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Abstract. In Part I a set of two layer feed-forward neural networks, trained via back propagation

of sensitivities, was applied to a synthetic set of radiances in micro-windows of the near-infrared

to make predictions of cloud water (cw), cloud ice (ci), effective scattering heights of cloud

water and ice, (pcw and pci, respectively) and the column water vapor (w). A threshold test,

using 2 gm−2 for cloud water and 10 gm−2 for cloud ice, was applied to the retrieved values to

distinguish clear from cloudy scenes.

In that work the discussion was limited to the nadir viewing geometry, and was applied only

to land surfaces, excluding desert and snow and ice fields. Part II describes the extension to a

set of high resolution radiances, as might be measured by a grating spectrometer from space, in

both nadir and sun glint viewing geometries. Furthermore, results are given for all land surface

types as well as scenes over ocean.

Prior to neural network training, a Principal Component Analysis (PCA) is applied to the

high resolution spectra, which consist of three bands centered at 0.76 μm (O2 A-band), 1.61 μm

(weak CO2 band) and 2.06 μm (strong CO2 band), each with 1016 channels. Analysis shows

that the five leading EOFs together capture 99.9% of the variance in each band, reducing the

data size by more than two orders of magnitude. Application of the trained neural networks

to an independent data set, generated using CloudSat and Calipso cloud and aerosol profiles,

as well as carbon dioxide profiles from a chemical transport model, were used to quantify the

skill in the retrieval. The results vary significantly with surface type, viewing mode and cloud

properties. Accuracies range from 7% to 100% (typically close to 75%), with confidence levels

almost always greater than 90%.

Keywords: neural networks, clouds, remote sensing, carbon dioxide, radiative transfer, satel-

lites.

1 INTRODUCTION
This paper is the continuation of the work presented in the companion article [1] (hereafter

refered to as Part I), which introduced a system of neural networks for estimating cloud amounts

in the near-infrared spectral region. Information relevant to cloud is primarily contained in the

depths of the absorption lines (O2 and CO2); generally the lines are filled in when cloud is

present. In Part I the subtleties associated with identifying clouds due to ambiguities in the

spectra, especially in the O2 A-band, were discussed.

The work presented here explores the application of the cloud retrieval to a set of synthetic

radiances in the same three wavebands (O2 A-band, weak CO2 band and strong CO2 band), but

covering expanded spectral ranges with lower resolution than that used before. Note however,
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that although the resolution used in this work is roughly an order of magnitude lower than that

used in Part I (approximately 0.3 cm−1 versus 0.05 cm−1 in the weak CO2 band), both spectral

sets are considered high resolution. The full set of measurements presented here is meant to

simulate those that would be taken by the reflight of the Orbiting Carbon Observatory [2] after

a failed launch in February 2009.

In this work the neural network cloud screen has also been extended to include radiances

measured in the glint viewing mode. An OCO instrument would nominally acquire half of

its measurements using sun glint in order to increase the signal-to-noise ratio over the oceans,

which otherwise would be very dark in the near infrared [3].

The sampling strategy of the OCO instrument was expected to provide over one hundred

thousand soundings on the day light side of each 90 minute orbit [4]. This dictates the need

for a fast, robust cloud screening algorithm to populate a scene selection data base containing

soundings to be processed by the XCO2 inversion algorithm [5]. Previous research using statis-

tics from the space borne Geoscience Laser Altimeter System (GLAS) indicates that roughly

15% of the global skies are clear, while approximately 20% can be classified as almost clear

(0.0< τ <0.2) [6].

After the model used to calculate the full radiance spectra is introduced in Sec. 2, the prin-

cipal components analysis for extracting the salient information and compressing the measure-

ments is formulated in Sec. 3. The application of the neural network retrieval to the ensemble

of synthetic radiances is discussed in Sec. 4, while Sec. 5 contains the conclusions.

2 MODEL
This work employs virtually the same forward model as was introduced in Part I. In order to

train the neural networks, simulated radiance spectra were generated in both the nadir and glint

viewing modes. The band characteristics and resolving powers are shown in Table 1. As in

Part I, atmospheric profiles (12,991 in nadir and 13,495 in glint) were drawn randomly from an

ECMWF data base [7], and the same World Reference System 2 (WRS-2) orbit was used for

both nadir and glint viewing geometries, as shown in Fig. 1.

Table 1. Frequency windows and resolution assumed for the spectrometer.

O2 A-band weak CO2 band strong CO2 band

Minimum wavenumber (cm−1) 12949.2 6166.1 4804.1

Maximum wavenumber (cm−1) 13201.7 6286.4 4897.8

Nominal resolving power 17000 20000 20000

Monochromatic samples per band 26401 13001 10001

Convolved channels per band 1016 1016 1016

For the training data, land surfaces were treated as non-polarizing and non-isotropic, while

oceans used a polarizing facet model [8] with a small correction for whitecaps [9]. Other simu-

lation parameters were similar to those described in Part I and [10], including cloud, meteorol-

ogy and trace gas profiles from ECMWF, as well as aerosol properties from [11]. The vertical

profiles of aerosol were perturbed randomly to provide more realistic variations. The radiative

transfer calculations again relied on the successive orders of interaction (SOI) code [12] [13]

using the low-streams interpolater (LSI) to accelerate the calculations [14].

