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ABSTRACT

The obtainment of stable solutions of inverse problems for studying the disperse composition of suspensions
using effects of elastic light scattering was discussed. Versions of a regularization of solving the inverse
problems of the spectroturbidimetric method were considered, taking into account unavoidable restrictions
on the scope of the necessary prior data for particles and on the width of the spectral interval for real
biological disperse systems. Possibilities for increasing the number of particle parameters determined in a
single optical experiment were analyzed. They were shown to be provided by the use of effects of the
orientation ordering of a system on combination of capabilities of the methods of spectroturbidimetry and
electro-optics, using bacterial cell suspensions as an example. © 1999 Society of Photo-Optical Instrumentation Engineers.
[S1083-3668(99)00304-4]

Keywords light scattering; disperse systems; inverse problems; regularization; spectroturbidimetry; electro-
optics.
1 INTRODUCTION

The prevalence of disperse systems in nature, and
their great significance to medicine, biological,
chemical, space, and other technologies have stimu-
lated the development of various methods for
quantitative analysis of disperse systems. Among
these methods are those based on the elastic light
scattering effects.1–8 For this type of interaction be-
tween a substance and light (unlike, for example,
the quasielastic or dynamic light scattering)9–11

there is no energy exchange between a light quan-
tum and a particle. Therefore, the wave frequency
remains the same during the scattering process.

Among many kinds of disperse systems consist-
ing of biological or synthetic macromolecules, of
considerable significance are the so-called ill-defined
complex systems. They are distinguished by a dif-
ficulty in obtaining all the necessary preliminary in-
formation on particle structure, form, concentra-
tion, and composition of a dispersion medium.
Generally, one needs information of this kind while
interpreting data from optical measurements on the
basis of one or another of the physical models
which include a set of system parameters. It hinders
essentially the potentialities of many well-
recognized methods since most of them are usually
not self-sufficient (some exceptions to this rule will
be given in this paper). Examples of such systems
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are suspensions of supramolecular particles in solu-
tions and gels of bio- and synthetic polymers (in-
cluding biotissues), subcellular particles, insoluble
immune complexes, suspensions of some microor-
ganisms and viruses, human and animal blood
cells, etc.

In connection with problems of simulation of op-
tical effects in disperse systems and quantitative in-
terpretation of light scattering data, direct and in-
verse problems are recognized.5,12–15 By the direct
problem, one means the study of light scattering
characteristics when those of a substance and a
light beam incident on it are specified. By the in-
verse problem, one means the determination of char-
acteristics of the substance volume element where
light is scattered (specifically, particle size and con-
centration) from measured characteristics of the in-
cident and scattered radiation. Unlike the direct
problems, the inverse problems are far from always
being solvable since the detectable scattered radia-
tion may lack information about the investigated
substance’s properties. Moreover, even if a single
solution formally exists, it may appear to be practi-
cally inconclusive due to the catastrophic effect of
unavoidable experimental errors on the final
outcomes.5,13 This results from the basic mathemati-
cal incorrectness of a great number of inverse
physical problems of probing a substance by vari-
ous types of radiation. In connection with this, the
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stability of a method should be recognized as one of
the main indices characterizing the quality of any
method of the inverse problem solution. Relation-
ships between the errors of measurements of the
initial scattering characteristics and the errors of de-
termining the desired disperse system’s parameters
may serve as a measure of the stability. Coefficients
of amplification of errors are its quantitative
characteristics.5

In order to illustrate some consequences of the
incorrectness, one can use a basic relationship for
the normalized numerical particle size distribution
function f(r):5

T~u ,l ,m ,m0!5NE
rmin

rmax
t~r ,u ,l ,m ,m0!f~r !dr , (1)

where u is the scattering angle, l is the light wave-
length in vacuum, N is the number of particles per
unit of suspension volume, m and m0 are the refrac-
tive indices of particles and of a dispersion me-
dium, respectively. It is assumed, for definiteness,
that suspended particles are homogeneous spheres
(r is the particle radius) and their concentration is
small enough for a single scattering approximation to
be applied. In the left part of this equation, one can
use any measurable light scattering characteristic. It
may be, e.g., an angular dependence of the scat-
tered light intensity (indicatrix), a wavelength de-
pendence of turbidity, etc. This expression is the
Fredholm linear integral equation of the first kind
for the desired distribution function. Its kernel t is
the corresponding solution of the problem in the
case of a rigorously monodisperse system of par-
ticles of radius r . The problem of inverting Eq. (1)
consists of developing an algorithm of f(r) determi-
nation with the previously chosen kernel and mea-
sured left part of the equation.

