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Abstract. Generally, the performance of tomographic bioluminescence imaging is dependent on several factors,
such as regularization parameters and initial guess of source distribution. In this paper, a global-inexact-Newton
based reconstruction method, which is regularized by a dynamic sparse term, is presented for tomographic
reconstruction. The proposed method can enhance higher imaging reliability and efficiency. In vivo mouse
experimental reconstructions were performed to validate the proposed method. Reconstruction comparisons of
the proposed method with other methods demonstrate the applicability on an entire region. Moreover, the reliable
performance on a wide range of regularization parameters and initial unknown values were also investigated. Based
on the in vivo experiment and a mouse atlas, the tolerance for optical property mismatch was evaluated with optical
overestimation and underestimation. Additionally, the reconstruction efficiency was also investigated with different
sizes of mouse grids. We showed that this method was reliable for tomographic bioluminescence imaging in
practical mouse experimental applications. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3570828]
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1 Introduction
From being the solid development of bioluminescent probes and
reporter technologies,1–3 the application of bioluminescence in
biomedical in vivo imaging has become more and more attrac-
tive over the recent years. It offers an alternative opportunity
for noninvasively visualizing biological processes at the physio-
logical and molecular levels in whole animals.4–6 Tomographic
bioluminescence imaging (TBI) can further translate the pla-
nar imaging information into three-dimensional bioluminescent
source distribution quantitatively, thus greatly facilitating appli-
cations in related biomedical in vivo studies.7, 8 Therefore, the
development of the reconstruction approaches for tomographic
imaging plays a unique role in the achievement of practical
biomedical in vivo imaging studies.

Nevertheless, it is known that the inverse problem of to-
mographic imaging is an ill-posed problem due to the fact that
some limited information can only be measured from the bound-
ary of animals to estimate the internal bioluminescent source
distribution.9 Therefore, this imaging modality faces various
challenges in its accuracy and reliability. Researchers have made
considerable efforts to cope with the ill-posedness of the under-
determined inverse problem. It can be alleviated by incorpo-
rating some a priori information. Spectrally resolved boundary
measurements, which practically increase the amount of inde-
pendent data, are necessary to accurately recover tomographic
images of bioluminescent sources.10–14 By reducing the number
of unknowns, the permissible source region method is demon-
strated to be capable of correctly reconstructing the images at
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monochromatic measurements.15–17 This reconstruction domain
is needed to be spatially constrained to the area of interest,
whereas, it is not always feasible to define such a region effec-
tively in practical tomographic imaging applications. Moreover,
the varying boundary conditions have also been proposed to
enhance the reliability of the reconstruction results.18

On the other hand, the regularization strategies, which are
imposed with the output-least-squares formulation to stabilize
the inverse problem, are also indispensable for tomographic
quality.19 Although the l2-type regularization strategy is the
most popular and commonly-applied, it often imposes over-
smoothing on the reconstruction results. In contrast, due to
the high specificity of the bioluminescence probes and re-
porter technologies, the objective for tomographic imaging is
only the sparsely-distributed signal. Consequently, the sparse
prior knowledge can be employed to recover the source dis-
tribution and preserve discontinuities in the reconstructed pro-
files with less measurements, which is presented in references
by Lu et al.20 and Gao and Zhao.21 Actually, the sparse-type
(l1) regularization has been studied for years and recently has
drawn a lot of attention due to theoretical justification and many
applications.20, 22–27 Although the aforementioned methods have
been proposed to overcome the challenges in the inverse prob-
lem, further study is still needed to alleviate the dependence with
some parameters during reconstructions, such as the parameters
in the regularization term.

In general, it is assumed that there are multiple local minima
of the objective function in the TBI inverse problem.28 Conse-
quently, the application of local optimization techniques, e.g.,
the conventional Newton-based optimization methods that ex-
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plore the unknown parameter space only near a single local
minimum, may lead to inapposite convergence without finding
the global minimum.16, 17, 29, 30 As a consequence, reconstruc-
tions on a part of the animal body or even on the whole body
become more difficult. Recently, a graph cuts-based method was
proposed, which could find a global optimal solution efficiently
and was not dependent on a starting unknown guess in the search
process.31 However, since the reconstruction could only be rep-
resented in discrete form, it was difficult to recover complex
source distribution appropriately in whole animals. Likewise,
more efforts are urgently needed to make whole body imaging
available with an arbitrary initial guess for the unknowns.

In this work, a dynamically-sparse regularized global method
is proposed. In order to make full use of the sparse a priori
information, the sparse term l p (1 ≤ p < 2) is approximated
by a corresponding weighted l2 norm in each iteration,32 rather
than be adopted directly. It can facilitate the generalization of the
sparse regularization with greater flexibility of p in the dynamic
quadratic frame, and avoid tedious numerical operation as well.
A globally-converged optimization technique is presented to
search for the global solution. It could find the globally optimal
solutions far from the starting unknown guess efficiently, and
maintain the reliable reconstruction quality over a wide-range
of regularization parameters.

