
Infrared spectroscopic imaging of renal
tumor tissue
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LT- 08661 Vilnius, Lithuania
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Abstract. Fourier transform infrared (FTIR) spectroscopic imaging has been used to probe the biochemical compo-
sition of human renal tumor tissue and adjacent normal tissue. Freshly resected renal tumor tissue from surgery was
prepared as a thin cryosection and examined by FTIR spectroscopic imaging. Tissue types could be discriminated
by utilizing a combination of fuzzy k-means cluster analysis and a supervised classification algorithm based on a
linear discriminant analysis. The spectral classification is compared and contrasted with the histological stained
image. It is further shown that renal tumor cells have spread in adjacent normal tissue. This study demonstrates
that FTIR spectroscopic imaging can potentially serve as a fast and objective approach for discrimination of renal
tumor tissue from normal tissue and even in the detection of tumor infiltration in adjacent tissue. C©2011 Society of
Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3622292]
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1 Introduction
Renal tumors are the seventh leading cause of death by cancer
and account for approximately 2% of all new primary cancer
cases.1 Increases in incidence occurred in both sexes and it is
estimated that 72,000 cases of renal cancer will be diagnosed in
Europe each year.2 The main treatment modality for renal can-
cer is the radical or partial nephrectomy. However, at the time of
surgery it is not always possible to distinguish malignant tumor
cells from the surrounding healthy tissue. Only precise histolog-
ical examination of the removed tissue can definitively confirm
radicality of the operation, but this usually requires several days.
Intraoperative frozen tissue section pathology examination also
takes time and is not very reliable. If it reveals that the tumor
has not been completely removed, a second surgery is needed.
Another problem is the detection of tumor cell infiltration into
normal tissue.3 The ideal would be to have a rapid and objective
method that could indicate tumor cells in normal tissue during
the resection.

One approach that might play a role in the identification of
tumor cells is Fourier transform infrared (FTIR) spectroscopic
imaging.4, 5 Recent reports have been largely dominated by stud-
ies focusing on FTIR spectroscopic imaging to characterize skin
tumors,6 tumor cells in brain tissue,5, 7 breast tissue,8 in the
colon,9 and many others. The high sensitivity of the method en-
ables to identify tumors even in a very early stage of this disease.
Raman spectroscopy, a complementary technique to FTIR spec-
troscopy, provides also molecular information from tissue.10 The
advantage of Raman spectroscopy is that in vivo measurements
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are possible since water shows only a very weak Raman-signal.
In a recent study it was demonstrated that Raman spectroscopy
can accurately differentiate normal and tumor renal tissue and
even classify the tumor cells as low- or high-grade.11 The ad-
vantage of FTIR spectroscopic imaging is that the acquisition
is fast (up to a few minutes per image) and the spectra provides
a higher signal-to-noise ratio than Raman spectra. FTIR spec-
troscopic imaging is preferred when a larger area of tissue must
be investigated. However, the evaluation of FTIR spectroscopic
data is difficult due to the high amount of information. An in-
dividual FTIR spectroscopic image contains more than 4000
FTIR spectra with up to several hundred wavenumbers in every
pixel point. A FTIR spectrum of biological tissue is complex and
biochemical changes in tumor cells usually are very different.12

Therefore, FTIR spectroscopic imaging is commonly used in
conjunction with multivariate statistical methods such as cluster
analysis,13 principal component analysis,14 linear discriminant
analysis,15 or supported vector machines.16

In this work, we have undertaken an investigation of the
capability of FTIR spectroscopic imaging in combination with
fuzzy k-means cluster analysis and linear discriminant analysis
to detect infiltration of tumor cells in adjacent normal tissue.

2 Experimental
2.1 Sample Preparation
Renal tissue samples were obtained from Vilnius University
Hospital, Santariskiu Klinikos by means of cancerous tissue
surgery. Cryosections were prepared from an area around the
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borderline between tumor and normal tissue. A thin section of
10 μm in thickness was transferred onto a calcium fluoride
window. After FTIR spectroscopic imaging the tissue sample
was stained with hematoxylin and eosin (H&E) and examined
by optical microscopy. The study protocol was approved by the
Vilnius regional bioethics committee (approval no. 158200-12-
131-056LP6, 05 05 2009).