However, for such a general formulation, the so-
lution of the problem involves difficulties resulting
from the mathematical incorrectness of problems of
inverting integral equations of the first kind.5,12–15

To make it clear, note that in a number of cases, the
fixed integrating limits 0→` and kernels of the ex-
ponential type can be used. Inverse problems of
this type appear, for instance, in various versions of
the method of quasielastic light scattering9–11 and in
an electro-optical analysis of suspensions when in-
verting curves of orientational relaxation.16–19 The
latter are determined by the Brownian rotary diffu-
sion of particles and depend on their optical
properties.20,21 The problem of inverting can then be
reduced to the use of Fourier transformation, which
allows one to make a simple illustration of the con-
sequences of the incorrectness of integral equations
[Eq. (1)].5 Indeed, replacement solution f(r) with a
function

f0~r !5f~r !1A exp~ ivr !, (2)
JOUR
where A and v are arbitrary parameters, changes
the left part of the equation by the value

DT5ANE
0

`

t~r ,u ,l ,m ,m0!exp~ ivr !dr . (3)

If the frequency v is high enough, the Fourier com-
ponent DT of the function t may become so small
that it falls within the interval of errors of experi-
mental determination of T . Therefore, both func-
tions f(r) and f0(r) will practically satisfy the initial
integral equation, even though if constants A and v
are chosen properly, these functions may signifi-
cantly differ from each other. Thus, the unavoid-
able errors of measuring T limit the number of high
harmonics, which can be recovered by solving the
integral equation considered.

In the period from the 1940s to the 1960s, rigor-
ous mathematical approaches to the solution of in-
correct problems were developed. Note that such
problems are widespread in various fields of phys-
ics and technology. Thorough studies in this field
have been presented in books by Tikhonov and
Arsenin14 and Twomey.15 Overcoming the math-
ematical incorrectness permitting a stable algorithm
for the solution of an inverse problem to be devel-
oped is called regularization.5,13,14 It is based on the
idea of involving additional information on the sys-
tem being studied (i.e., imposing some reasonable
restrictions on it) which makes the problem correct.
This essentially results in the appearance of a new
problem whose solution must satisfy the following
conditions. First, it has to be close enough to the
solution of the initial physical problem and second,
it must be stable. At present, there exist rigorously
formalized general procedures of regularization.14

2 REGULARIZATION IN SOLVING THE
INVERSE PROBLEMS

From the 1950s, pioneering studies on some inverse
problems of the light scattering method have been
carried out by the research school headed by Shi-
frin. Some of their general conclusions can be found
in Refs. 5 and 22. Among books written in English,
the collected articles edited by Baltes12 dealing with
theoretical aspects of various inverse problems in
physical optics could be mentioned as an example.

2.1 INVERSE PROBLEMS OF THE LIGHT
SCATTERING METHOD

The variants of rigorous analytical solutions of the
above mentioned integral equation for a number of
important special cases5,22 are of great theoretical
and practical interest. In these cases, the equation
kernel is expressed by relatively simple formulas.
These variants were called the small angles method,
the complete indicatrix method, and the spectral
transparency method. According to Shifrin,5 regu-
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larization in these methods is achieved by the sug-
gestion that all improper integrals that are neces-
sary for their realization really exist.

The small angle method uses an angle distribution
of intensity of light diffracted on large particles
near the direction of light propagation from a
source of radiation (halo). The problem is reduced
to inverting the integral equation

I~u!5
I0

u2 E
0

`

f~r !r2J1
2S 2pm0

l
ur D dr , (4)

where I0 is the incident light intensity, I(u) is an
experimental angle distribution, and J1 is the Bessel
function of the first order. In this case, the following
relationships should be fulfilled:

a52prm0 /l@1, u!1, au.0. (5)

The solution of Eq. (4) is

f~a!52
4p2

r2l E
0

`

F~au!
d

du
@u3I~u!/I0#du , (6)

F~x !5xJ1~x !Y1~x !, (7)

where Y is the Neumann function of the first order.
Extensive literature exists on the peculiarities of the
experimental realization of the method, which in-
volves requirements for the angle range containing
all the necessary optical information (see reviews of
Refs. 5 and 22). The range is from approximately 10
min to 10°. It is an obvious advantage of this
method that it requires no knowledge of the par-
ticle refractive index. However, the refractive index
defines the lower limit of the particle size range
since the limitation by the value of a phase shift
parameter r serves as one more condition of the
method’s applicability

r52aum21u@1, (8)

where m5m/m0 is the relative particle refractive
index. Resulting from this condition, e.g., for bio-
logical suspensions characterized by the relatively
small values of m'1.03–1.05, the small angle
method is applicable only for large particles with
diameters of a few tens of microns and higher.