The model used to generate the spectra takes into account solar lines and spectral features of

the surface, both of which impose a slope on each spectrum. Because these effects are unrelated

to the neural network variables, they were removed from the spectra before training, according

to the procedure described in [10]. Examples of spectra in the three bands are presented in

Fig. 2, where the radiances, in units of photons/s/m2/sr/μm, are shown in red against the left

Journal of Applied Remote Sensing, Vol. 4, 043518 (2010)                                                                                                                                    Page 2



ordinate, while the solar normalized with slope removed spectra are shown in blue against the

right ordinate.

Fig. 1. The WRS-2 orbit (starting at 19:25 UTC on September 13, 2006) used in selecting surface

properties for the simulations to train the neural networks. The ground track of the satellite is shown in

blue, the glint target in green, and the track of the sun in red.

3 PRINCIPAL COMPONENTS ANALYSIS
When working with such a large number of spectral points, many of which are highly corre-

lated, it is sensible to invoke a technique for extracting the most pertinent information from the

measurements. In this work, principal components analysis (PCA) was used to reduce a corre-

lated data set into a smaller, uncorrelated and transformed set via eigenvalue decomposition of

the data covariance matrix. The matrix X containing measurements for all training profiles is

first preconditioned via

X̃i,j =
(Xi,j −Xj)

max X
, (1)

where i labels the profile (the size varies with each training case) and j indicates the channel

(1016 in each waveband). Here Xj is the mean over all profiles of the radiance in channel j.

The covariance matrix is constructed,

A = X̃T X̃, (2)

and Golub’s method [15] is used to compute the singular value decomposition,

A = USV T , (3)

where the matrix U contains the data space eigenvectors of A, the matrix V contains the param-

eter space eigenvectors of A and the diagonal of the matrix S contain the singular values.

The fraction of variance explained by the kth singular value sk is

σ2
k =

s2
k∑N

n=1 s2
n

, (4)

where N is the total number of singular values. The PCA algorithm is performed individually

for each of the four surface types, each of the four neural network hierarchy members and for
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Fig. 2. Typical spectra for O2 A-band (top), weak CO2 band (middle) and strong CO2 band (bottom). The

radiances in units of photons/s/m2/sr/μm are shown in red against the left ordinate. The solar normalized

spectra with slope removed are plotted in blue against the right ordinate.

each of the three wavebands. This results in 48 unique sets of EOFs, which become an inherent

part of the algorithm for the inversion of cloud from the measured spectra. The stratification

of scenes into desert, ice, land and ocean according to IGBP surface type is discussed in Sec-

tion 4.2.1 of Part I. The notion of a hierarchy of neural networks is introduced in Section 4.2

and Table 5 of Part I; the members of a hierarchy are trained with differing total cloud amounts.

Index H0 refers to the thinnest cloud cases (less than 1 gm−2), while H3 represents cases greater

than 300 gm−2.

The leading singular values and the fractional variances for each of the surface types are

presented in Tables 2–5 for the nadir training case. For brevity, the tables display only the four

leading EOFs, rather than the five used to reconstruct the spectra in both the neural network

training and inversion algorithm. In general the first EOF captures most of the variability in

the spectra (95% to 100%) for all surface types, hierarchies and bands, although there are a few

exceptions, notably the H0 hierarchy over desert surface in the O2 A-band and strong CO2 band.

Typically the accumulated variability explained by the first two EOFs exceeds 99%, especially

for ocean and land surfaces, while that explained by the first four exceeds 99.9%.

For illustrative purposes the normalized singular values for H0 over land surfaces are plotted

against the left ordinate in the left-hand panels of Figs. 3–5, which show results for the O2 A-

band, weak CO2 band and strong CO2 band, respectively. The corresponding percentage of the

variance explained by each EOF is plotted against the right ordinate. The leading eigenvectors

are displayed in the right hand panels of Figs. 3–5, as functions of wavelength. They are similar

in form to the original spectra, indicating that the most significant variance is due to scaling of

the spectra, most likely caused by variations of surface reflectance and cloud amount over the

ensemble of profiles. For the O2 A-band and the weak CO2 band, the rank 2 EOF is similar in
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Table 2. Leading singular values and corresponding fractions of explained variance for the neural network

training data for nadir mode over desert surfaces. For brevity, the results are shown only for the four

leading EOFs, rather than for the five used by the neural network algorithm.

Hierarchy Wave s1 s2 s3 s4 σ2
1 σ2

2 σ2
3 σ2

4

Index Band

0 O2-A 14.19 8.90 3.11 0.87 0.692 0.272 0.033 0.003

0 WCO2 16.73 2.56 2.00 0.43 0.963 0.023 0.014 0.001

0 SCO2 21.63 10.27 6.44 2.45 0.752 0.169 0.067 0.010

1 O2-A 25.16 5.91 2.84 0.90 0.935 0.052 0.012 0.001

1 WCO2 27.21 3.76 2.16 0.54 0.975 0.019 0.006 0.000

1 SCO2 51.78 15.10 7.87 2.68 0.899 0.076 0.021 0.002

2 O2-A 68.83 10.24 1.97 1.63 0.977 0.022 0.001 0.001

2 WCO2 82.23 3.79 2.53 0.34 0.997 0.002 0.001 0.000

2 SCO2 68.11 13.52 9.64 1.71 0.943 0.037 0.019 0.001

3 O2-A 37.52 11.69 2.07 1.18 0.908 0.088 0.003 0.001

3 WCO2 96.88 2.07 0.75 0.13 0.999 0.001 0.000 0.000

3 SCO2 73.55 6.66 3.52 0.77 0.989 0.008 0.002 0.000

Table 3. Same as in Table 2, except for permanent snow and ice surfaces.

