, suggesting that it may not be suitable for
further studies. Similarly, tissue is often removed from an
experimental animal to render subsequent study more conve-
nient, and an attempt is made to design the removal procedure
in order not to alter the sample. Note that these questions are
very different from whether a particular process tends to de-
grade samples in general. Even if it is established, through
studying a sufficiently large number of samples, that a process
is or is not likely to have a certain effect on a statistical basis,
the question remains as to whether a given sample has re-
sponded in that typical fashion. A related question is determi-
nation of criteria for declaring a sample to have changed.

Fourier transform infrared spectroscopy �FTIR� is a sensi-
tive technique for characterizing biological materials. In prac-
tice, to determine whether a change has occurred in a sample
using FTIR, one acquires spectra under the relevant condi-
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tions or at the relevant times and compares them in an ad-hoc
fashion. Due to a finite signal-to-noise ratio �SNR�, it will
never be the case that the spectra will be identical. However,
if the differences between spectral band amplitudes are
“small,” and the SNR is “good,” the sample is declared un-
changed. Otherwise, if the differences are intuitively thought
to be too large to be explained by the SNR, it is decided that
the sample has changed. We demonstrate that this common
procedure can be put into an objective statistical framework
when signal averaging is used, which is the typical case.

Our formalism is based on the fact that the final, signal-
averaged spectrum is composed of the average of many scans,
each of which is assumed to be itself composed of random
noise superimposed on a reproducible signal. Therefore, the
SNR of the final signal-averaged spectrum provides informa-
tion about each of these two components, which is what one
evaluates intuitively on comparing spectra.

Note that this analysis differs from an attempt to compare
groups based on measurements of N=1 samples per group; it
is measurement uncertainty in the evaluation of a single
sample, rather than variability within a population, which is of
concern here.

Our approach and results are similar to those of Spencer,1

but with extensions necessary for application to FTIR. For
clarity, we define certain terms used in FTIR. A single-beam
spectrum is the photon signal amplitude, as a function of
1083-3668/2006/11�6�/064023/7/$22.00 © 2006 SPIE
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wavenumber, transmitted through a sample. This can be ob-
tained either from a single scan, in the case of very favorable
SNR, or, more commonly as the result of signal-averaging
multiple scans. Normalization by the number of scans may be
performed, but has no effect on relative intensities within the
spectrum or on SNR. A transmittance spectrum is the
wavenumber-by-wavenumber ratio of the single-beam spectra
for the sample of interest and the relevant background �e.g.,
air�. Such a spectrum is most often formed from a signal-
averaged sample spectrum divided by a signal-averaged back-
ground spectrum. An absorbance spectrum is a mathematical
transformation of a transmittance spectrum:

A��� = − log10T��� , �1�

where A��� and T��� denote the amplitudes of the absorbance
and transmittance spectra at wavenumber �, respectively.

The calculation previously presented for the case of
nuclear magnetic resonance �NMR� spectroscopy1 is formally
identical to the one required for single-beam IR spectra. In the
following sections, we 1. recapitulate this calculation in terms
of FTIR spectra, and then present the appropriate calculations
for 2. transmittance spectra and 3. absorbance spectra.

2 Theory
2.1 Comparison of Single-Beam Spectra

By assumption, each scan is composed of reproducible signal
of magnitude BNS=1���, where NS, the number of signal-
averaged scans in a spectrum, equals one for an individual
scan, combined with random noise of standard deviation
�BNS=1

, assumed to be independent of the wavenumber. The
SNR of the single scan is given by

SNRNS=1��� =
BNS=1���

�BNS=1

, �2�

with, in many interesting cases, SNRNS=1����1. SNR is la-
beled by wavenumber to emphasize that SNR is taken with
respect to a given spectral band.

Similarly, for a signal-averaged spectrum composed of N
scans with non-normalized signal magnitude BNS=N��� and
noise �BNS=N

, the SNR at wavenumber � is

SNRNS=N��� =
BNS=N���

�BNS=N

. �3�

Assuming a stable spectrometer and a sample that is un-
changing over the time scale of the measurement, BNS=N���
increases in proportion to N and is given by:

BNS=N��� = N · BNS=1��� , �4�

while the noise amplitude increases in proportion to �N:

�BNS=N
= �N · �BNS=1

, �5�
so that
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SNRNS=N��� = �N · SNRNS=1��� . �6�

Note that Eqs. �4� and �5� are both written with the convention
that the data in the spectrometer data averager is not renor-
malized by the number of co-added scans. If renormalization
is performed, then the right-hand side of these equations
would be divided by N. In this case, the apparent signal am-
plitude is constant, and the apparent noise decreases in pro-
portion to �N. We employ the convention in which renormal-
ization is not performed. Of course, in either case, without or
with renormalization, Eq. �6� holds.