The complete indicatrix method is analogous, in
principle, to the previous approach. However, it
has a lower limit of applicability by particle size of
approximately an order of magnitude less. For a
polydisperse system of optically soft nonabsorbing
particles with a slight difference between the par-
ticle and medium refractive indices, the following
equation is valid:

I~u!5E
0

`

I~u ,r !f~r !dr , (9)

where I(u ,r) denotes an analytical expression for
the indicatrix of ideally monodisperse systems ob-
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tained in the Rayleigh–Gaus–Debye (RGD)
approximation.1,2 This approximation may be ap-
plicable in the following conditions:

um21u!1, r!1. (10)

The exact solution of this equation is

f~r/r0!5
1

~r/r0!2 E
0

`

h~rx/r0!u~x/2!dx , (11)

where r0 denotes some linear scale, usually equal to
some mean or modal radius rm , h involves only
elementary functions, and u includes the experi-
mental polydisperse indicatrix I(u). As in all vari-
ants of inverting integral equations, it is very im-
portant to choose proper limits of integration (the
range of angles where the indicatrix is measured).
In this case, the photometric accuracy of up to 5% is
sufficient, and the lower limit by the modal particle
radius has the order of the wavelength used.5 For
suspensions with a smaller particle size, the indica-
trix shape in the region of relatively large angles
approaches the Rayleigh one, and it becomes prac-
tically impossible to determine the complete com-
position of a disperse system from it.

In the spectral transparency method (STM), the
initial integral equation is as follows:

t~§!5
p

r0
E

0

`

K~r!~r0!2f~r0!dr0, (12)

where t is the system’s turbidity, r0 is the above
mentioned linear scale §51/l , and r05r/r0 . In
the expression for the kernel of this equation, the
scattering coefficient (efficiency factor) for monodis-
perse systems K(r) is used, which was obtained by
van de Hulst1 under the first parts of conditions (5)
and (10) [anomalous diffraction (AD) approxima-
tion]. Thus, large enough optically soft nonadsorb-
ing particles with no restrictions on the phase shift
parameter are meant. The solution of this equation
has the following form:

f~r/r0!5
1

p2~r/r0!
E

0

`

w~rx/r0!q~x/2!dx ,

(13)

where x54pr0(m21)§ , w is expressed by elemen-
tary functions only, and q includes the experimen-
tal dependence of turbidity on the wave number.
The wavelength interval necessary for the stable re-
covery of the size distribution function is sure to
involve that in the region of the major diffraction
maximum tmax . The regions of monotonous change
in the wavelength dependence of turbidity do not
contain enough information to correctly solve the
complete inverse problem considered.
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It may be shown that tmax corresponds to the first
maximum of the dependence of the efficiency factor
K on r, where K is defined by the following expres-
sion:

K5t/S0 , (14)

where

S05Npr2
2 (15)

is an effective total area of the maximum particle
cross section, and r2 is the particle mean-square ra-
dius. In this case, it is more convenient to use a
special type of averaging rl

23 (instead of r2) which
coincides with a mean-surface radius rS in the re-
gion of the major diffraction maximum. It permits a
vivid comparison of the results of K calculations
made to various degrees of the system’s polydis-
persity due to the relatively weak dependence of
the abscissa of Kmax on the degree of polydispersity
of a system. This is illustrated in Figure 1, which
contains the dependences of Kn on rl resulting
from analytical calculations of Kn

24 in the AD ap-
proximation made for the model gamma distribu-
tions

f~r !5bn11rn exp~2br !/G~n11 !, (16)

where b and n are independent parameters, and
G(x) is the gamma function. The value of n50
gives the widest size distribution in this family,
while the value of n→` means turning to monodis-
perse systems. Numerical experiments made on the
basis of such calculations showed5,22 that, with the
error of turbidity measurements of up to 5%, satis-
factory results can be obtained if spectroturbidimet-
ric data in the range of the far ultraviolet to infrared
region of the light spectrum are used. In this case,
the smaller the particle size and refractive index,
the lower the values of the wavelength that have to
be used. For example, if m51.1 and rm is within the

Fig. 1 Dependence of Kn (Ref. 24) on rl (Ref. 23) at n50 (1), 5
(2), 15 (3), and n→` (4).
JOUR
interval of 0.1–1 mm (typical values for many of
polymer and biopolymer systems), l varies from 60
to 2000 nm.