Hierarchy Wave s1 s2 s3 s4 σ2
1 σ2

2 σ2
3 σ2

4

Index Band

0 O2-A 27.50 6.40 1.85 0.82 0.944 0.051 0.004 0.001

0 WCO2 30.99 2.83 1.56 0.45 0.989 0.008 0.002 0.000

0 SCO2 31.02 6.15 5.51 1.70 0.930 0.036 0.029 0.003

1 O2-A 28.17 2.35 1.11 0.37 0.991 0.007 0.002 0.000

1 WCO2 34.85 0.70 0.65 0.13 1.000 0.000 0.000 0.000

1 SCO2 25.78 3.23 1.87 0.58 0.978 0.015 0.005 0.000

2 O2-A 22.39 2.96 0.74 0.59 0.981 0.017 0.001 0.000

2 WCO2 66.15 3.88 1.49 0.26 0.996 0.003 0.001 0.000

2 SCO2 56.46 13.04 5.89 1.91 0.938 0.050 0.010 0.001

3 O2-A 42.26 3.88 0.60 0.30 0.991 0.008 0.000 0.000

3 WCO2 35.49 1.42 0.31 0.07 0.998 0.002 0.000 0.000

3 SCO2 29.35 4.44 1.26 0.67 0.975 0.022 0.002 0.001
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Table 4. Same as in Table 2, except for ocean surfaces.

Hierarchy Wave s1 s2 s3 s4 σ2
1 σ2

2 σ2
3 σ2

4

Index Band

0 O2-A 60.30 6.55 1.88 1.07 0.987 0.012 0.001 0.000

0 WCO2 77.45 1.57 0.95 0.18 0.999 0.001 0.000 0.000

0 SCO2 62.63 5.39 3.61 0.91 0.989 0.007 0.003 0.000

1 O2-A 120.0 7.70 1.10 0.97 0.996 0.004 0.000 0.000

1 WCO2 167.4 2.80 1.84 0.22 1.000 0.000 0.000 0.000

1 SCO2 138.8 11.45 7.23 1.45 0.990 0.007 0.003 0.000

2 O2-A 174.7 15.71 2.18 1.99 0.992 0.008 0.000 0.000

2 WCO2 235.7 5.81 2.76 0.44 0.999 0.001 0.000 0.000

2 SCO2 170.9 19.83 10.27 2.13 0.983 0.013 0.004 0.000

3 O2-A 171.9 17.10 2.77 1.45 0.990 0.010 0.000 0.000

3 WCO2 188.3 4.05 1.04 0.21 1.000 0.000 0.000 0.000

3 SCO2 146.7 11.75 4.50 1.40 0.993 0.006 0.001 0.000

Table 5. Same as in Table 2, except for land surfaces.

Hierarchy Wave s1 s2 s3 s4 σ2
1 σ2

2 σ2
3 σ2

4

Index Band

0 O2-A 72.04 15.48 4.55 1.01 0.952 0.044 0.004 0.000

0 WCO2 88.06 4.00 2.66 0.68 0.997 0.002 0.001 0.000

0 SCO2 73.11 15.54 6.94 2.74 0.947 0.043 0.009 0.001

1 O2-A 94.28 10.27 3.81 1.35 0.986 0.012 0.002 0.000

1 WCO2 119.7 4.88 3.13 0.61 0.998 0.002 0.000 0.000

1 SCO2 102.6 21.71 11.76 3.14 0.944 0.042 0.012 0.001

2 O2-A 175.8 20.41 3.21 2.93 0.986 0.013 0.000 0.000

2 WCO2 212.2 6.58 4.19 0.54 0.999 0.001 0.000 0.000

2 SCO2 146.2 24.00 15.98 2.68 0.962 0.026 0.011 0.000

3 O2-A 113.6 22.16 3.35 2.15 0.962 0.037 0.001 0.000

3 WCO2 183.1 3.79 1.38 0.22 1.000 0.000 0.000 0.000

3 SCO2 138.6 11.90 6.19 1.36 0.990 0.007 0.002 0.000
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shape to the inverse of the original spectrum, as would be caused by variations in cloud height

and cloud type, both of which stretch and compress the spectra. The higher rank EOFs are more

difficult to interpret physically, but presumably are associated with variations in atmospheric

and cloud properties, such as effective radii and phase matrices. However, the higher EOFs are

closely centered around the zero line, indicating that they capture little variability of the spectra.

Fig. 3. Results from principal component analysis on the O2 A-band for hierarchy index 0 and land

surfaces only. The left panel shows the five leading normalized singular values plotted against the left

ordinate, and the percent variance explained against the right ordinate. The right panels show the leading

EOFs versus the wavelength index. Only four EOFs (rather than five) are displayed to enhance the size of

the images. The red, horizontal lines indicate the zero levels of the EOFs.

Fig. 4. Same as in Fig. 3, except for the weak CO2 band.