It can be difficult or impossible to directly measure �BNS=1
,

since doing so would require measurement of the SNR of a
single scan to set the overall measurement scale. Therefore,
we wish to define �BNS=1

in terms of a readily observed,
signal-averaged spectrum. Indeed, from Eqs. �3� and �5�,

�BNS=1
=

BNS=N���
�N · SNRNS=N���

, �7�

corresponding to Eq. �8� of Ref. 1.
Thus, the mean and standard deviation of the ensemble of

single-scan spectra comprising an N-scan signal-averaged
spectrum can be expressed in terms of quantities observed
from that signal-averaged spectrum:

BNS=1��� ± �BNS=1
=

BNS=N���
N

±
BNS=N���

�N · SNRNS=N���
, �8�

analogous to Eq. �10� of Ref. 1.
This expression can be used for statistical comparison of

Fig. 1 Infrared fiber optic probe �IFOP� absorbance spectra �ten co-
added scans� of cartilage. Two spectra were obtained successively on
day 1 �day 1a and day 1b�, and another was obtained on day 2 �day
2� after a degradation period. All spectra were acquired from the same
position on the sample. Noise amplitude was determined from the
wavenumber region 2000 to 1800 cm−1, and the amide I and amide II
absorbances were baseline corrected prior to calculation of band
height �baseline denoted by dashed line�. Statistical comparison
showed that there was no difference in the ratio of the amplitude of
the amide I spectral band to the amplitude of the amide II spectral
band, an indicator of sample stability, between the day 1 spectra,
while for the day 2 spectrum, this ratio was significantly different
compared to the ratio for both of the day 1 spectra.
two spectra. However, to avoid difficulties associated with
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establishing an absolute amplitude scale, it is common to
compare the ratio of the amplitudes of two bands, centered at
�1 and �2, for example, in one spectrum, with their ratio in a
different spectrum. The measurement uncertainty of this ratio,
expressed as a standard deviation, follows from the formula
for propagation of errors applied to a ratio2:
Note that a direct application of Eq. �9� gives
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�a/b =
a

b
���a

a
�2

+ ��b

b
�2� 1

2
. �9�

We will use propagation of errors, especially in the form of
Eq. �9�, frequently in what follows. One finds, in terms of
quantities observable from the signal-averaged spectrum, that:
BNS=1��2�
BNS=1��1�

± ��BNS=1��2�
BNS=1��1� �

=
BNS=N��2�
BNS=N��1�

± �N
BNS=N��2�
BNS=N��1��� 1

SNRNS=N��2��2

+ � 1

SNRNS=N��1��2	 1
2

. �10�
This is equivalent to Eq. �11� of Ref. 1, and an example of its
application is contained therein. Note again that
�


 BNS=N��2�

BNS=N��1� �
and �


 BNS=1��2�

BNS=1��1� �
are not spectral SNR values, but

rather measurement uncertainties derived from such values.

2.2 Comparison of Transmittance Fourier Transform
Infrared Spectra

We now derive the standard deviation of the noise for a
single-scan transmittance spectrum in terms of quantities that
can be measured from an N-scan transmittance spectrum, and
then use this result to obtain the standard deviation of the ratio
of two band amplitudes within single-scan transmittance spec-
tra. With superscripts s and b labeling sample and back-
ground, respectively, the magnitude of the single-scan sample
and background spectra are denoted by BNS=1

s ��� and
BNS=1

b ���. We define

TNS=1��� =
BNS=1

s ���
BNS=1

b ���
, �11�

and similarly for NS=N. We wish to obtain the standard de-
viation of TNS=1���, represented as the noise amplitude in the
N=1 transmittance spectrum, in terms of the observable SNR
of a signal-averaged transmittance spectrum. From Eqs. �4�,
�5�, �9�, and �11�,

�
TNS=1

= �N�� 1

BNS=N
b ����2

�BNS=N
s

2 + � BNS=N
s ���


BNS=N
b ����2�2

�BNS=N
b

2 	 1
2

,

�12�

or

�
TNS=1

= �N�BNS=N
s ���

BNS=N
b ���	

��� 1

SNRNS=N
s ����2

+ � 1

SNRNS=N
b ����2	 1

2
.