It is worth noting that, according to the data of
many works (see, for instance, Refs. 1–5 and 25), the
values of light scattering functions obtained in the
approximation of optically soft particles agree satis-
factorily with the results of the corresponding rig-
orous solutions (based on Mie’s theory1,2,6) at least
for 0.8<m<1.5. Furthermore, at values of m
<1.15, they in fact coincide on the level of small
enough errors. RGD and AD approximations are
mutually complementary and allow one to consider
the highest possible range of values of the light
scattering functions and particle parameters. Both
of them are applicable in principle to particles of
arbitrary shapes and have a common boundary at
a@1 and r!1, respectively. For nonspherical par-
ticles, the T-matrix method6,26,27 developed for iso-
tropic spheroids can be mentioned as an example of
the modern approach to the rigorous solution of the
electrodynamic problem. For modeling objects with
a complex structure, in addition to known calcula-
tion schemes using patterns of layered spherical
particles,4,6,7,28,29 the method of connected
dipoles6,30 may probably have a good outlook.

To date, mathematical methods of regularization
of solution of inverse physical problems, including
standardized numerical procedures of their com-
puter realization, have been developed. Methods of
mathematical statistics31 were used for a stable re-
construction of f(r) using spectroturbidimetric32

and nephelometric33 data. In particular, the method
of statistical regularization permits the above dis-
cussed method of complete indicatrix to be ex-
tended to particles with an arbitrary (including com-
plex) value of the relative refractive index and to
multimodal systems. Besides, it is noted in Ref. 5
that there is a possibility of estimating the value of
the refractive index itself from the same nephelom-
etric experiment using the dependence of stability
of solutions obtained on the proper prior choice of
the refractive index values.

In conclusion of this brief review of the variants
of solution of the complete inverse problem for de-
termining particle size distribution functions, we
note the following. The small angle method and the
method of the complete indicatrix, mutually
supplementing each other, cover a wide range of
particle sizes, which can be compared to the range
of theoretical applicability of the STM. However,
from the point of view of practical investigations of
ill-defined systems, spectroturbidimetric analysis
has significant advantages over nephelometry.
First, special calculations34 done on the basis of the
radiation transfer theory showed the results of tur-
bidimetry for typical experimental conditions to be
weakly dependent on the multiple light scattering
effects. Thus, they can be interpreted using the
single scattering theory even at relatively high val-
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ues of particle concentration when the multiple
scattered radiation already makes an overwhelm-
ing contribution in the whole scattered light beam
and in that scattered at small angles. Second, one
has to be aware that real suspensions in a great
number of cases involve particles with a complex
internal structure (for example, cells) and rather un-
certain morphological properties (for instance, new
phase particles in systems of complex-forming mac-
romolecules). Numerous literature data obtained
for various models of structured and nonspherical
particles4,6,7,28,29,35–37 showed that turbidimetric (un-
like nephelometric) results were affected mainly by
particle volume and concentration, practically irre-
spective of internal structure details and shape of
moderately anisometric particles with random ori-
entation. All these facts give every reason to solve
correctly the inverse problems of spectroturbidimetry
in terms of the relatively small number of, so to say
‘‘main,’’ parameters of disperse systems: particle
size, refractive index, and concentration.

2.2 TAKING ACCOUNT OF FEATURES OF
REAL SYSTEMS IN THE
SPECTROTURBIDIMETRIC ANALYSIS

Unfortunately, for a wide range of real biological
disperse systems, it is rather difficult to recover the
complete function of distribution in particle sizes
by the STM. The effect of the strong absorption of
light, for example, by proteins and nucleic acids in
the ultraviolet region of light spectrum and cell pig-
ments in its visible region (many synthetic poly-
mers and organic solvents also absorb light in the
ultraviolet) could in principle be overcome.38 How-
ever, even in this case in order to reliably detect the
main diffraction maximum and find the necessary
short-wave asymptotic of the nonmonotonous spec-
tral turbidity curve,5,22 the spectral interval re-
quired seems to be too wide (from an instrumental
standpoint) for particles with a characteristic linear
size of several microns and smaller (see above). Fig-
ure 2 gives some characteristic experimental data
obtained for a number of disperse systems:3 acry-
late latex in a series of dilutions (1–4), suspensions
of polystyrene precipitated from its benzole solu-
tion by different quantities of methanol (5–8), a cell
suspension of Staphylococcus aureus (9), a suspen-
sion of supramolecular particles of a 2% water so-
lution of polyvinylalcohol (10), and products of re-
action of rabbit antibodies with human
immunoglobulins (11). These examples show that,
in representative transparency ‘‘windows’’ being
recorded with the use of routine spectroscopy
equipment, whose width does not exceed approxi-
mately 500 nm, the turbidity t52.3D/l (where D is
the optical density and l is the cell length) usually
exhibits itself as a practically monotonous power
function of the wavelength. That is why recovery of
the complete function of particle sizes distribution
in these cases is practically impossible due to the
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forced lack of the necessary optical information
and, as a result, sharply increased instability of for-
mal solutions of the inverse problem.5