2.2 FTIR Spectroscopic Imaging
FTIR spectroscopic images were collected in transmission mode
using a FT–IR spectrometer Vertex 70 coupled with infrared mi-
croscope Hyperion 3000 (both from Bruker Optik GmbH, Et-
tlingen, Germany) and an MCT focal plane array detector. The
imaging detector was a Santa Barbara focal plane MCT 64×64
array detector. The 15-fold Cassegrainian objective with a nu-
merical aperture of 0.4 imaged a sample area of ∼270×270 μm2.
A composition image of 20×20 individual infrared images was
captured from a selected area of the tissue section. Pixel bin-
ning of 16×16 was applied to reduce the amount of spectra.
The pixel binning reduces the spatial resolution to ∼ 170 μm.
In agreement with the histopathology, this size allows the iden-
tification of areas of tumor cell infiltration. The sample area
of the composition image has a dimension of ∼5.4×5.4 mm2

encompassing 80×80 (6400) individual infrared spectra. A ref-
erence spectroscopic image was recorded from the pure calcium
fluoride window. A total number of six interferograms (scans)
were co-added. The interferograms were Fourier transformed
applying Happ–Genzel apodization and zero filling factor of
1. Spectra at a resolution of 8 cm− 1 of the sample image
were rationed against the spectra of the reference image and
transferred to absorbance values. This spectral resolution was
chosen in order to improve the signal-to-noise ratio, to reduce
the size of the spectral data set, and to ensure that all promi-
nent bands, even those with medium intensity, appear clearly
in the spectrum. The frame rate of the focal plane detector was
3773 Hz, yielding a total measurement time of approximately
20 s for each individual spectroscopic image.

2.3 Spectral Classification
Evaluation of spectral data was performed using the MATLAB

package (Version 7, MathWorks Inc. Natick, Massachusetts).
The main part of the data analysis is based on in-house writ-
ten programs, in particular for data preprocessing and image
processing. The flow chart of the data processing is sketched in
Fig. 1. Data preprocessing involves a removal of outliers, a linear
two-point baseline correction, and a normalization of each ab-
sorbance value of a spectrum to the integral absorbance. Outliers
are spectra that are obviously not associated to tissue or spectra
with a maximum absorbance value larger than 1.8 or smaller than
0.08. Principal component analysis (PCA) calculations were per-
formed using the eig function of the MATLAB package. Fuzzy
k-means cluster analysis was performed on an in-house written
algorithm. In accordance to the elbow-criterium,17 a number of
10 clusters were chosen. Spectra classification was performed
on an algorithm as described elsewhere.5, 18 The training set was
generated from the results of the cluster analysis. Spectra are
assigned to a cluster that clearly represents tumor or normal
tissue. Both tissues were used to train the classification algo-

Fig. 1 Flow chart of the data analysis.

rithm to find the discriminatory spectral patterns in the data set.
The calculated classification model was verified by the leave-
one-out method. Information about the algorithm is given at:
http://www.bfsk.ff.vu.lt/statist_sp_analysis.htm.

Afterwards, all spectra of the composition image were clas-
sified. The classify function of the MATLAB package returns a
matrix containing estimates of the posterior probabilities that the
spectrum belongs to the class “tumor” or to the class “normal.”

3 Results and Discussion
Figure 2(a) shows the microscopic image of the tissue section.
The overlaid grid indicates the measurement matrix of the FTIR
spectroscopic images, where tumor tissue is located in the up-
per part. Tumor tissue appears to be more homogeneous than
the surrounding normal tissue. Although the border of the tumor
tissue appears well defined, some parts of the surrounding tis-
sue were also suspected for a tumor. As it can be expected, the
color coded bright field infrared image of the marked area [see
Fig. 2(b)] is not informative enough for tumor detection. Varia-
tions of colors in the image can be related mainly with thickness
variation of the tissue. The representative spectra of normal and
tumor tissue are shown in Fig. 2(c). Both spectra appear as quite
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Fig. 2 (a) Microscopic image of the tissue section. The grid highlights the area mapped by FTIR spectroscopic imaging. (b) FTIR spectroscopic bright
field image. (c) Representative spectra of tumor tissue (red) and normal tissue (green). (d) Average and baseline corrected spectra of tumor tissue (red)
and normal tissue (green) in the spectral fingerprint region. (Color online only.)

similar. A detailed view of the spectra is given in Fig. 2(d),
which shows the fingerprint region (950 to 1750 cm− 1) used for
the data analysis.