�13�
�
TNS=N

= �� 1

BNS=N
b ����2

�BNS=N
s

2 + � BNS=N
s ���


BNS=N
b ����2�2

�BNS=N
b

2 	 1
2

,

�14�

so that

�
TNS=N

= �BNS=N
s ���

BNS=N
b ���	

��� 1

SNRNS=N
s ����2

+ � 1

SNRNS=N
b ����2	 1

2
.

�15�

Comparing Eqs. �12� and �14� or Eqs. �13� and �15�, one finds

�
TNS=N

= ��TNS=1
�N

� . �16�

Thus, the noise standard deviation �the denominator of the
SNR� for a transmittance spectrum actually decreases, in pro-
portion to 1/�N, with signal averaging. This is rather coun-
terintuitive, since noise amplitude in a simple additive random
process increases with �N. Indeed, this result is in contrast to
the case for a single-beam spectrum, for which the noise stan-
dard deviation increases in proportion to �N 
Eq. �5��. The
reason for this difference is that while Eq. �15� represents the
noise in a calculated transmittance spectrum, it equally repre-
sents the uncertainty in measurement of TNS=N���, which has
an amplitude independent of NS:

TNS=N��� =
BNS=N

s ���
BNS=N

b ���
=

N · BNS=1
s ���

N · BNS=1
b ���

=
BNS=1

s ���
BNS=1

b ���
= TNS=1��� .

�17�

To compare band amplitudes between two transmittance
spectra, use can be made of Eqs. �11� and �13� in the same
way as Eq. �8�. However, it is again more useful to reformu-
late Eq. �13� in terms of spectral band amplitude ratios.

We therefore wish to calculate the standard deviation of
the ratio of the amplitude of a spectral band centered at �2 to
the amplitude of a spectral band centered at �1 in a transmit-

tance spectrum. As before, the goal is to calculate the standard
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deviation of the underlying single-scan quantities in terms of
observations made from the signal-averaged spectra. We de-
note the standard deviation of TNS=1��2� /TNS=1��1� by
� , and similarly for NS=N.
BNS=1��2�

as in the case of transmittance spectra.
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From Eqs. �9�, �16�, and �17�,

 BNS=1��1� �

��TNS=1��2�
TNS=1��1� �

= �TNS=1��2�
TNS=1��1�	�� 1

TNS=1��2��2

�TNS=1

2 + � 1

TNS=1��1��2

�TNS=1

2 	 1
2

= �N�TNS=N��2�
TNS=N��1�	�� 1

TNS=N��2��2

�TNS=N

2 + � 1

TNS=N��1��2

�TNS=N

2 	 1
2

= �N�TNS=N��2�
TNS=N��1�	�� 1

SNRNS=N
T ��2��2

+ � 1

SNRNS=N
T ��1��2	 1

2
. �18�
where SNRNS=N
T ��1�=TNS=N��1� /�TNS=N

, and similarly for �2

and NS=1. Equation �18� is the desired result, permitting the
comparison of band ratios between two signal-averaged trans-
mittance spectra. The form of Eq. �18� is identical to the error
term in Eq. �10� 
or Eq. �11� of Ref. 1� in spite of the fact that
Eq. �18� is for transmittance spectra, while Eq. �10� is for
single-beam spectra. As in the discussion of the single-beam
spectrum, �


 TNS=1��2�

TNS=1��1� �
is the measurement uncertainty of

TNS=1��2� /TNS=1��1�, rather than an SNR.

2.3 Comparison of Absorbance Fourier Transform
Infrared Spectra

We now wish to derive the expression for noise amplitude in
an absorbance spectrum. From Eq. �1�, we have for spectra
comprised of any number of scans:

��A���� =
1

ln�10�T���
�T���. �19�

We denote the single-scan absorbance spectrum by ANS=1���:

ANS=1��� = − log10TNS=1��� , �20�

and similarly for NS=N. Using Eqs. �17�, �20�, and

ANS=1��� = ANS=N��� , �21�

we have

�ANS=1
=

1

ln�10��� �BNS=1
s

BNS=1
s ���

�2

+ � �BNS=1
b

BNS=1
b ���

�2	 1
2

, �22�

and similarly for NS=N. Equations �4� and �5� then lead to

�ANS=N
=

1
�N

�ANS=1
, �23�
Defining

SNRNS=N
A ��� =

ANS=N���
�ANS=N

, �24�

and using Eq. �23�, we have:

�ANS=1
= �N

ANS=N���
SNRNS=N

A ���
. �25�

The mean and standard deviation of the underlying single-
scan quantities in terms of observable signal-averaged quan-
tities are given by Eqs. �21� and �25�. However, as for the case
of transmittance spectra, it is frequently absorbance band ra-
tios that are compared in practice. From Eqs. �9�, �21�, and
�23�, we find

��ANS=1��2�
ANS=1��1� �

= �N
ANS=N��2�
ANS=N��1�

��� 1

SNRANS=N
��2��2

+ � 1

SNRANS=N
��1��2	 1

2
,

�26�

giving the standard deviation of the ratio of spectral band
amplitudes in a single-scan absorbance spectrum in terms of
quantities that are observable from the signal-averaged spec-
trum. An example of the application of Eq. �26� follows.

3 Experimental Application to
Ex Vivo Cartilage

3.1 Methods

3.1.1 Cartilage samples
Fresh samples of immature bovine patellar cartilage were
stored in saline at −80°C for 6 weeks prior to data acquisi-
tion. At the time of experimentation, samples were thawed

and then maintained in saline at 4°C throughout the protocol.

November/December 2006 � Vol. 11�6�4



Spencer, Calton, and Pleshko Camacho: Statistical comparison of Fourier transform…
3.1.2 Fourier transform infrared spectral data
acquisition

Spectra were recorded using a mid-IR fiber optic probe
�IFOP� �Remspec Corporation, Sturbridge, Massachusetts� at-
tached to a Bruker Optics �Billerica, Massachusetts� spec-
trometer with an external liquid nitrogen cooled mercury cad-
mium telluride �MCT� detector. The IFOP was coupled to the
detector via a flexible 1-m-long fiber optic cable composed of
chalcogenide, a mid-infrared transmitting glass. A ZnS attenu-
ated total reflectance �ATR� crystal with a 1-mm-diam flat tip
was attached to the end of the fiber optic bundle. ATR data
were acquired from 4000 to 900 cm−1 with a spectral resolu-
tion of four wavenumbers �cm−1� and processed using a
Blackman-Harris three-term apodization function and a zero-
filling factor of 2. Data were processed using OPUS software
�Bruker Optics�.

Single-beam sample spectra were collected with the ZnS
crystal contacting the cartilage surface after a sixty second
period to permit tissue relaxation,3 while single-beam back-
ground spectra were obtained with the crystal in contact with
air only. Absorbance spectra were derived from a sample
single-beam spectrum and a background single-beam spec-
trum as described above. Immediately after collection of the
first absorbance spectrum, designated day 1a, a second spec-
trum, day 1b, was collected. A third spectrum, day 2, was
obtained from the same position on the sample 24 h later.
Each sample and background spectrum was the result of sig-
nal averaging NS=10 scans.

3.1.3 Processing of spectra
Spectral band positions were identified using the second-
derivative function in the OPUS software, and absorbance
amplitudes at these wavenumbers were calculated after apply-
ing linear baseline correction to the spectra. Absorbance val-
ues were measured at �1=1550 cm−1 and at �2=1630 cm−1,
corresponding to amide II and amide I vibrations, respec-
tively, which arise primarily from collagen, the main protein
component of cartilage.3 Changes in the amide I and/or amide
II absorbance contours can arise from changes in collagen
secondary structure or hydration,4 temperature,5 enzyme-
induced degradation,6 or from changes in the biochemical
composition of the sample.7 The ratio of these spectral band
amplitudes are therefore reflective of sample stability, and
were calculated for all spectra. Root mean square �rms� noise
was calculated as deviation from a parabolic fit to the baseline
over the wavenumber range 1800 to 2000 cm−1. Data are pre-
sented as mean ± standard deviation.

3.1.4 Statistical analysis
One way analysis of variance �ANOVA� followed by post hoc
pairwise t-tests using the Bonferroni correction was per-
formed. Statistical significance was defined as p�0.05.