In Sec. 2, we present the proposed method for TBI. In Sec. 3,
validations based on an in vivo experimental data set demon-
strate higher imaging reliability and cheaper computational cost
of the proposed method. First reconstruction comparisons of
the proposed method with other methods demonstrate the appli-
cability on the entire region. Then, the reliable performance on
various ranges of regularization parameters and initial unknown
values is also validated. Based on the in vivo mouse experiment
and a mouse atlas, the tolerance for optical property mismatch
is investigated with optical overestimation and underestimation
on absorbing and reduced scattering properties. Additionally,
the reconstruction efficiency is also analyzed with different
sizes of mouse grids. Finally, we discuss and conclude this
paper.

2 Methods
2.1 Forward Model
In the steady-state domain, the forward problem of light propa-
gation for TBI can be modeled as a diffusion approximation to
the radiative transport equation,16 which is given by

− ∇ · (D(r)∇[�(r)] + μa(r)�(r) = X (r)(r ∈ �). (1)

In the bioluminescence imaging experiments, the whole pro-
cess is performed in a completely dark environment, and there is
no external photon into imaging domain � through its boundary
∂�, so the Robin-type boundary condition is suitable:

�(r) + 2κ(r, n, n′)D(r)[v(r) · ∇�(r)] = 0(r ∈ ∂�). (2)

The physical meaning of the parameters can be found in
Schweiger et al. and Cong et al.16, 33 Therefore, the outgoing
photon density on the boundary captured by a highly sensitive

CCD camera is given by:16

V (r) = −D(r)[v(r) · ∇�(r)] = �(r)

2κ(r, n, n′)
(r ∈ ∂�). (3)

Based on the finite element theory, Eqs. (1) and (2) are dis-
cretized by piecewise linear finite elements, and a matrix-vector
equation is integrally assembled.33 Consequently, after a series
of rearrangements for the elements in the matrix, the linear rela-
tionship between the measured photon density distribution and
the unknown source distribution in heterogeneous biological
tissues is established as:

MX = �, (4)

where M denotes the finite-element system matrix.

2.2 Dynamic Sparse Regularized Function
In practice, the common approach for the TBI inverse problem is
to adopt the output-least-squares formulation. A regularization
function is incorporated to stabilize the inversion problem like
this:

S(X ) = ||LX ||p
p, (5)

where L is a regularization matrix. There are several choices
for the matrix, such as an identity matrix,16, 20, 31 total variation
regularization matrix,26 and a weight matrix with structured
spatially varying regularization.34–36 Imposing with the regular-
ization term, the objective function of this class falls into the
general framework:

T (X ) = 1

2
‖MX − �m‖2

2 + λ||LX ||p
p, (6)

where �m denotes the measured photon density on the bound-
ary, and λ the regularization parameter, which balances relative
weighting between the fidelity term and the regularization term.
Here, if an identity matrix I is just taken as the regularization
matrix L and p < 2, the regularization term falls into the gener-
alized sparse one. To facilitate the following operation, the term
can be rewritten as:

S(X ) = 1

p
‖X‖p

p(1 ≤ p < 2). (7)

Now let us begin to construct the dynamic sparse regularized
function. Instead of solving the sparse l p problem,20 a quadratic
version is generated to approximate the sparse term for each
iteration.32 In order to replace the l p term by the l2 one and dy-
namically regularize the objective function, the quadratic func-
tion is defined as:

Q(k)
S (X ) = 1

2

∥∥W (k)1/2

S X
∥∥2

2 +
(

1 − p

2

)
S(X (k)), (8)

where X (k) denotes a constant representing the solution of the
previous iteration and

W (k)
S = diag[τS,εS (X (k))]. (9)

The diagonal matrix W (k)
S is updated in each iteration using

the values of the last step. The matrix actually plays a spatially
varying role to maintain the imaging results reliable enough,
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which can tolerate different orders of magnitude of regulariza-
tion parameters to obtain reliable results to some extent. Based
on the strategy in the reference by Rao and Kreutz-Delgato,37

τS,εS (for some small εS) is defined as

τS,εS (u) =
{

| u |p−2 if | u |> εS

0 if | u |≤ εS
. (10)

Note that it is necessary to add the constant term
(1 − p

2 )S(X (k)) in Eq. (8) to ensure that:

S(X (k)) = Q(k)
S (X (k))(asεS → 0), (11)

and the bound is straightforward to be proven as:

S(X ) < Q(k)
S (X )(∀X 	= X (k)), (12)

and asεS → 0,

∇X S(X ) |X=X (k)= ∇X Q(k)
S (X ) |X=X (k). (13)

It is noteworthy that the original regularization term
[Eq. (7)] and its quadratic version [Eq. (8)] have the same value
and tangent direction at X = X (k).