Projections of the spectra onto the leading EOFs (projected objects, or ProjObj for short)

are used by the neural networks to make predictions of the cloud properties. Hence, a full

spectrum of 1016 channels per waveband is reduced by PCA to just five values per waveband.

This reduction of the input data set by two and a half orders of magnitude into orthonormal form

more distinctly separates it into classes that can be identified by the neural network. Figure 6

shows examples of ProjObj for clear sky (top row), a moderately thin water cloud (middle row)

and a moderately thick mixed phase cloud (bottom row) for the O2 A-band (left column), the

weak CO2 band (middle column) and the strong CO2 band (right column). PCA of sun-glint

training data provides virtually the same patterns as the nadir data; therefore, plots and tables

for sun-glint are omitted.
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Fig. 5. Same as in Fig. 3, except for the strong CO2 band.

Fig. 6. Projections of the spectra onto the five leading EOFs (ProjObj) for clear sky (top), moderately

thin water cloud (middle) and a moderately thick mixed phase cloud (bottom). The columns represent the

O2 A-band (left), weak CO2 band (middle) and strong CO2 band (right). The legends shows the water and

ice amounts in gm−2.

4 NEURAL NETWORK RETRIEVALS
The architecture of the two layer feed forward neural network and the determination of the net-

work parameters was described extensively in Part I. Briefly, weights and biases are determined

iteratively by minimizing a cost function representing the difference between the predicted and

target results. The only difference between the network discussed there and the one presented

here is that the spectra have been replaced with the ProjObj, giving fifteen predictors repre-

senting the three wavebands. The remaining predictor variables (solar zenith angle, surface

pressure, surface reflectance and mean atmospheric temperature) have not changed, yielding a

total of nineteen predictors per sounding (so P = 19 in the notation of Section 3.2.6 of Part I).

The resulting weights and biases, along with the EOFs and other normalization variables from

training, are used to map inputs onto the five output target variables; cloud water (cw), cloud ice

(ci), effective scattering heights of cloud water and ice, (pcw and pci, respectively) and the col-

umn water vapor (w). Therefore, T = 5 in the notation of Section 3.2.6 of Part I. Note too, that

N = 10 nodes were used in the neural network training here, yielding W = N(P + T ) = 240
weights and b = N + T = 15 biases for the two-layer model.

The dominant instrument noise was assumed to be photon noise, although a model was used

that accounted for the secondary effects of background noise. The noise N and radiance I were

related by

N = I0

√
c2
p(I/I0) + c2

b , (5)
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Table 6. Values used for simulating instrument noise. The units of I0 are photons/s/m2/sr/μm.

O2 A-band weak CO2 band strong CO2 band

I0 1.4E19 4.9E18 1.7E18

cp 0.0070 0.0073 0.0095

cb 0.0149 0.0120 0.0328

where cp and cb are pixel-dependent coefficients for the photon and background noise, respec-

tively, and I0 is a reference radiance. Table 6 shows for the three bands the reference radiance

and corresponding coefficients (averaged over all pixels) determined in the pre flight thermal

vacuum chamber tests performed on the OCO instrument. The uncertainties in the remaining

predictor variables, surface pressure, surface reflectance and mean temperature, were drawn

randomly from Gaussian populations with zero means and standard deviations of 2%, 10% and

2% of the climatological values, as described in Part I. These uncertainties, along with mea-

surement noise, were used to address the sensitivity of the neural networks to errors in the

predictors, to be discussed in the following section.

4.1 Hold-Over data set
Hold-over subsets were extracted from the full ensemble of training profiles for both nadir and

glint viewing geometries as well as the four surface types prior to splitting into the four hierarchy

members. Hence, it is implicit that all model settings are the same between the training and

hold-over sets. Performing retrievals on the hold-over data set therefore provides a test of the

trickle-down method, as described in Part I.

Contingency tables are used to quantify the retrieval skill. Two important measures are the

accuracy (ACC) and the positive predictive value (PPV). The first is defined in Section 4.2.3 of

Part I to be the fraction

ACC = (TP + TN)/(P + N),

where P is the number of clear cases, N is the number of cloudy, TP are the correctly classified

clear and TN are the correctly classified cloudy. The second is

PPV = TP/(TP + FP),

where FP are the incorrectly classified clear cases, i.e., cloudy cases that are estimated by the

neural network to be clear. As in Part I, the threshold between clear and cloudy is defined to

be 2 gm−2 and 10 gm−2 for cloud water and cloud ice, respectively.

4.1.1 Nadir Results

Scatter plots of the predicted versus true cloud amounts for the hold-over data set in nadir

viewing mode using the four-member hierarchy are plotted in Fig. 7. Each color represents one

of the four surface types, desert, ice, land and ocean. For the retrieval of cloud water (left panel)

the correlation coefficients are high (R > 0.9) for all but ice surfaces, which consistently, but

incorrectly, relied on hierarchy member H3 (trained with total cloud water plus ice in excess

of 300 gm−2), regardless of the true cloud amount. For retrievals of cloud ice (right panel)

there is more scatter for all surface types (R = 0.66, 0.81, 0.81 for ocean, land and desert,

respectively). Again, the horizontal striations are caused by incorrect selection of the hierarchy

member. As with cloud water, retrievals over ice surfaces are very poor.