4 Results
The spectra used for analysis are shown in Fig. 1, while mea-
sured spectral absorbances, obtained after the standard proce-
dure of baseline correction, and SNR values are shown in
Table 1. Equations �21� and �26� with N=10 were used to

determine the required NS=1 values:
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day 1a:
ANS=1��2�
ANS=1��1�

± ��ANS=1��2�
ANS=1��1� �

= 2.17 ± 0.37,

day 1b:
ANS=1��2�
ANS=1��1�

± ��ANS=1��2�
ANS=1��1� �

= 2.16 ± 0.32,

day 2:
ANS=1��2�
ANS=1��1�

± ��ANS=1��2�
ANS=1��1� �

= 2.80 ± 0.66. �27�

The one-way ANOVA analysis showed a statistically signifi-
cant difference among the three ratios. Post hoc t-tests
showed that the amide I to amide II absorbance ratio calcu-
lated from the day 1a spectrum was not significantly different
from the ratio calculated from the day 1b spectrum, while the
ratio calculated from the day 2 spectrum was significantly
different compared to both the day 1a and day 1b values �p
=0.017 and p=0.018, respectively�. Therefore, while as ex-
pected, there was no statistically significant difference in the
amide I to amide II ratio between the spectra collected in
immediate succession, this ratio did change after one day of
storage, indicative of sample degradation. These results are
impossible to discern from simple visual inspection of the
spectra shown in Fig. 1.

5 Discussion
The purpose of this study is to present a practical method for
statistical comparison of two or more FTIR spectra. The con-
cept behind this is that a large difference in band amplitudes
�or amplitude ratios� between two spectra, combined with
high SNR, should result in a high probability that the band
amplitudes are actually different. On the other hand, if the
band amplitude differences are small, and the SNR is limited,
the differences may be fortuitous. Our goal is to translate this
simple concept into formulae permitting comparison of spec-
tral bands in single-beam, transmittance, and absorbance
spectra.

Certain assumptions are inherent in our analysis. We as-
sume that the sample is unchanging and that the spectrometer
gain and other characteristics do not vary over the timescale
of the measurement. We also assume that the measured noise
amplitude is similar to the noise amplitude at the location of
the spectral bands under consideration. While imperfect, these
are common working assumptions in FTIR spectroscopy. We
also assume the basic premises of signal averaging, that is,

Table 1 Values of band amplitudes and SNR for cartilage spectra.
Results are derived from signal-averaged �ten co-added scans� ATR
absorbance spectra of cartilage obtained as described in Fig. 1.

ANS=10��1� ANS=10��2� SNRNS=10
A ��1� SNRNS=10

A ��2�

Day 1a 0.1590 0.3447 20.02 43.39

Day 1b 0.1653 0.3577 23.42 50.67

Day 2 0.1262 0.3539 14.22 39.89
that signal grows in proportion to the number of scans while
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noise grows only as the square root of the number of scans.
Again, the validity of these assumptions may be subject to
instrumental limitations,8 and requires that detector noise is
the dominant noise source.9

We reiterate the distinction between our analysis and what
would inevitably be an ill-fated attempt to derive a statistical
comparison between groups comprised of single samples,
based on their spectra. In general, to determine whether two
groups of samples differ by spectral criteria, it is indeed nec-
essary to have a sample size greater than one for each group.
This permits statistical assessment of the relevant difference
in mean values in light of the standard deviation of the sample
variability. However, it is often necessary to compare indi-
vidual signal-averaged spectra taken from the same sample,
for example to determine whether a particular sample has de-
graded or been affected by treatment. The statistical problem
in this case is quite different from a comparison of groups.
For each scan of a given signal-averaged spectrum of the
sample, the underlying sample component is invariant, under
realistic assumptions, while scan-to-scan variability is the re-
sult of random noise. If it were possible to observe spectral
band amplitudes in these single scans, statistical comparison
of two sets of such scans could be performed.10,11 However,
the reason signal averaging is performed is that it is generally
impossible to measure band amplitudes in individual scans;
such a comparison of sets of individual scans is therefore not
possible. Nevertheless, as shown here, a single signal-
averaged spectrum contains information about the ensemble
of scans of which it is comprised. It is the ability to compare
these ensembles, each of which is co-added to create a single
spectrum, which permits the comparison of two signal-
averaged spectra.

Our development has been motivated by our work in car-
tilage biology. Such studies are often performed using mul-
tiple experimental modalities, necessitating the transport of
samples among different laboratories.12 To determine whether
significant changes in particular molecular characteristics of a
sample occur, spectra of the sample taken at the outset of the
series of studies can be compared to spectra obtained after the
studies have been completed. Stability of the sample is con-
firmed by finding variations in spectral band amplitudes to be
sufficiently small that they can be accounted for by finite
SNR. The approach described in this work can be used to
make this determination more formally.