Thus, based on the dynamic sparse regularization tech-
nique, the objective function is reformulated into the following
quadratic form:

T (k)(X ) = 1

2
‖MX − �m‖2

2 + λQ(k)
S (X )

= 1

2
‖MX − �m‖2

2 + λ

2

∥∥W (k)1/2

S X
∥∥2

2

+ λ
(

1 − p

2

)
S(X (k))(k ≥ 0). (14)

The corresponding gradient and Hessian matrix are easily
derived

∇T (k)(X ) = (
MTM + λW (k)

S

)
X − MT �m, (15a)

∇2T (k)(X ) = MTM + λW (k)
S . (15b)

In particular, if p = 2 and εS = 0, Q(k)
S (X ) = 1

2‖X‖2
2 for

any k, thus the dynamically sparse regularized function de-
grades into the popular static regularized quadratic objective
function.16, 20, 31

2.3 Reconstruction Algorithm
After constructing the dynamically sparse regularized function
for the inverse problem, the reconstructed solution can be esti-
mated by minimizing the objective function dynamically:

Xrecons. = arg min
X

T (k)(X ), (16)

which is converted into the following problem practically:

∇T (k)(X ) = 0. (17)

One kind of widely applied algorithm for solving Eq. (17) is
the Newton method, as shown in Algorithm 1:

Algorithm 1 Newton method.

1: Initialize X (0) and tol

2: while have not converged do

3: Solve ∇2T (k)(X (k))rk = −∇T (k)(X (k))

4: Set X (k+1) = X (k) + rk

5: end while

where rk denotes the increment step at kth iteration.
This method exactly solves Newton’s equations (step 3 in
Algorithm 1) at each iteration, which can be very expensive
if the number of unknowns is large and may not be justified
when rk is far from a solution. Thus, an inexact Newton method
is preferred to just compute an approximate solution of New-
ton’s equations at each iteration, which can be summarized in
pseudo-code as follows:38

Such approximate treatmental offers a trade-off between
the accuracy with a solution of Newton’s equations and
the amount of the computational cost per iteration. By making
the ηk appropriately small, the convergence can be made and
the norm of ∇2T (k)(X ) can be reduced.39 Since ∇2T (k)(X (k))rk

+ ∇T (k)(X (k)) is the residual of Newton’s equations, each ηk de-
notes how accurate rk is close to the exact solution. It is seen that
rk satisfying step 4 in Algorithm 2 is an inexact Newton step.

Algorithm 2 Inexact Newton method.

1: Initialize X (0) and η0

2: while have not converged do

3: Find some ηk ∈ [0, 1) and rk that satisfy

4: ‖∇2T (k)(X (k))rk + ∇T (k)(X (k))‖ ≤ ηk‖∇T (k)(X (k))‖

5: Set X (k+1) = X (k) + rk

6: end while

If the inexact Newton condition (step 4 in Algorithm 2) is
augmented with a sufficiently decreased condition for ∇T (k)(X ),
the algorithm above can be globally converged:38

‖∇2T (k)(X (k)+ rk)‖ ≤ [1−t(1 − ηk)]‖∇T (k)(X (k)‖, t ∈ (0, 1).

(18)

However, a backtracking strategy is alternatively adopted
to transform the augmented condition [Eq. (18)] into a practical
formulation. At each iteration, an initial inexact Newton step at a
specified level is tried, and if it proves unsatisfactory, the inexact
Newton steps to higher levels that are solved until a reliable
enough step is obtained. The detailed backtracking strategy is
shown as:
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while ‖∇2T (k)(X (k) + rk)‖ ≤ [1 − t (1 − ηk)]‖∇T (k)(X (k)‖ do

Choose θ ∈ [θmin, θmax]

Update rk = θrk, ηk = 1 − t (1 − ηk)

end while

Hence, the inexact Newton method with backtracking strat-
egy is incorporated together to enhance convergence from an
arbitrary initial guess for unknowns. Up until the end, the pro-
posed reconstruction method is established for the TBI inverse
problem. The algorithm shown in Fig. 1 summarizes how the
global inexact Newton approach takes advantage of a dynam-
ically sparse regularization technique. The flowchart includes
dual-level iterations. The outer iteration controls the whole
inexact algorithm, and the sparse regularization term is up-
dated based on the previous iteration during each outer itera-
tion. In order to maintain accuracy of the approximation for
Q(k)