The FTIR spectroscopic bright field image of the tissue sec-
tion is presented in Fig. 2(b). For every pixel the integral intensity
across the spectral range 950 to 1750 cm− 1 is transformed to a
rainbow-scale. Dark blue pixels indicate low absorbance value,
red and orange pixels are spectra with high absorbance. Red and
yellow pixels in the upper right corner indicate an artifact of the
thin section. The borderline between tumor and normal tissue
is slightly visible. However, the question whether the tumor has
infiltrated into the suspected tissue cannot be answered from the
bright field image.

The spectrum exhibits the characteristic bands of tissue
which emerge mainly from vibrations of proteins, lipids, and
nucleic acids. The spectrum is dominated by the amide I band
at 1650 cm− 1 and amide II band at 1550 cm− 1, which arise
from the C=O stretching and N–H bending vibrations, respec-
tively, of the amide groups comprising the peptide linkages of
proteins. Weaker bands that do appear around 1453, 1469,, and
1344 cm− 1 are assigned to various C–H vibrations of lipids.
The spectral range between 1000 and 1250 cm− 1 is mainly
composed from absorption bands of C–O and PO2− groups of
nucleic acids, phospholipids, and carbohydrates. Table 1 sum-
marizes the vibrational modes and their molecular assignment.

The bright field image in Fig. 2(b) does not reveal the bio-
chemical composition. Multivariate chemometric methods have
to be utilized to identify characteristic bands and to classify the
spectra. At first, PCA was applied to investigate spectral differ-
ences between tumor and normal tissue. In order to compensate

Table 1 Assignment of the absorption bands of the spectrum in
Fig. 2(d) (Refs. 19–21).

Wavenumber

(cm− 1) Assignment

1048 C–O–P stretching, lipids, ribose - C–O–C stretching

1080 Nucleionic acids - symmetric PO2 stretching

1230 Lipids, nucleonic acids - asymmetric PO2 stretching

1344 CH2 wagging, C–O stretching

1396 Lipids - CH2 bending, amino acids - COO− stretching

1453 Lipids - CH2 bending

1540 Proteins - amide II

1646 Proteins - amide I
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Fig. 3 First four principal components of the spectroscopic data set.
Score maps are color code in the rainbow-scale. The percentage values
indicate the amount of variance covered by the particular PC.

variations in the thickness of the tissue, section spectra were
baseline corrected by two point linear baseline correction and
area normalized. Figure 3 depicts the top four principal com-
ponents that cover more than 98% of the total variance of the
spectroscopic image. Score maps reveal the lateral distribution
of the principal components. Significant features of the PCs are
displayed in the loading plots. The first PC comprises by far
the largest variance across the investigated area and represents
the average spectrum of all spectra. The loading plot of the sec-
ond PC shows variations in the regions of amide II and amide I
bands, as well as around 1250 cm− 1. We assign the second PC

Fig. 4 Scatter plot of score values of fourth PC versus second PC.

to variations in the protein profile and changes in the lipid con-
tent. The loading plot of the third PC exhibits again variations in
amide II and amide I bands. In addition, lower absorption signals
occur in the spectral region between 1000 and 1200 cm− 1. This
region is mainly associated to the absorption of nucleonic acids
and glycolipids. The tumor region in the corresponding score
map exhibit dark blue pixels (low intensity). Therefore, the in-
terpretation of the third PC leads to the conclusion that the tumor
tissue region exhibits an enhanced concentration of nucleonic
acids and glycolipids. In case of the fourth PC, the assignment
of the features of the loading plot is too difficult. Nevertheless,
the tumor tissue region (mainly yellow pixels) can be clearly
distinguished from the normal tissue. Figure 4 shows a scatter
plot of the score values where the two types of tissue are sepa-
rated. Despite this obviously good separation between the two
types of tissue, it is not possible to define whether tumor cells
have spread in normal tissue.