In Part I the hierarchy trickle-down concept was introduced as a method to increase the

accuracy of the retrieved cloud amounts, especially for the thin cloud cases. It was shown there

that this technique proves quite useful in this respect, but that it does not fully eliminate the

problem of decreasing accuracy with decreasing cloud amount, an issue that persistents in these
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Fig. 7. Neural network predicted vs target values of cloud water (top) and cloud ice (bottom) in nadir mode

over the four surface types on the hold-over data set without uncertainties added. The linear regression

coefficient (R), slope (m) and bias (b) are given in the legends, along with the number of data points (N ).

The horizontal and vertical bisection lines indicate the chosen thresholds of 2 gm−2 (cloud water) and

10 gm−2 (cloud ice) for distinguishing cloudy scenes from clear.

results. Fortunately, since the primary function of the neural network is to provide a way to

discriminate clear from cloudy scenes, the actual estimated value of cloud amount for the thin

cases is not critical. However, for the purpose of analysis and to gain insight into the algorithm,

it is useful to present and discuss these quantities rather than simply the binary cloudy/clear

flags from the final threshold test.

The contingency tables for the nadir, hold-over retrievals are shown in Table 7. Relatively

high true positive rates (TPRs), coupled with low false positive rates (FPRs) yield accuracies in

the 70% to 99% range and PPVs ranging from 66% to 100%. These values are similar to those

reported in Part I for nadir mode.
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Table 7. Contingency tables for classifications on the hold-over data set for cloud water and ice in nadir

viewing mode without uncertainties added (corresponding to Fig. 7). The results are shown for both cloud

water and cloud ice for the four surface types.

Surface Cloud Clear atmospheres Cloudy atmospheres ACC PPV
Total Predicted Predicted Total Predicted Predicted

cases clear cloudy cases clear cloudy

# TPR # FNR # FPR # TNR
Desert Water 28 25 89% 3 11% 77 0 0% 77 100% 97% 100%

Desert Ice 43 30 70% 13 30% 63 2 3% 61 97% 86% 94%

Ice Water 21 2 10% 19 90% 53 1 2% 52 98% 73% 67%

Ice Ice 30 14 47% 16 53% 46 2 4% 44 96% 76% 88%

Land Water 110 88 80% 22 20% 322 1 0% 321 100% 95% 99%

Land Ice 156 110 71% 46 29% 245 9 4% 236 96% 86% 92%

Ocean Water 129 127 98% 2 2% 390 3 1% 387 99% 99% 98%

Ocean Ice 178 61 34% 117 66% 324 32 10% 292 90% 70% 66%

Table 8. Contingency tables for classifications on the hold-over data set for cloud water and ice in nadir

viewing mode with uncertainties added (corresponding to Fig. 8).

Surface Cloud Clear atmospheres Cloudy atmospheres ACC PPV
Total Predicted Predicted Total Predicted Predicted

cases clear cloudy cases clear cloudy

# TPR # FNR # FPR # TNR
Desert Water 28 22 79% 6 21% 77 1 1% 76 99% 93% 96%

Desert Ice 36 24 67% 12 33% 62 1 2% 61 98% 87% 96%

Ice Water 21 1 5% 20 95% 52 3 6% 49 94% 68% 25%

Ice Ice 30 14 47% 16 53% 46 2 4% 44 96% 76% 88%

Land Water 110 81 74% 29 26% 308 3 1% 305 99% 92% 96%

Land Ice 150 92 61% 58 39% 241 22 9% 219 91% 80% 81%

Ocean Water 129 123 95% 6 5% 390 3 1% 387 99% 98% 98%

Ocean Ice 178 60 34% 118 66% 325 34 10% 291 90% 70% 64%

The sensitivity of the retrieval to uncertainties in surface albedo, surface pressure, temper-

ature profile and measurement noise was tested by adding perturbations to the predictors, as

described in Part I. Scatter plots for the nadir retrievals with uncertainties added are shown in

Fig. 8. Although it is evident that there is a significant increase in scatter, and hence decrease in

correlation, for both cloud water (left) and cloud ice (right) when compared to Fig. 7, the overall

classification of scenes as either cloudy or clear is hardly affected, as can be seen by comparing

the contingency tables (Table 8 and Table 7). Typically the ACCs and PPVs decrease only by

about 2 to 3% due to the addition of errors. Overall these results indicate that the neural network

algorithm provides a reasonably reliable method for distinguishing clear from cloudy scenes in

the nadir viewing mode over most surface types.

4.1.2 Glint Results

Similarly, Fig. 9 shows the scatter plots from retrievals using glint viewing geometry on the

hold-over data for the four surface types. The corresponding contingency tables are presented

in Table 9. The correlations in glint mode over desert and land surfaces are very similar to those

in nadir mode, while the retrievals over ice surfaces are still poor. However, the correlations

over ocean are significantly lower than in nadir mode, presumably because cloud is hard to
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Fig. 8. Same as Fig. 7, except uncertainties were added to the predictors before performing the retrievals.
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Fig. 9. Neural network predicted versus target values of cloud water (top) and cloud ice (bottom) in glint

viewing geometry over the four surface types on the hold-over data set without uncertainties added. The

linear regression coefficient (R), slope (m) and bias (b) are given in the legends, along with the number

of data points (N ). The horizontal and vertical bisection lines indicate the chosen thresholds of 2 gm−2

(cloud water) and 10 gm−2 (cloud ice) for distinguishing cloudy scenes from clear.

distinguish against the bright ocean surface when viewing sun-glint. This is especially true for

the retrieval of cloud ice, where the H3 hierarchy member is consistently chosen no matter the

true value of cloud amount.