The increase in stability is achieved by proce-
dures which may be called reasonable compromise
tactics. In particular, sufficient stability of algo-
rithms of inversion of spectroturbidimetric data in
the narrow wavelength interval is achieved by lim-
iting the problem to correct determination of inte-
gral parameters,3,23,29,39 such as the mean particle
size (or the radius of the equivalent volume
sphere), the numerical and mass-volume concentra-
tion of a suspension, and the particle effective re-
fractive index. A version of the spectroturbidimetric
method (primarily developed for classical systems
like latex) actually using such a compromise origi-
nated in the works of a group of American re-
searchers led by Heller.40–42 A Russian research
team under the supervision of Klenin began to de-
velop this method as applied to structurally com-
plex systems.3,23,29,43–47

One of the main scattering characteristics used in
this version of the spectroturbidimetric method is
the wavelength exponent n in the following ap-
proximation expression for turbidity:

t5const l2n. (17)

In experiments, n is expressed by way of the tur-
bidity measured in a small enough spectral interval
(about 200 nm) by the relationship

n52] ln t/] ln l . (18)

Actually, n is an angular coefficient (taken with the
inverse sign) of plots like those given in Figure 2. It
is worth mentioning that it is independent of par-
ticle concentration. The substitution in Eq. (18) of

Fig. 2 Plots of log D vs log l for various systems (Ref. 3).
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the theoretical expression for t obtained for some
disperse system models results in equations for de-
termination of either the particle size40–42 or the par-
ticle refractive index.43 In the first case, the particle
refractive index has to be determined beforehand in
an independent experiment. However, if particles
are small enough (r<0.1–0.2 mm, n.2), n is prac-
tically independent of m , and it becomes possible to
determine the particle size without prior knowl-
edge of m . In the second case, the same must be
done for the particle size (for versions of spectrotur-
bidimetry for simultaneous determination of mean
particle size, refractive index, and concentration of
latex suspensions, see Refs. 23 and 48). This method
of determination of m is effective for relatively large
particles whose radius of the sphere of equivalent
volume r is not less than about 0.5 mm (n,2). In
this case, light microscopy can be used for an inde-
pendent determination of the particle size.49 For
particles that have a rigid enough surface (for ex-
ample, yeast cells), one can use the immersion–
photometric method for m determination with a
modification,50 which extends its range of applica-
bility in the particle size. In this case, a r depen-
dence of n for large enough particles is taken into
consideration.

As a first approximation, n can be calibrated by
the formula

n~a ,m !5] ln K~a ,m !/] ln a (19)

with the scattering efficiency factor K(a ,m) calcu-
lated for monodisperse systems of homogeneous
spherical isotropic particles. In Eq. (19), the disper-
sion of optical constants of the particle and medium
substances is not taken into consideration. The
principal formulation of this problem can be found,
for example, in Refs. 42 and 51. A summary of
approach,52 permitting dispersion to be taken into
account in a wide range of experiments, is given
below in this paper. Combining results of measure-
ments of the wavelength exponent (particle size)
and turbidity, one can determine (if m is
known):3,29,39,44–47,53 the number of particles per unit
of suspension volume N , their mass–volume con-
centration C , and an effective total surface square S
of particles occupying unit of suspension volume as
well. The parameter C often has the meaning of
concentration of the disperse phase pure substance
(for example, of polymer precipitated as the result
of phase separation,29,46,47 immunochemical
reaction,54 etc.), or concentration of the dry intact
cell substance (biomass concentration).55 The pa-
rameter S can be used, for example, in experimental
investigations of adsorption processes in disperse
systems and for calculation of adsorption
isotherms.53,56 For this purpose, the following char-
acteristic light scattering functions are used:
JOUR
optical scattering cross section

t

N
5

~l/m0!2

4p
a2K~a ,m !, (20)

specific turbidity

t

C
5

3pm0

2dl

m121
m21

K~a ,m !

a
, (21)

where m1 is the relative refractive index of the pure
particle substance, d is its density, and

t

S
5

1
4

K~a ,m !, (22)

which are expressed by the scattering efficiency fac-
tor K(a ,m). Note that the specific turbidity t/f
[where f5C(m121)/(m21)d is the particle vol-
ume concentration] can be used for the determina-
tion of particle size57–59 (or/and refractive
index)23,60 if f (or C60) is evaluated from an inde-
pendent experiment.