S (X (k)) = S(X (k)), the small εS is set as 0.02. The inner iter-
ations also fall into two parts: the Krylov solver and the back-
tracking operation. Here, the preconditioned conjugate gradient

Begin

Inputs: Diffusion operator M, BLI data Φm,
α, γ , t ∈ (0 1) and 0 < θmin < θmax < 1

Initialize X (0), W
(0)
S , η̄0 λ, S , and tol

T (k)(X (k)) Φm < tol

Update W
(k)
S = diag(τ S (X (k))

and T (k)(X )

Compute the trial inexact Newton step r̄k:

T (k)(X (k)) + ∇2T (k)(X (k))r̄k) η̄k T (k)(X (k))
with the Krylov solver

Set rk = r̄k and ηk = η̄k

T (k)(X (k) + rk)

[1 − t(1 − ηk)] T (k)(X (k))

Choose θ ∈ [θmin θmax]
Update rk = θrk, ηk = 1 − t(1 − ηk)

Set X (k+1) = X (k) + rk,

η̄k = γ ( T (k)(X (k+1))

T (k)(X (k))
)α , Given η̄k ∈ (0 1)

k = k + 1

End

No

No

Yes

Yes

Fig. 1 The algorithmic flowchart for the proposed imaging reconstruc-
tion method.

is selected as the Krylov solver. p = 1 is taken as an example in
Eq. (14).

3 Results
In this section, an in vivo heterogeneous mouse reconstruction
experiment was implemented to demonstrate the feasibility of
the proposed method. The experiment was performed on the
dual-modality optical/micro-CT in vivo imaging system devel-
oped by our group.31, 40, 41 The optical detector was a highly
sensitive CCD camera (VersArray, Princeton Instruments,
Trenton, New Jersey) coupled with a lens (Nikkor, Nikon,
Japan). The bioluminescent source was simulated by a home-
made luminescent bead, which had an emission spectrum simi-
lar to that of a firefly luciferase-based source. Its dimension was
about 1.5 mm in diameter and 2.5-mm long. A nude hairless
mouse (Nu/Nu, Laboratory Animal Center, Peking University,
China) was adopted in this experiment.

Before optical and x ray data acquisition, the CCD was refrig-
erated to −110◦C to reduce dark current noise, and the mouse
was anesthetized and the bead was implanted stereotactically
into the interspaces between the left and right lobes of the liver.
The optical data was collected first. Bioluminescence images
from four views were acquired from the mouse surface, with
60 s integration time for each image, and then four corresponding
white mouse images were also obtained. After finishing optical
acquisition, the mouse was scanned using the micro-computed
tomography (CT) to obtain the surface and anatomical structure.

Data processing followed data acquisition. The mouse struc-
ture images were reconstructed by the CT cone-beam recon-
struction algorithm.42 Then, the data were segmented into a het-
erogeneous volumetric mesh for image reconstruction, as shown
in Fig. 2(c). This mesh contains 23,752 tetrahedral elements and
4560 discretized nodes with 1092 nodes on the surface. The torso
applied for reconstruction covered over 60% of the volume of
the mouse body. Then, the demanded photon density projections
on the mouse surface were obtained, and the main procedure is
summarized in Fig. 2. First, the two sets of data were spatially
registered by the corresponding markers on 2D optical images
and on 3D CT volume, which is shown in Fig. 2. The image
registration results in Fig. 2(d) were obtained by incorporating
Figs. 2(a) and 2(b). Second, the complete-angle outgoing photon
density on the mouse surface [Fig. 2(f)] was projected from the
2D images on the CCD [Fig. 2(e)] to the 3D surface [Fig. 2(c)]
according to the co-registered image [Fig. 2(d)]. The source was
easily distinguished in CT images, and the actual position of the
source could be confirmed at (25.54, 21.31, 8.52), as shown
in Fig. 2(a). Additionally, the optical properties for each organ
were determined with the inverse adding doubling scheme,43 as
listed in Table 1.

3.1 Reconstruction Comparison
Based on the in vivo mouse experiment, the proposed method
was first evaluated by comparing it with other methods. One
of the exact Newton methods (as in Algorithm 1) was se-
lected to demonstrate the predominance of the global inexact
Newton method. A recently developed gradient-free method,
which was generalized graph cuts, was also employed to further
demonstrate the potential and effectiveness of the proposed
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Fig. 2 The dual-modality fused image co-registration and the corresponding outgoing optical density projection on the mouse surface.
(a) The original CT volume obtained by the micro-CT component of the dual-modality system. (b) The white images of the mouse from four
views. (c) The heterogeneous grid of a mouse torso CT image, including heart, lungs, liver, muscle, and bone. (d) The fusion registration by markers
between the CT image in (a) and the white mouse images in (b). (e) The measured bioluminescence images from four views captured by the optical
component. (f) The final 360◦-projected outgoing photon density on the mouse surface. It is the fusion result of (c), (d) and (e).

method.31 This method also has the property of global
convergence.44 As reported previously,16, 17, 30, 31 the reconstruc-
tion on a large region often results in troublesome problems
when using the exact Newton-type method, and a permissible

Table 1 Optical properties for each organ in the mouse.