Cluster analysis is one of the most frequently used multi-
variate statistical methods that examine the similarity between
spectra.21 In a previous study, we have demonstrated that the
tumor region can be discriminated from the adjacent normal
tissue by using fuzzy k-means cluster analysis.22 However the
detection of renal tumor cells that have spread in normal tissue
requires a more sophisticated approach. The cluster algorithm
requires a preselection of the number of clusters. This is of-
ten a critical decision since different numbers of clusters may
lead to different results. Unfortunately, the correct number of
clusters is often unknown in advance. One approach for finding
and optimizing a number of clusters is the elbow criteria. In
spectroscopic data sets, however, overlapping of clusters as well
as noise and outliers are common. For this reason the number
of clusters was set to 10, e.g., two more than estimated by the
elbow criteria. Figure 5 shows the result of fuzzy k-means clus-
ter analysis of the spectral data set. The cluster assignment is
represented in Fig. 5(a). Figure 5(b) shows the corresponding
centroid spectra.

The algorithm sorts the clusters according to their similar-
ity. Although all centroid spectra are quite similar, the tumor
region (see Fig. 2) is mainly represented by red, orange, and
yellow pixels. The remaining clusters are predominantly lo-
cated in the adjacent normal tissue. However, there are also
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Fig. 5 Fuzzy k-means cluster analysis. (a) Assignment of clusters, (b) Cluster centroid spectra.

a considerable number of yellow to red pixels in this region.
The question addressed here is whether these pixels indicate
tumor tissue or are a result of misclustering. One approach to
improve the classification accuracy is the application of the su-

pervised methods.23 Supervised classification allows to catego-
rize the questionable pixels into different themes, based on the
spectral characteristics of tumor and normal tissue. According
to the image, two red pixels indicate tumor tissue. Since violet

Fig. 6 (a) Classification of the spectra. Gray pixels were selected to form the training set and are not classified. (b) H&E stained tissue section. The
arrows point to areas in the normal tissue that show histological features of a tumor. (c) Image fusion of the classification results and the H&E stained
tissue section. Pixels that belong to the tumor tissue were not considered for the image fusion.
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Šablinskas et al.: Infrared spectroscopic imaging of renal tumor tissue

and blue clusters in Fig. 5 exhibit the lowest similarity to the
clusters representing tumor tissue (red and orange), we assigned
spectra of the clusters #1 to #4 to normal tissue. These se-
lected spectra are used to create a training set for the supervised
classification.

The tumor tissue (clusters #9 to #10) encompasses 2784
spectra and the normal tissue (clusters #1 to #4) 1847 spectra.
In the following step 400 spectra from each tissue type were
chosen by the algorithm and used as a training set. The spec-
tral procedure for developing the classification model employs
two algorithms in tandem. The program takes as input both
the spectra in the training set and their histological assignment.
Figure 6(a) shows the classification result. The probability of
the class assignment is transferred into a blue-dark gray-yellow
color scale. Yellow pixels indicate tumor tissue, whereas blue
pixels represent normal tissue. Spectra that could not be as-
signed to one of the classes are represented as blue-gray or
yellow-gray pixels. Gray pixels indicate spectra used for the
training set. The tumor tissue is clearly distinguishable from the
surrounding normal tissue. However, there are also a number of
yellow pixels in the expected normal tissue. These spots may
indicate tumor cells that are spread into the normal tissue and
confirm the assumption that the tumor has already infiltrated
into the surrounding tissue. It is worth noting that for normal,
but also for tumor tissue, not all spectra are assigned with a
probability of 1 to one class. This may simply highlight errors
in the spectroscopic-based method, it may also be due to vari-
ous malignancy grades appearing within a single sample. The
H&E stained tissue section in Fig. 6(b) clearly shows the tumor
tissue. The tumor cells are clear or slightly eosinophilic, with
distinct cell membranes, arranged in compact structure. There
is also an infiltration of tumor cells into the adjacent normal
tissue. At least three hot spots of tumor cells are visible in the
H&E stained tissue section, indicated by the arrows in Fig. 6(b).
Figure 6(c) is calculated from the spectral classification and the
H&E image. Pixels that have a probability of more than 60% as
a tumor are colored in yellow and merged with the H&E stained
image. The image fusion in Fig. 6(c) clearly reveals some small
differentiated areas that show the spectral characteristic of tu-
mor cells indicating an infiltration of renal tumor cells into the
normal tissue.