2.3 PRINCIPLES OF REGULARIZATION AND
THEIR APPLICATIONS

The main regularizing restriction imposed on the
function f(r) in this case is, in fact, a requirement of
the existence of integrals of the products of f(r) by
the corresponding kernels in equations of type (1).
It gives one grounds to replace the efficiency factor
K(a ,m) in relationships (19)–(22) with its analogue
K for polydisperse systems calculated by formulae
(1), (14), and (15). The next regularization step
could be to use the results of calculations of the
characteristic light scattering function for model
distributions f(r) with specified parameters. Some
examples of such calculations are shown in Figure 1
and are also given in Refs. 1, 51, and 61–63. Then,
Eqs. (18) and (19) could be used for the determina-
tion of a certain mean particle size, which might be
used for the following determination of N , C , and
S by formulae (20)–(22) when the type of size dis-
tribution and the degree of system polydispersity
are known. For ill-defined systems, however, this ap-
proach seems to be ineffective because it is practi-
cally impossible to evaluate in advance the param-
eters of their particle size distribution. The second
important aspect of the problem of the method’s
applicability to real objects is taking into account
the effects of particle nonsphericity. For well-
defined systems, in principle, one can use the re-
sults of calculations of the characteristic functions
of light scattering made for particle models of vari-
ous shapes.1,2,4–8,36,37,64 Unfortunately, this is left out
in reality in the case of ill-defined systems.

It seems to be more advisable for investigations
of structurally complex systems to choose universal
enough approximation expressions for the light scat-
tering characteristic functions and to evaluate their
accuracy using one or other models for real sys-
tems. The aim of this approach is to exclude, in the
495NAL OF BIOMEDICAL OPTICS d OCTOBER 1999 d VOL. 4 NO. 4
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general case, the problem of rigorously taking into
consideration the parameters of system polydisper-
sity and particle shape, and replacing it by evalua-
tions of limits of these parameters whereby reason-
able accuracy of the corresponding approximations
is attained. Clearly, approximation potentialities of
the ‘‘base’’ model for monodisperse systems with
spherical particles were studied first.3,29,36,37,39,54 This
analysis was made by means of computer simula-
tions, solving the direct problems as analogues of
directly measured parameters for model polydis-
perse systems with spherical particles and systems
with randomly oriented prolate and flattened out
spheroids, and using the results. Introducing these
results in algorithms of solving the inverse prob-
lems in which calibration dependences of the char-
acteristic functions of light scattering calculated in
the above approximation were used, one can obtain
approximate values of the system’s parameters.
Their comparison with the exact data taken into
consideration in advance allows one to establish a
permissible degree of the system polydispersity or
the particle nonsphericity wherein a specified accu-
racy of the determination of the parameters is en-
sured. On the other hand, the measure of accuracy
fixed (systematic error) is of interest as an indication
of the closeness of the results of regularized solu-
tions of the inverse problems to those based on a
presumable exact solution of the initial integral
equation of type (1). In conclusion of the analysis of
the effectiveness of the regularization schemes, ap-
proximation of light scattering functions was used
to evaluate the coefficients of amplification of
errors37 characterizing the general stability of the
methods of solving the inverse problems.

One of the main problems of the method applica-
bility to real polydisperse suspensions are types of
averaging of the particle size. Every type has to sat-
isfy the requirement for each of the light scattering
functions used to be the least sensitive to the degree
of the system polydispersity.3,23 Proceeding from
this principle and the definitions of the light scat-
tering functions, the following types of averaging
were suggested:3,23,39,54,65

rg5F E
0

`

rn̄12f~r !drG 1/(n̄12)

for t/N , (23)

rl5F E
0

`

rn̄12f~r !drY E
0

`

r3f~r !drG 1/(n̄21)

for t/C and n̄ , (24)

rd5F E
0

`

rn̄12f~r !drY E
0

`

r2f~r !drG 1/n̄

for t/S , (25)
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rx5F E
0

`

rn̄14f~r !drY E
0

`

rn̄12f~r !drG 1/2

for n̄ ,

(26)

where n̄ denotes a certain value of the wavelength
exponent for a real or model polydisperse system.
The geometrical meaning of these mean radii is es-
tablished by comparing their expressions and val-
ues with standard types of the particle size
averaging.3 It was shown in Ref. 54 that there exist
wide areas of mean sizes of Eqs. (23)–(26), where
the light scattering functions under consideration
are practically invariant with respect to the degree
of the system polydispersity described in terms of
distribution, Eq. (16). Hence, the turbidity of such
suspensions are defined by couples of the corre-
sponding integral parameters (for example, mean
size and concentration of particles) practically inde-
pendently of the degree of their polydispersity.