Experimental mouse Mouse atlas

μa μ′
s μa μ′

s

Heart 0.022 1.129 0.058 0.963

Lungs 0.071 2.305 0.195 2.173

Liver 0.128 0.646 0.345 0.678

Spleen – – 0.345 0.678

Muscle 0.075 0.586 0.086 0.429

Bone 0.032 2.178 0.060 2.495

source region is preferred to reduce the number of unknowns
and keep reliable reconstruction results.

Figure 3 shows the comparison of the reconstruction results
for these methods. The cross sectional images based on the exact
Newton method are shown in Figs. 3(c) and 3(d). The permiss-
able source region in Fig. 3(c) is {(x, y, z)|22 ≤ x ≤ 28, 17
≤ y ≤ 23, 6 ≤ z ≤ 10}, and the result in Fig. 3(d) is recon-
structed on the whole region as depicted in Fig. 2(c). It is
obvious that the selection of the permissable source region is
very necessary to obtain reliable reconstruction results. If the
permissable region is extended or even no permissable region is
adopted, and more unknowns are introduced in the reconstruc-
tion, the reconstructed source distribution may deviate further
from the real one further, as shown in Fig. 3(d). In contrast to this
method, as shown in Fig. 3(e), both accurate source localization
and distribution can be recovered based on the global inexact
Newton method applied on the entire region. The reconstruction
image in Fig. 3(b) is the result based on generalized graph cuts.
Both of the proposed and generalized graph cuts methods can
localize source distribution well compared with the true one.
However, the proposed method can also quantify source density,
but this was not the case of the gradient-free method. In the
reconstructions based on the Newton method and generalized
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Fig. 3 The comparison of cross sectional images for reconstructed bioluminescence source distribution. (b) The result of generalized graph cuts
method on the whole reconstruction region. (c) and (d) The result of the Newton method on a small permissable source region and the whole
reconstruction region, respectively. (e) The result of the proposed method on the entire reconstruction region. (a) and (f) are the corresponding CT
slices. Note that the colorbar scales on the right vary with each reconstruction.

graph cuts, the best regularization parameters were selected
and the parameters were in the range of 10−5 to 10−3. For the
proposed method, the value was 4×10−2.

3.2 Reliability Studies for Imaging Reconstructions
In this part, reconstructions regularized with different orders
of magnitude (10−1 to 10−12) parameters were performed for
in vivo tomographic bioluminescence imaging. As shown in
Fig. 4, reconstructions were hardly affected with the regulariza-
tion parameters, and the bioluminescent source distribution was
accurately reconstructed in all cases. Moreover, the results also
offered little difference in the way of quantitative information.
Figure 5 further demonstrates the nonsensitive performance of
the proposed method with a large range of regularization param-
eters. During four outer iteration steps, the evolution curve of
||MX − �m ||/||Mt�m || was almost the same with each other,
thus only one curve was given here. It appears that the regu-
larization parameters may not affect the tomographic imaging
quality very much.

Second the reliability of the proposed method was further val-
idated by changing the initial guess for unknowns X (0), which
were uniformly distributed in a range from 0 to 200. In Fig. 6,
based on the results shown above, the bioluminescent source dis-
tribution was recovered credibly, and the reconstructions were
hardly affected with initials in all cases. Moreover, the results

also represented similarly quantitative information with each
other. Similar to the curve in Fig. 5, it is also further demonstrated
in Fig. 7 that the proposed method can tolerate different initial
unknowns and converge reliably. It is also interesting that dur-
ing iteration, the evolution values of ||MX − �m ||/||Mt�m ||
for large initial values would merge into one curve sooner or
later, which is almost the same with each other. It is demon-
strated that, as proven mathematically,38 the global inexact
Newton method with dynamic sparse regularization is glob-
ally optimized, and the tomographic imaging quality can be
maintained.

Moreover, it is noteworthy that all reconstructions were per-
formed on the whole grid, instead of being performed on small
permissible source regions. In the mouse experiments, it is not
always reliable or feasible to define such regions effectively,
so the proposed method is highly applicable to practical tomo-
graphic imaging.