The averaged spectra of normal tissue and tumor tissue are
shown in Fig. 7. Although the spectral profiles may appear
at first glance to be similar to each other, the superficial re-
semblance is attributable only to the dominant contributions of
protein constituents that overwhelm the spectra of all soft tissue
samples. Closer inspection reveals three regions of the spectrum
that stand out clearly as being different for the both tissue types.
The absorption profile between 1020 and 1130 cm− 1 appears
slightly stronger for the tumor tissue. It is well known that tumor
cells exhibit a higher proliferation rate that give rise to stronger
bands of the nucleic acids in this spectral region. The band
at 984 cm− 1 is assigned to the vibrations involving the chain
mode of the ribose-phosphate diester linkage.20–24 The bands
at 1380, 1400,, and 1446 cm− 1 correspond to symmetric CH2

and asymmetric CH2 deformation. The absorptions arise mainly
from the lipid constituents (e.g., phospholipids and possibly oth-
ers). Figure 7(b) shows the difference spectrum (tumor–normal)
of the mean spectra and the standard deviations. The strongest
differences appear in the range of the amide bands. However,

Fig. 7 (a) Mean spectra (bold) and standard deviation (bright) of the
spectra classified as tumor or normal tissue. The highlighted regions
are those identified by the classification algorithm as informative in
classifying the spectra into the two classes. (b) Difference of the tumor-
normal mean spectra and spectral standard deviation.

the standard deviation is also very high so that this region was
not selected by the algorithm for spectral classification. The
difference spectrum reveals that tumor tissue exhibits higher ab-
sorbance in the range between 1000 and 1100 cm− 1 and around
1250 cm− 1. These regions are mainly associated with phos-
phate spectral bands of nucleic acids. Lower absorbance values
were found for tumor tissue between 1380 and 1450 cm− 1.
This finding is in accordance with studies suggesting that ma-
lignancy is accompanied by a change in the lipid profile and by
an accumulation of glycogen and lipids.25, 26

These diagnostic models can then be applied to an intraop-
erative spectroscopy approach to allow surgeons to arrive at a
diagnosis in real time. This will especially affect the progno-
sis of patients with cancers, as more complete resection of the
suspected tissue decreases the rate of recurrence and increases
patient life expectancy. There is presently a high demand for
intraoperative surgical guides, and vibrational spectroscopy has
been shown to provide chemical contrast between tumor and
normal tissue.27

4 Conclusion
The results obtained in this study show that FTIR spectroscopic
imaging in conjunction with a supervised classification is a very
powerful tool to identify renal tumor tissue. The spectroscopic
image reveals the tumor infiltration into adjacent normal tissue.
In this technique, differences in nucleic acid concentration and
in the lipid profile between normal and tumor tissue are very
sensitive markers for the classification. Tumor cells exhibit
a higher proliferation that leads to the stronger bands of the
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nucleic acids. It is known that renal tumor cells accumulate
glycogen and lipids resulting in changes of the lipid absorption
bands. One of the strengths of this approach is that small areas
of tumor infiltration can be very quickly detected without any
staining. Since FTIR spectroscopy relies on the intrinsic bio-
chemical differences between cancerous and normal tissues for
contrast, these methods are poised to aid surgeons by quickly
and accurately providing a diagnosis. Patient prognosis relies
upon rapid diagnosis and treatment; renal cancer has improved
the rate of survival with a complete resection of the tumor tis-
sue. Traditional methods for diagnosis rely upon time consuming
techniques where resected tissue must be fixated and histochem-
ically stained. FTIR spectroscopic imaging can be used to gain a
large amount of information to train algorithms for fresh samples
and tissue sections of the disease in question.
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