Figure 3 shows some of the results of above men-
tioned computer simulations characterizing the in-
fluence of polydispersity on the results of solutions
for the inverse problems where drl is the system-
atic error of the determination of rl . It was
established3 that the algorithms of determination of
the mean size and mass–volume concentration had
practically no limitations on the degree of the sys-
tem polydispersity within wide intervals of particle
size. At the same time, reliable determination of the
particle number concentration imposes restrictions
on the degree of polydispersity. Similar estimations
were obtained for nonspherical particles.29,36,37

Some of their examples are shown in Figure 4,
where dr and dC are the systematic errors of the
determination of r (radius of the sphere of the
equivalent volume) and C resulted from the effect
of particle nonsphericity. They pointed to the appli-
cability of the method in the case of systems of
moderately anisometric randomly oriented par-

Fig. 3 Dependences of drl on nn (Ref. 3) in AD (a) and RGD (b),
(c) approximations and for particles with m51.33 (dashed lines) at
n50 (1), 2 (2), 5 (3), 15 (4), 50 (5), and n→` (6).
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ticles (prolate and flattened out) whose axial ratio p
is within the interval 1/3,p,3. The approximation
expressions for the smoothed integral light scatter-
ing functions, Eqs. (19)–(22), have been worked out
on this basis. They permit the algorithms of the in-
verse problem’s solutions to be automated by
means of personal computers or even program-
controlled pocket microcalculators.66

Figure 5 shows the results of utilization of the
corresponding software for the determination of the

Fig. 4 Dependences of dC and dr (dashed lines) on np (Ref. 36)
for prolate spheroids in AD approximation at p52 (1), 3 (2), 6 (4),
10 (5), and 15 (6).

Fig. 5 Calibration plots for the determination of r (1), N (2), C (3),
and S (4) by n at t51 cm−1 (l050.49 mm) for protein disperse
systems (d051.3 g/cm3, m051.334, m5m151.15).
JOUR
suspension’s parameters in a wide interval of n val-
ues for various protein disperse systems used as an
example. These plots represent the general behavior
pattern of reciprocals of the characteristic light scat-
tering functions (being, in fact, similar for various
m) depending, to the point, on the particle size: the
specific turbidity (for C), the optical cross section
(for N), and the scattering efficiency factor (for S). It
is evident that while analyzing systems of this (or
any other) type in the general case, values of N , C
and S determined by such calibrations have to be
multiplied by t.

We return to the problem of taking into consider-
ation the effects of dispersion of the optical con-
stants of particle and medium substances. Making
some substantiated assumptions,52 it is possible to
derive the following equations for determination of
the particle size or refractive index:52,65

n~a ,m !5nd1Dn , (27)

Dn5k0nd1P
m1

m121
~k12k0!, (28)

P52~nd>2 !5nd~nd<2 !, (29)

k i5d ln m i /d ln l ~ i50,1!, (30)

where n(a ,m) is defined by formula (19) and was
used, for instance, in Figures 3–5, nd denotes the
value of the wavelength exponent obtained for a
real disperse system by relationship (18), k i are the
experimentally determined features of the optical
dispersion of the particle (k1) and medium (k0)
matter. Thus, the correction for the optical disper-
sion Dn for swelling binary particles, to which the
Gladston–Dale law can be applied, does not de-
pend on the degree of particle swelling.

For dispersion media, which are usually practi-
cally pure liquids, k0 can be found using numerous
and detailed results published on spectral measure-
ments of the refractive indices. Unfortunately, for
various macromolecular compounds there are no
such detailed experimental data. However, it ap-
peared to be possible to use an ease-of-access stan-
dard parameter—the reciprocal value of the matter
relative dispersion (Abbe number) d5(mD−1)/
(mF−mC), and to obtain the following expression:52,65

k1~l0!5(mD−1)(lF
2+lC

2 )/mDd(lF
2−lC

2 ), (31)

where l05@(lF
221lC

22)/2#21/2, and the indices C,
D, F denote sodium standard spectral lines. The
values of d for more than 100 liquids and polymers,
including proteins and carbohydrates, have been
published.67 Using these values, we have con-
structed the following correlation dependence:52
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k1~l0!5(
i50

2

Bi~mD21.4! i, (32)

where B050.016 75, B1520.026 858, and B2
50.780 829. This dependence approximates the ex-
perimental data with the maximum error of about
20% (Figure 6). Thus, for taking into account the
refractive index dispersion it is sufficient to know
merely the substance’s refractive index for sodium
yellow line. Figure 7 presents the dependences of
the wavelength exponent on the particle diameter
for polystyrene latex suspensions plotted with or
without taking into account the dispersion. They
were compared with results based on an indepen-
dent determination of particle size by electron mi-
croscopy (dots).52 It is noteworthly that the disper-
sion effect most essential for relatively fine
suspensions leads to the wavelength exponent val-
ues exceeding the limiting theoretical value n54
for Rayleigh particles. The technique developed for
particle size determination seems to be applicable
for the metrological certification of latex systems. In
terms of accuracy, this technique is on par with the
electron microscopy method (Table 1), and at the

Fig. 6 Dependence of values of k(l0) on mD obtained by formula
(31) with the use of experimental data of Ref. 67 (dots) and the
correlation curve plotted by formula (32).
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same time, is much less labor-intensive. In Table 1,
s is a mean-square error, d1 was determined by the
electron microscopy method, and d2 and d3 were
determined by the spectroturbidimetric method,
with d2 and without d3 taking into account the dis-
persion Dd5(d22d1)/d1 .