Although the scatter in the retrieved values is large, the contingency tables show that the

retrieval skill is comparable to that for the nadir mode. Over land and ocean surfaces the values

of ACC are in the range 65% to 89%, while the PPVs are in the range 76% to 88%, indicating

that the majority of the profiles are correctly classified and that most of the scenes identified as

clear are in fact clear. Because glint measurements over ocean, with their high signal-to-noise

ratio, are potentially very important for the retrieval of XCO2 from an OCO-like instrument [3],
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Table 9. Contingency tables for classifications on the hold-over data set for cloud water and ice in glint

mode without uncertainties added (corresponding to Fig. 9). The results are shown for both cloud water

and cloud ice for the four surface types.

Surface Cloud Clear atmospheres Cloudy atmospheres ACC PPV
Total Predicted Predicted Total Predicted Predicted

cases clear cloudy cases clear cloudy

# TPR # FNR # FPR # TNR
Desert Water 37 22 59% 15 41% 107 1 1% 106 99% 89% 96%

Desert Ice 43 17 40% 26 60% 94 4 4% 90 96% 78% 81%

Ice Water 26 25 96% 1 4% 40 16 40% 24 60% 74% 61%

Ice Ice 24 1 4% 23 96% 42 0 0% 42 100% 65% 100%

Land Water 130 94 72% 36 28% 319 23 7% 296 93% 87% 80%

Land Ice 141 99 70% 42 30% 248 13 5% 235 95% 86% 88%

Ocean Water 132 59 45% 73 55% 394 19 5% 375 95% 83% 76%

Ocean Ice 209 105 50% 104 50% 308 29 9% 279 91% 74% 78%

Table 10. Contingency tables for classifications on the hold-over data set for cloud water and ice in glint

mode with uncertainties added (corresponding to Fig. 10). The results are shown for four surface types.

Surface Cloud Clear atmospheres Cloudy atmospheres ACC PPV
Total Predicted Predicted Total Predicted Predicted

cases clear cloudy cases clear cloudy

# TPR # FNR # FPR # TNR
Desert Water 37 20 54% 17 46% 107 2 2% 105 98% 87% 91%

Desert Ice 46 18 39% 28 61% 94 6 6% 88 94% 76% 75%

Ice Water 26 25 96% 1 4% 40 17 42% 23 57% 73% 60%

Ice Ice 24 1 4% 23 96% 42 0 0% 42 100% 65% 100%

Land Water 130 106 82% 24 18% 319 18 6% 301 94% 91% 85%

Land Ice 144 93 65% 51 35% 250 18 7% 232 93% 82% 84%

Ocean Water 132 62 47% 70 53% 395 25 6% 370 94% 82% 71%

Ocean Ice 209 101 48% 108 52% 307 30 10% 277 90% 73% 77%

it is desirable to increase the skill of the cloud screening for this scenario. One option to be

explored is to further segregate the training data into distinct cloud types prior to neural network

training.

Figure 10 shows scatter plots of the predicted versus target values in glint mode when the

predictors are subject to uncertainties. The corresponding contingency tables are shown in

Table 10. Both ACC and PPV change by only a few percent when uncertainties are added,

consistent with the results for nadir mode. Thus, the neural network algorithm appears to be

robust with respect to the addition of realistic uncertainties.

4.2 Independent data set
An independent data set was generated using a model that relied on CloudSat and Calipso

profiles for the cloud and aerosol properties. The surface model over land was changed from

unpolarized to polarized for these simulations, while the surface model over ocean remained

the same. Furthermore the Goddard Space Flight Center (GSFC) parametrized chemistry and

transport model (PCTM) [16] was used to provide realistic variations in the CO2 field. All

other model parameters were held fixed, including the spectroscopy data base, instrument line

shape functions and all settings used in the radiative transfer model. In order to provide global
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Fig. 10. Same as Fig. 9, except uncertainties were added to the predictors before performing the re-

trievals.
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Fig. 11. The WRS-2 orbits (starting at 19:25 UTC on September 13, 2006) used in selecting surface

properties for the neural network independent data set. In nadir mode the ground track of the satellite and

the field of view (green) overlap. The track of the sun during each orbit is displayed in red, and is always

approximately 20 degrees to the west of the ground track.

variations in the surface properties, simulations over multiple orbits were performed, as shown

in Fig. 11.

Histograms of cloud, atmosphere and surface properties from the independent data set are

displayed in Fig. 12 and Fig. 13. In these histograms 4995 scenes (55% of total) completely free

of cloud water and 2361 (26% of total) free of cloud ice have been omitted for clarity. These

cloud free scenes are indicated by cases with scattering heights equal to zero in the lower panels

of Fig. 12. Also, for clarity in plotting, scenes with cloud amounts greater than 1000.0 gm−2

have been reassigned to this value; 30 scenes in total for cloud water and 100 for cloud ice. In

general the histograms of the atmospheric and surface parameters are similar to those for the

training data set, shown in Figs. 2 and 3 of Part I.

