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bstract. The Fisherface method suffers from the problem
f using all training face images to recognize a test face

mage. To tackle this problem, we propose combining a
ovel clustering method, affinity propagation �AP�, recently
eported in the journal Science, with linear discriminant
nalysis �LDA� to form a new method, AP-LDA, for face rec-
gnition. By using AP, a representative face image for each
ubject can be obtained. Our AP-LDA method uses only
hese representative face images rather than all training im-
ges for recognition. Thus, it is more computationally effi-
ient than Fisherface. Experimental results on several
enchmark face databases also show that AP-LDA outper-

orms Fisherface in terms of recognition rate. © 2007 Society of
hoto-Optical Instrumentation Engineers.
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Introduction

ace recognition �FR� has recently received extensive at-
ention due to its broad applications. Many techniques have
een developed over the past decades for FR. Subspace
nalysis is one of the most efficient techniques. The most
opular subspace techniques are principal component
nalysis �PCA�,1 linear discriminant analysis �LDA�,2 and
ndependent component analysis �ICA�.3 Besides directly
rocessing image appearance, subspace methods can also
e combined with the Gabor feature4 to derive the Gabor-
ased methods.5–7 However, the recognition time of these
ethods depends heavily on the size of the training set

ecause a test image is compared to all training images.
uch a recognition scheme is not efficient, especially when

he training set is too large. Thus, we propose integrating a
ovel clustering method, affinity propagation �AP�,8 with
DA to form AP-LDA for FR. By using AP on the low-
imensional features obtained from LDA, a representative
ace image for each subject can be achieved. Thus, AP-
DA needs to use only representative face images rather

han all training face images for recognition.

091-3286/2007/$25.00 © 2007 SPIE
ptical Engineering 110501-
We combine AP with LDA for the following reasons: AP
can cluster data points into different clusters and detect a
representative example for each cluster. By using AP, we
intend to achieve a representative face image for each sub-
ject. If so, we need to use only representative face images
for recognition. However, directly using AP on gray pixel
values is computationally expensive and inefficient. For ex-
ample, the difference between two pixels on the same po-
sitions in two images of the same subject is obvious when
the illumination is different. However, they should be con-
sidered to be similar to each other in fact. Thus, more dis-
criminating and efficient low-dimensional features should
be extracted before using AP for clustering. Therefore,
LDA is adopted, as it can not only be used for dimension-
ality reduction but also extract discriminative features.

2 Review of the AP Clustering Method and the
LDA Method

2.1 AP Clustering Method
AP8 first builds a similarity matrix s, in which s�i ,k� be-
tween data points xi and xk is their negative Euclidean dis-
tance �s�i ,k�=−�xi−xk�2�. Before clustering, each data point
also needs to be assigned a number P�B�, which describes
the a priori knowledge of how good point B is as a repre-
sentative example. The data points with larger values of
P�B� are more likely to be chosen as representative ex-
amples. These values are referred to as preferences. In fact,
the probability of each point being the representative ex-
ample is the same; thus, the preferences should be set to the
same value, which can be varied to produce different num-
bers of clusters. Generally, such a value takes the median of
the s. After the construction of a similarity matrix and the
setting of preferences, two kinds of messages �responsibil-
ity and availability� are passed between data points. The
responsibility r�i ,k�, sent from xi to candidate representa-
tive example xk, reflects the accumulated evidence for how
proper it would be for xk to serve as the representative
example for xi. It is updated using the rule:

r�r,k� ← s�i,k� − max�a�i,k�� + s�i,k���
k�s.t.k��k

. �1�

The availability a�i ,k�, sent from candidate representa-
tive example xk to xi, reflects the accumulated evidence for
how well-suited xi is to choose xk as its representative ex-
ample. It is computed by the rule:

a�i,k� ← min�0,r�k,k� + �
i�s.t.i���i,k	

�0,r�i�,k��
 . �2�

It is clear that availabilities and responsibilities can be
combined to recognize representative examples at any time.
For xi, the k that maximizes a�i ,k�+ �i ,k� indicates that xk

serves as the representative example for xi.

2.2 LDA Method
Suppose there is a set of N d-dimensional samples
�x1 ,x2 , . . . ,xN	 belonging to c classes �X1 ,X2 , . . . ,XN	.
LDA2 aims to find Wopt that maximizes the ratio of the
between-class scatter matrix to the within-class scatter ma-
trix, i.e.,
November 2007/Vol. 46�11�1
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opt = arg max
W

�WTSBW�
�WTSWW�

= �w1,w2, . . . ,wm� , �3�

here SB and SW are the between-class matrix and the
ithin-class scatter matrix:

B = �
i=1

c

Ni��i − ����i − ��T, �4�

W = �
i=1

c

�
xk�Xi

�xk − �i��xk − �i�T, �5�

here �i is the mean of class Xi, � is the total sample
ean, and Ni is the size of the data points in Xi.

w1 ,w2 , . . . ,wm� are generalized eigenvectors of SB and SW

orresponding to the m largest generalized eigenvalues
�i � i=1,2 , . . . ,m�, i.e.,

Bwi = �iSWwi i = 1,2, . . . ,m . �6�

Note that there are at most c−1 nonzero generalized
igenvalues; thus, the dimension of the reduced space is c
1. At the same time, to make the within-class scatter ma-

rix SW nonsingular, PCA is first used to reduce the dimen-
ion of the feature to N−c, and then LDA is applied to
educe the dimension to c−1.