3.3 Evaluation of the Tolerance for Optical
Property Mismatch

Based on the advantage of heterogeneous tissue distribution, the
optical property in each organ makes an indispensable role for
high quality imaging reconstruction. When constructing hetero-
geneous optical property distribution, a simple and convenient
option is to introduce average parameter values from measured
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Fig. 4 Reconstruction results with different regularization parameters. The center is the corresponding CT slice. All of the unknowns are set to be 0
for all cases.

or published ranges for individual data.30, 45–47 Although this
approach may not be as accurate as straightforward parameter
measurements on individual animals, its limitation could be a
trade-off for its simplicity and avoidance of additional opera-
tions. Here, the reconstruction performance that results from
the mismatch in optical properties was evaluated. Two mouse
models were employed here, including the above-mentioned
experimental mouse and a mouse atlas (which contains 25,783
tetrahedral elements and 4614 nodes with 486 nodes on the sur-
face), as shown in Fig. 8. The atlas was also constructed by
our group, and the optical properties for each tissue are listed
in Table 1. More details about the atlas can be found in Liu

et al.31 Based on the mouse atlas, the case with the two sources
were considered for evaluating the tolerance for optical property
mismatch. For the two models, the optical property mismatch
of ±20% and ±50% in both μa and μ′

s was introduced into the
tissues. Practically, the optical properties may have a combina-
tion of positive and negative mismatch of different magnitudes
in the absorption and scattering properties. Consequently, four
extreme conditions for all of the tissues were considered here:
both μa and μ′

s were overestimated; both μa and μ′
s were un-

derestimated; μa was overestimated, μ′
s was underestimated;

μa was underestimated, and μ′
s was overestimated, as listed in

Table 2.
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Fig. 5 The evolution curve of ||MX − �m||/||MT �m|| as a function
of the iteration steps with initial unknowns of 0 uniformly. Four outer
iteration steps are undergone during reconstruction. Note that the curve
with different regulation parameters is very similar, hence just one curve
is plotted here.
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Fig. 7 The evolution curve as a function of iteration steps with different
initial unknowns. Four outer iteration steps are undergone.

The Monte Carlo (MC) method is accurate for the simula-
tion of photon propagation through biological tissues. In the
mouse atlas experiment, a MC-based molecular optical simula-
tion environment was employed here to statistically estimate the

Fig. 6 Reconstruction results with different initial guesses. The initials are uniform for all unknowns. The center is the corresponding CT slice. The
regularization parameter in all cases is selected as 4×10−2.
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Table 2 The summary for the effect of optical property mismatch of ±20% and ±50% in both μa and μ′
s . OP. mismatch denotes the bias from real

optical properties.

OP. mismatch

No. μa μ′
s Reconstruction center Relative errors Offset Artifact

1 + 20% + 20% (25.12, 21.95, 8.32) (0.42, 0.64, 0.20) 0.79 None

2 − 20% − 20% (24.93, 20.94, 8.75) (0.61, 0.37, 0.23) 0.75 None

3 + 20% − 20% (25.61, 22.02, 8.98) (0.07, 0.71, 0.46) 0.85 None

4 − 20% + 20% (25.03, 21.61, 9.02) (0.51, 0.30, 0.50) 0.77 None

Model 1 5 + 50% + 50% (26.03, 22.45, 9.82) (0.49, 1.14, 1.30) 1.80 None

6 − 50% − 50% (23.86, 20.43, 7.86) (2.20, 3.01, 1.00) 2.01 Exist

7 + 50% − 50% (24.99, 20.91, 8.92) (0.65, 0.40, 0.40) 0.86 None

8 − 50% + 50% (24.75, 20.83, 8.12) (0.79, 0.48, 0.40) 1.01 None

1 + 20% + 20% (21.21, 33.98, 10.81) (0.79, 0.02, 0.81) 1.13 None

(21.00, 34.01, 15.11) (0.50, 0.00, 0.11) 0.51 None

2 − 20% − 20% (21.51, 33.69, 11.01) (0.49, 0.31, 1.01) 1.16 None

(21.00, 33.91, 15.29) (0.50, 0.09, 0.29) 0.59 None

3 + 20% − 20% (21.21, 34.01, 10.69) (0.79, 0.01, 0.69) 1.06 None

(21.05, 34.00, 15.01) (0.45, 0.00, 0.01) 0.54 None

4 − 20% + 20% (21.39, 33.91, 10.83) (0.61, 0.09, 0.83) 1.03 None

Model 2 (21.04, 33.90, 15.31) (0.46, 0.10, 0.31) 0.56 None

5 + 50% + 50% (21.51, 33.09, 10.11) (0.49, 0.91, 0.11) 1.04 Exist

(20.82, 32.29, 13.91) (0.68, 1.71, 1.09) 2.14 Exist

6 − 50% − 50% (21.53, 33.82, 11.21) (0.47, 0.18, 1.21) 1.31 Exist

(21.01, 33.89, 15.73) (0.49, 0.11, 0.73) 0.89 Exist

7 + 50% − 50% (21.28, 34.12, 10.73) (0.72, 0.12, 0.73) 1.03 None

(20.83, 33.79, 15.46) (0.67, 0.21, 0.46) 0.84 None

8 − 50% + 50% (21.42, 33.91, 10.61) (0.58, 0.09, 0.61) 0.86 None

(20.81, 33.79, 15.64) (0.69, 0.21, 0.64) 0.96 None

bioluminescence signal distribution on the mouse surface.48, 49

In the simulation settings, two spherical solid sources with a
radius of 1.0 mm were located at (22.00, 34.00, 10.00) and
(21.50, 34.00, 15.00). A total of 106 photons for each source
were tracked for enhancing simulation accuracy.