4.2.1 Nadir Results

The results of the neural network predictions of cloud water and cloud ice on the independent

data set in nadir mode for the four surface types are shown in Fig. 14. Uncertainties were added

to the predictors before retrieval. The patterns in the independent retrievals are similar to those

for the hold-over data set; that is, the accuracy of retrieved cloud water and ice is reasonable

when the true values lie above the thresholds of 2 gm−2 and 10 gm−2 respectively, but degrades

significantly with decreasing cloud amount. The results vary somewhat with surface type. For

cloud ice retrievals the horizontal striations in the estimated values are caused by incorrect

selection of the hierarchy member for the final retrieval.

Comparing the contingency table for the independent nadir retrievals (Table 11) with the

hold-over results (Table 8) shows that the accuracy (ACC) is typically much worse for all cases,

while the positive predictive value (PPV) shows varying levels of improvement in all but one

case (ice clouds over ice surfaces). The combination of moderately low ACC with very high

PPV indicates that many clear scenes are inadvertently being rejected as cloudy, but that almost

all of the scenes flagged as clear are in fact clear. As with the hold-over data set, the classifi-

cation skill typically is better for cloud water than for cloud ice. Note that the retrieval skill is

significantly worse over ice surfaces relative to the other surface types, presumably due to the

difficulty in distinguishing bright ice and snow surfaces from bright clouds.
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Fig. 12. Histograms of cloud water (upper left), cloud ice (upper right), effective scattering height of

cloud water (lower left) and effective scattering height of cloud ice (lower right) derived from the profiles

used for the independent testing.

Fig. 13. Histograms of surface pressure (upper left), O2 A-band surface albedo (upper right), column

water vapor (lower left) and mean temperature (lower right) derived from the profiles used for independent

testing.
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Fig. 14. Neural network predicted versus target values of cloud water (top) and cloud ice (bottom) in

nadir mode over the four surface types on the independent data set. The linear regression coefficient (R),

slope (m) and bias (b) are given in the legends, along with the number of data points (N ). The horizontal

and vertical bisection lines indicate the chosen thresholds of 2 gm−2 (cloud water) and 10 gm−2 (cloud

ice) for distinguishing cloudy scenes from clear.
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Table 11. Contingency tables for classifications on the independent data set (corresponding to Fig. 14) for

cloud water and ice in nadir viewing mode. The results are shown separately for the four surface types.

Surface Cloud Clear atmospheres Cloudy atmospheres ACC PPV
Total Predicted Predicted Total Predicted Predicted

cases clear cloudy cases clear cloudy

# TPR # FNR # FPR # TNR
Desert Water 350 243 69% 107 31% 46 0 0% 46 100% 73% 100%

Desert Ice 357 101 28% 256 72% 33 2 6% 31 94% 34% 98%

Ice Water 115 15 13% 100 87% 30 4 13% 26 87% 28% 79%

Ice Ice 127 9 7% 118 93% 47 5 11% 42 89% 29% 64%

Land Water 1054 682 65% 372 35% 344 12 4% 332 96% 73% 98%

Land Ice 892 393 44% 499 56% 375 20 5% 355 95% 59% 95%

Ocean Water 5239 3852 74% 1387 26% 1821 44 2% 1777 98% 80% 99%

Ocean Ice 4766 750 16% 4016 84% 2059 205 10% 1854 90% 38% 79%

For completeness the scatter plots of the effective scattering heights of cloud water and cloud

ice, as well as water vapor, in nadir mode for the independent data set are shown in Fig. 15. It

is evident that the retrieval accuracies of the effective scattering heights are less than ideal. Of

particular concern is the wide range of retrieved values when the scene is completely cloud

free, i.e., cases with target scattering heights identically zero. The accuracies in the column

water vapor amount also have large variations, although the linear correlations indicate that

there is some information in the retrieved values. As was explained in Part I, these variables

have been retained in the current version of the algorithm because it was found that removing

them from the set of target variables did not actually increase the accuracy in the prediction

of the cloud water and ice amounts. Furthermore, it is hoped that future improvements to the

algorithm will lead to reasonable retrievals of these quantities which, along with the estimated

values of cloud water and ice, can then be used as inputs to constrain the XCO2 inversion

algorithm [5] and [17]. It should be noted however, that removal of these variables from the

algorithm would significantly reduce the size of the network architecture (see Sec. 3.2.6 of

Part I), thereby allowing for an increase in the number of nodes in the hidden layer, which leads

to a decrease in the mean squared error in the retrieved parameters. Future testing will explore

possible improvements via removal of these parameters.

4.2.2 Glint Results

The results from the glint mode retrievals with uncertainties added are shown in Fig. 16. The

scatter is significantly higher than in nadir viewing mode, and for ice clouds incorrect selection

of the hierarchy member is common, causing many clear scenes to be classified as cloudy,

leading to moderately low accuracy. Fortunately, for both cloud water and ice the retrieval

tends to overestimate, thus keeping the value of PPV high, and ensuring that scenes classified

as clear usually are clear. The corresponding contingency tables (Table 12), when compared

to the hold-over results presented in Table 10 corroborate these findings. As in nadir, for glint

mode the ACC is typically much worse, while improvements to the PPV are very noticeable on

the independent data set.