Summary of AP-LDA

uppose that there is a face data set of N face images be-
onging to c different subjects. First, n face images per
erson �hence, n�c in total� are selected for training using
DA, obtaining n�c corresponding c−1 dimensional fea-

ures. Second, AP is used to cluster these features into dif-
erent clusters and obtain a representative feature for each
luster. Note that the number of clusters obtained by using
P may not equal the number of subjects, as the former is

nfluenced by the values of preference,8 while the latter is

Table 1 Comparative results on Yale database.

R method

Number of training face images per person

3 4 5 6 7 8

isherface 60.17% 69.33% 72.00% 77.33% 79.33% 84.89%

P-LDA 55.33% 69.90% 76.89% 78.13% 83.33% 87.56%

Table 2 Comparative results on

FR method

Number o

4 5 6

Fisherface 59.61% 63.30% 70.08

AP-LDA 65.03% 70.49% 74.40
ptical Engineering 110501-
fixed. To solve this problem, we repeatedly vary the value
of the preferences until two such numbers equal to each
other. Last, each test image is converted to a low-
dimensional feature, which is then compared to c represen-
tative features and identified using a nearest-neighbor clas-
sifier. Since AP-LDA uses only c representative features for
recognition, the recognition time of AP-LDA depends
mainly on the number of subjects. It increases linearly with
the c, while the recognition time of the Fisherface method
increases with the training image size �n�c�. Obviously,
our AP-LDA method is more computationally efficient than
the Fisherface method.

4 Experiments and Discussion

In this section, experiments on three benchmark face data
sets �Yale9; extended Yale10; and Pose, Illumination, and
Expression �PIE�11� are carried out to show the effective-
ness of our AP-LDA method and also to compare it to
Fisherface. All face images are cropped based on the cen-
ters of eyes such that facial areas contain only the face. All
cropped images are then normalized to the size of 32�32,
with 256 gray levels per pixel. In the following experi-
ments, different numbers of images per subject were ran-
domly selected for training, and the rest were used for test-
ing. To minimize the possible misleading results, the final
recognition rates were obtained by averaging the results
over five random splits.

The Yale database contains 165 images with 11 different
images for each of the 15 distinct subjects. Comparative
results are summarized in Table 1. It is clear that AP-LDA
obviously outperforms Fisherface when the number of
training images per person is more than 3.

The Extended Yale database is extended from the Yale
database. It contains approximately 64 near-frontal images
for each of 38 distinct subjects. We randomly selected 20
images per person for our experiments. Table 2 presents the
results. We can see that AP-LDA remarkably outperforms
Fisherface in all cases.

The CMU Pose, Illumination, and Expression �PIE� da-
tabase contains 41,368 facial images of 68 individuals. We
randomly chose 30 images per person for our experiments.
The results are shown in Table 3. Again, AP-LDA consis-
tently outperforms Fisherface.

Comparative experimental results show that:

1. The recognition rates of AP-LDA increase with the
increase in the number of training face images per
person because the more training images per person,
the better the representative face images that can be
detected.

t from Extended Yale database.

g face images per person

7 8 9 10

71.01% 74.08% 77.18% 80.32%

76.88% 80.53% 81.24% 84.21%
subse

f trainin

%

%
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2. Although AP-LDA performs better than Fisherface
on the Yale face data sets in most cases, the improve-
ment is not significant. Moreover, it performs not as
well as Fisherface when the number of training im-
ages per person is 3. This is because the AP method
could not find good representative face images in
these cases.

3. AP-LDA remarkably outperforms Fisherface on the
Extended Yale and CMU PIE databases. In fact, for
these two databases, we chose only a fraction of im-
ages for our experiments. We found that our AP-LDA
method performed significantly better than Fisherface
when all images were used. However, such improved
performance was achieved at the expense of increase
of computational cost.

Conclusions

e have introduced in this letter a novel AP-LDA method
or face recognition. Unlike Fisherface, which uses all
raining face images for recognition, our AP-LDA method
ses only representative face images. This makes AP-LDA
ore efficient. Experiments also indicate that AP-LDA out-

erforms Fisherface in terms of recognition rate.
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