The reconstruction results are summarized in Table 2, and
typical results are shown in Fig. 9. In general, both the mouse
and the mouse atlas, the bioluminescent sources were reliably
reconstructed. The reconstruction offset is summarized in
Fig. 10. In the first case, the maximum location error was 2 mm
when there was a –50% mismatch for both μa and μ′

s (No. 6

of model 1); in the second case, the maximal error occurred
when a +50% mismatch both in μa and μ′

s (the second source
in No. 5 of model 2) existed with ∼2 mm offset as well.
From Table 2, it is observed that the reconstructed sources
were localized less ideally with ±50% errors than with ±20%.
It consequently seemed that the effects of the mismatch on
the tomography results became larger for increasing optical
errors. With the mismatch increasing, an artefact also appeared
around the source regions [as the red arrow in Fig. 9(b)], which
may be an inevitable side-effect for large optical property
errors.50
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Fig. 8 The volumetric mesh of the heterogeneous mouse atlas, includ-
ing heart, lungs, liver, spleen, muscle, and bone.

Another interesting effect seemed that errors in opposite di-
rections partially cancelled each other out, leading to improved
source localization. As plotted in Fig. 10, when all tissues had
+50% errors in μa and −50% errors in μ′

s or −50% errors
in μa and +50% errors in μ′

s [No. 5, 6 in Figs. 10(a) and
10(b)], the localization errors were much better than those with
the same sign, and were similar to those with ±20%. The ar-
tifacts also appeared to affect the imaging quality only in the
same direction with a 50% error (−50% errors for model 1, and
±50% for model 2). Moreover, the reconstructed source became
more diffuse with greater errors, compared with lower optical
errors. A typical comparison is shown in Figs. 9(a) and 9(b). In
other words, when optical errors with the same sign occurred
during reconstruction, the imaging quality would be degraded
further.

The imaging quality based on the mouse atlas was better than
that of mouse experiment. The results in Fig. 9(c) for +50%
errors in μa and -50% errors in μ′

s were very similar to that of
the +20% errors in μa and −20% errors in μ′

s in Fig. 9(d). The
major reason may be the inevitable discrepancies in the optical
properties for the experimental mouse tissues. In practice, it is
impossible to obtain accurate optical values.47, 50 The source in

Fig. 9 The reconstruction results for both models when an optical property mismatch is introduced. (a) and (b) are results based on the experimental
mouse, and (c) and (d) are based on the mouse atlas. (a) and (c) The results with +20% mismatch of both μa and μ′

s . (b) and (d) The results with
mismatch of +50% μa and −50% μ′

s . In (b), the red arrow points to the artifact around the real source.

Journal of Biomedical Optics April 2011 � Vol. 16(4)046016-10



Liu et al.: Tomographic bioluminescence imaging reconstruction...

Fig. 10 Comparison for the source localization offset with different optical property mismatch. (a) The localization offset of the experimental mouse.
(b) The localization offset for two sources based on the mouse atlas.

the experimental mouse was located between the left and right
lobes of the liver, thus the space was relatively narrow, and the
diffuse approximation-based forward model may not fully deal
with this special case, which is another affecting factor. Higher
order approximation-based models may be helpful for higher
imaging quality in narrow structures.51, 52

For all of the reconstructions based on the two mouse models
in this part, the regularization parameter was set as 4×10−2, and
the unknowns were uniformly initialized as zero. It is worth
addressing that, based on the mouse atlas using other values of
the regularization parameter and the initial unknown guess, the
tomography results can be obtained with similar imaging quality
as shown in Table 2.

3.4 Efficiency Studies for Imaging Reconstructions
The high efficiency of the proposed method was also investi-
gated, compared with the exact Newton method, and the gen-
eralized graph cuts (GGC) method. As listed in Table 3, four
discrete grids of varying sizes of the experimental mouse were
utilized.