In addition to the previous application, we routinely per-
form FTIR analysis of in-situ cartilage samples using the
IFOP as described above, followed by removal of the sample
for subsequent analyses.13 We record a spectrum before and
after removal to determine whether the sample has been af-
fected. Again, an intuitive assessment of whether these spectra
are different can now be replaced by the analysis presented
here.

Other settings in which this analysis may be particularly
useful are those in which SNR is limited. This is seen in the
analysis of samples that are available only in limited
amounts14 or when performing highly time-resolved
analysis.14,15 In these cases, the significance of apparent dif-
ferences in spectral band amplitudes between spectra may be
especially difficult to ascertain without a method for formal

comparison.
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Voigtman10 and Williams11 have presented general analy-
ses, not restricted to spectroscopy, permitting the comparison
of SNR between sets of measurements. These calculations
take as their starting point the known probability density func-
tions �PDF� of the mean and standard deviation of a Gaussian-
distributed population. The PDF of the SNR itself, defined as
the ratio of these two quantities, is then derived. Tables are
generated permitting the desired comparison to be made based
on repeated measurements of the SNR. These results permit
the appropriate use of SNR as a figure of merit for data col-
lection systems in general, and could, for example, be applied
to evaluate the performance of FTIR spectrometers. Our goals
are different from the ones in these papers. We define criteria
for comparing spectral band amplitudes and ratios between
signal-averaged spectra by determining the statistical charac-
teristics of the ensemble of individual scans comprising the
spectra; our application is to the usual case in which the indi-
vidual scans cannot themselves be analyzed quantitatively. We
further specify our results for particular realizations of FTIR
spectroscopy.

Finally, we note that our results can also be used in the
context of a type of power analysis calculation. The analysis
permits the determination of the minimum number of scans
required to ensure that two spectra will not appear to be sta-
tistically different, to a specified degree of statistical certainty,
when the underlying band amplitudes are in fact the same.
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APPENDIX:
We present some simple related results regarding signal-
averaged transmittance spectra. Using Eqs. �16� and �17�, the
SNR of an N-scan transmittance spectrum is

SNRNS=N
T ��� 
 TNS=N���/�TNS=N

=
TNS=1���

�TNS=1
/�N

, �28�

or

SNRNS=N
T ��� = �N · SNRNS=1

T ��� . �29�

This is the well-known result that the SNR, obtained by di-
viding an N-scan spectrum of the sample by an N-scan spec-
trum of the background, increases with the square root of N. It
is therefore the version of Eq. �6� which is applicable to trans-
mittance spectra.

Further, using Eqs. �23� and �24�, we obtain the analogous
result for absorbance spectra:

SNRNS=N
A ��� =

ANS=1���
�ANS=1

/�N
= �N · SNRNS=1

A ��� . �30�

Thus, in this context as well, one recovers a result of the same
form as Eq. �29�. Surprisingly, it is difficult to find Eqs. �29�

and �30� derived in the literature.
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We also note the SNR properties with respect to signal
averaging of another, nonequivalent, method of obtaining
transmittance spectra, that is the addition of single-scan trans-
mittance spectra. This in fact also leads to an increase in SNR
proportional to the square root of the number of scans aver-
aged. Let p denote the pth realization of a single-scan trans-
mittance spectrum TNS=1���. We wish to derive the noise of
the N-scan transmittance spectrum

�
p=1

N


TNS=1����p,

which we denote by

�� �
p=1

N
�TNS=1�p� ,

in terms of the noise of the single-scan ratio spectrum �TNS=1
.

Applying propagation of errors to the sum, we have:

�� �
p=1

N
�TNS=1�p� = �N · �TNS=1

, �31�

with the position of the �N opposite that in Eq. �16�. How-
ever, the invariant underlying signal component of the spec-
trum is

�
p=1

N


TNS=1����p = N · TNS=1��� . �32�

Denote the SNR of the co-added single-scan transmittance
spectra by SNR�NS=1�N

T ��� and the SNR of a single sample

scan divided by a single background scan by SNR�NS=1�
T ���.

The relationship between these is, from Eqs. �31� and �32�,

SNR�NS = 1�N

T ��� =
N · TNS=1���


�N�TNS=1�
= �N · SNR�NS=1�

T ��� ,

�33�

which is of the same form as Eqs. �6�, �29�, and �30�. In this

sense, amplitudes within transmittance spectra resulting from

Journal of Biomedical Optics 064023-
forming the ratio of a single-scan sample spectrum to a single-
scan background spectrum, can be regarded as identically in-
dependently distributed random variables in the same way as
amplitudes within a single-scan single-beam spectrum.
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