Again for completeness, the retrieved values of the effective scattering heights of cloud

water and cloud ice and the column water vapor amount are shown for the glint mode retrieval

on the independent data set in Fig. 17. Overall the correlations are low for these variables as

was the case in the nadir mode, although for water vapor there is clearly some information in

the retrieved value. As discussed in the previous section, it is hoped that future modifications

to the retrieval algorithm will yield increased accuracy in these variables, allowing them to be

used as first guess information in the XCO2 inversion algorithm.
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Fig. 15. Neural network predicted versus target values of effective scattering height of cloud water (top)

and effective scattering height cloud ice (middle) and column water vapor (bottom) in nadir mode over the

four surface types on the independent data set. The linear regression coefficient (R), slope (m) and bias

(b) are given in the legends, along with the number of data points (N ).
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Fig. 16. Same as in Fig. 14, except for glint viewing geometry.
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Fig. 17. Same as in Fig. 15, except for glint viewing geometry.
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Table 12. Contingency tables for classifications on the independent data set (corresponding to Fig. 16)

for cloud water and ice in glint viewing geometry. The results are shown separately for the four surface

types.

Surface Cloud Clear atmospheres Cloudy atmospheres ACC PPV
Total Predicted Predicted Total Predicted Predicted

cases clear cloudy cases clear cloudy

# TPR # FNR # FPR # TNR
Desert Water 326 212 65% 114 35% 20 0 0% 20 100% 67% 100%

Desert Ice 329 57 17% 272 83% 21 3 14% 18 86% 21% 95%

Ice Water 350 350 100% 0 0% 1 1 100% 0 0% 100% 100%

Ice Ice 366 1 0% 365 100% 28 0 0% 28 100% 7% 100%

Land Water 1258 845 67% 413 33% 447 9 2% 438 98% 75% 99%

Land Ice 1213 919 76% 294 24% 419 85 20% 334 80% 77% 92%

Ocean Water 3447 678 20% 2769 80% 1049 70 7% 979 93% 37% 91%

Ocean Ice 3299 1879 57% 1420 43% 1112 115 10% 997 90% 65% 94%

5 CONCLUSIONS
In this work a hierarchy of neural network committees, trained with increasing amounts of

cloud water and ice, were used to predict cloud water (cw) and cloud ice (ci), their effective

scattering heights (pcw and pci), respectively) and the column water vapor amount (w). The

predictions were based on high resolution spectra of reflected sun light in three near-infrared

spectral bands (O2 A-band, weak CO2 band and strong CO2 band). This was done in both the

nadir and sun-glint viewing modes over all surface types.

Simulated spectra for neural network training were generated from an ensemble of ECMWF

profiles containing a large range of atmospheric, cloud and surface types. A principal compo-

nents analysis was performed on each waveband to compress the data by more than two orders

of magnitude and to increase the ability of the algorithm to distinguish information from random

clutter.

Sensitivity tests were performed by adding random variations to the predictor values, includ-

ing the addition of noise to the measurements. Even though the scatter in the retrieval of cloud

properties was found to increase due to addition of uncertainties, the ability of the algorithm to

classify scenes as either cloudy or clear was only degraded by a few percent.

Testing on an independent data set, generated using CloudSat and Calipso profiles with the

uncertainties added, showed favorable classification skill in both viewing modes when using a

cloudy-clear threshold of 2 gm−2 for cloud water and 10 gm−2 for cloud ice. The classification

accuracies vary with the surface type, but are typically in the range 35% to 75%, with positive

predictive values (confidence level) typically in the range 80% to 99%. While the predictive

skill for cloud properties generally was high for high cloud amounts, below the thresholds the

algorithm functioned only as a classifier.

Acknowledgments
The authors would like to thank Adam Carheden at CSU/CIRA for providing invaluable support

with the computer cluster and to Natalie Tourville for her assistance with general computing is-

sues. Thanks also are due to Chris O’Dell and Igor Polonsky for their assistance with various

aspects of the radiance simulations. In addition we would like to thank two anonymous review-

ers for providing useful suggestions on this work. This research was funded by JPL contracts

1280999 and 1380533.

Journal of Applied Remote Sensing, Vol. 4, 043518 (2010)                                                                                                                                    Page 23



References
[1] T. E. Taylor and D. M. O’Brien, “A neural network cloud screening algorithm. Part

I: a synthetic case over land surfaces using micro-windows in O2 and CO2 near in-

frared absorption bands with nadir viewing,” J. Appl. Rem. Sens. 3, 033548 (2009)

[doi:10.1117/1.3239515].

[2] D. Crisp, C. E. Miller, and P. L. DeCola, “NASA Orbiting Carbon Observatory: measuring

the column averaged carbon dioxide mole fraction from space,” J. Appl. Rem. Sens. 2,

023508 (2008) [doi:10.1117/1.2898457].

[3] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak,

A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning,

M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien,

R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy,

Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geo-
phys. Res. 112, D10314 (2007) [doi:10.1029/2006JD007659].

[4] D. Crisp, R. Atlas, F.-M. Breon, L. R. Brown, J. Burrows, P. Ciais, B. J. Connor, S. C.

Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O’Brien, S. Pawson, J. T. Randerson,

P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon,

P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss,

R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) mis-

sion,” Adv. Space Res. 34, 700–709 (2004) [doi:10.1016/j.asr.2003.08.062].

[5] B. J. Connor, H. Boesch, G. Toon, B. Sen, C. Miller, and D. Crisp, “Orbiting Carbon Ob-

servatory: inverse method and prospective error analysis,” J. Geophys. Res. 113, D05305

(2008) [doi:10.1029/2006JD008336].
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