Based on the different methods, the reconstruction time of the
four grids is also summarized in Table 3. The reconstruction cost
of the global inexact Newton method was much cheaper than
the exact Newton one. The efficiency of the proposed method
was about 1 to 2 orders-of-magnitude of the exact method. As
the grid dimension increased, efficiency predominance became

Table 3 Efficiency comparisons of imaging reconstructions. The size
of the grid means the number of points × the number of elements.

No. Grid size Newton method GGC Proposed method

1 2125 × 7761 817.86 s 39.88 s 20.04 s

2 3048 × 15890 2294.66 s 68.58 s 28.80 s

3 3714 × 17218 4931.42 s 146.17 s 42.46 s

4 4560 × 23752 7891.52 s 345.74 s 82.12 s

larger, which is also shown in Fig. 11. The key factor is that
in the proposed method, only the approximate rather than the
exact solution was computed for the next iteration. Moreover,
while the efficiency of GGC was also much higher than the
exact Newton method, the performance of the proposed method
overcame the GGC, which is also clearly depicted in Fig. 11.
The reason lay in the complex process for the pairwise terms
in the unstructured grid (not based on square pixels or tube
vortexes).31 On the unstructured grid, the neighborhood for each
node was uncertain, and there were more neighbor nodes around
a node than the structured grid (based on square pixels or tube
vortexes). This process involved a time-consuming operation.
Hence, it is seen that the proposed method was very efficient,
and was also promising for the inverse problem of TBI. All of the
simulations were done on a Intel Core 2 Duo 1.86 GHz PC with
3 GB RAM.
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Fig. 11 The reconstruction time comparisons of imaging reconstruc-
tion on four different grids. Note that the time is scaled using 10 loga-
rithmic forms in the axis of ordinate.
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4 Discussions and Conclusion
In this study, we proposed an efficient global inexact Newton
method with a dynamic sparse regularizer for in vivo TBI. In or-
der to make full use of a priori information of the source sparse-
distribution, the sparse regularizer is dynamically approximated
by a corresponding weighted quadratic norm in each iteration,
rather than being adopted explicitly. The inexact Newton with a
backtracking optimization technique has the capability to search
for the global optimal solution among multiple local minima of
the objective function. The in vivo mouse experiment shows that
the proposed method can significantly enhance the reconstruc-
tion robustness of the regularization parameter and initial val-
ues with no a priori assumptions on the bioluminescent source
biodistribution. Applying both the experimental data and the
Monte Carlo-based mouse atlas data, the sensitivity evaluation
for optical property mismatch indicates that even when there
exist up to 50% overestimate and underestimate errors in the
heterogeneous mouse models, this method can still maintain
adequate reconstruction quality. During the reconstructions, it
exhibits high computational efficiency and reliable convergence
behavior in TBI reconstructions. To summarize, it is demon-
strated that the proposed method bears a strong potential to
improve the reconstruction capacity for practical tomographic
imaging applications.

Generally, data fusion from different modalities plays an in-
dispensable role for high imaging fidelity,53–55 as specially in to-
mographic bioluminescence imaging, and it is also necessary to
combine the information from optical and micro-CT modalities.
The data fusion between bioluminescence imaging and micro-
CT is helpful to alleviate the ill-posedness and improve imaging
quality. First optical images and CT volume can be spatially
co-registered, and the captured 2D bioluminescent signal can be
projected onto the 3D mouse surface. Second the heterogeneous
anatomical structure by micro-CT is naturally fused through the
construction of the optical forward model. The fusion imposes
such useful a priori information that accurate reconstruction re-
sults can be estimated. Moreover, although the anatomical map
has been incorporated in the forward model, the heterogeneous
priors can also be employed in the inversion process.36

Furthermore, although the diffusion approximation model
for TBI reconstructions is very popular, more accurate forward
models to describe photon propagation in biological tissues are
also necessary for higher imaging quality. Since the emission
spectra peaks of the four main luciferase enzymes (Fluc, BGr68,
CBRed, and hRluc) are 612, 543, 615, and 480 nm at tempera-
ture 37 ◦C, respectively, a significant part of the emission spec-
tra deviates from the high-scattering and low-absorbing win-
dow. Moreover, when light propagates through a geometrically
small volume, the diffusion assumption also becomes invalid to
some extent. As a consequence, more complex forward models
to compensate the no-diffusion condition have the potential to
improve the reconstruction quality further.28, 52 After the linear
relationship based on improved models has been established,
our proposed method in a generalized (l p) regularization frame-
work can be applied for tomographic imaging reconstructions
as well.

In conclusion, a dynamically-sparse regularized global
method has been presented. Both in vivo experimental and nu-
merical reconstructions have validated that our proposed method

has a high capability in maintaining accurate tomographic imag-
ing quality. As discussed above, future work will focus on study-
ing methods for further improving the tomographic imaging per-
formance validated by in vivo experiments with probe-marked
tumor models for further research.
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