The general understanding of the spectroturbidi-
metric method’s stability is given by the results of
calculations of the coefficients of amplification of
errors for the particle size and concentration
determination.37 Figure 8 shows a function k de-
pending on the wavelength exponent, which de-
scribes up to a linear factor the coefficients of am-
plification of errors at different values of m . Within
the accuracy of turbidity measurements of about
5%, the maxima of errors in most cases do not ex-
ceed admissible values: of the order of 10% for r
and C , and 20%–30% for S and N . However, the
errors may reach higher values for almost Rayleigh
particles (n'4) whose radius does not exceed ap-
proximately 0.05 mm, and for optically soft particles
(m,1.1) with n values of near 2 as well. The latter

Fig. 7 Dependences of nd (1) and n (2) on particle diameter d
calculated for polystyrene latex suspensions as compared to the
experimental data of Table 1 (3), Ref. 68 (4), and Ref. 69 (5).
Table 1 Comparison of average diameters d12d3 of the polystyrene latex particles determined by the
spectroturbidimetric and the electron microscopy methods (Ref. 52).

Sample nd6s n d1 (nm) d2 (nm) d3 (nm) Dd (%)

L1 4.2106931023 3.85 76 74 — 22.6

L2 4.0716231023 3.71 91 99 — 8.8

L3 2.8086531024 2.46 312 307 210 21.6

L4 2.3556131024 2.02 460 474 340 3

L5 1.8626731024 1.55 690 724 564 4.9

L6 1.6216531024 1.375 780 817 688 4.7
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have radii within the range of approximately 0.2–
0.3 mm. Within the bounds of these relatively unfa-
vorable intervals there fall, for example, some bac-
teria and viruses, certain types of blood cells, some
bacterial spores, ribosomes, certain types of lipo-
somes, and membrane vesicles. These cases require
either increasing the accuracy of photometric mea-
surements or additional optimization of solutions
for the inverse problems.

There are at least two practically important prob-
lems whose solutions admit effective optimization,
namely, the study of particle agglutination39,54,55,70

and the evaluation of changes in particle volume
induced by particle swelling or shrinkage.39,54 The
agglutination test is one of the most popular diag-
nostic tools in immunological studies, and volume
changes of cells and subcellular particles may pro-
vide information on, say, the resistance of mem-
brane structures, some peculiarities of membrane
transport, etc. At first sight, the second of the two
above problems may seem unsolvable in principle,
due to the extreme uncertainty of the system,
namely, simultaneous changes in the particle size
and refractive index. Nevertheless, it appeared pos-
sible to obtain stable solutions by restricting the
problem to a reliable evaluation of relative changes
of particle characteristic parameters and imposing
consistent additional prior conditions on the system
being studied. References 39, 54, and 70 contain de-
tailed descriptions of this approach. Therefore, we
restrict ourselves here to a short discussion of its
main results.

When studying cell agglutination, it is assumed
that there exists an inversely proportional depen-
dence between the number of agglutinating par-
ticles per unit of suspension volume and the mean
effective volume of particles (their aggregates).
Hence, the following parameter is introduced into
consideration: i5N1 /N25r2

3/r1
3 and is given by

the meaning of the mean effective number of par-
ticles involved in one aggregate. Hereinafter, indi-
ces 1 and 2 denote values of the parameters before
and after agglutination of particles or changes in
their volume. When analyzing volume changes, the
inversely proportional dependence between the
fractional part of the particle relative refractive in-
dex and particle volume is assumed to be the con-
sequent Gladstone–Dale rule: (m2m0)/m05m21

Fig. 8 Dependence of k on n (Ref. 37) at m51.05 (1), 1.1 (2),
1.15 (3), and 1.2 (4).
JOUR
;1/r3. In both cases, particles are modeled as iden-
tical homogeneous spheres. Denoting the relative
change in particle volume during swelling or
shrinkage as dV with the assumptions made, it is
possible to derive the following simple
expressions:39,54,70

i5~D2 /D1!3/(n021) ~n0Þ1 !, (33)

i5@~22n2!/~22n1!#3/2 ~n,2 !, (34)

dV5@~22n1!/~22n2!#3/421 ~n,2 !, (35)

dV5~D2 /D1!3/(n024)21 ~n0>2,n0Þ4 !, (36)

dV5~D2 /D1!3/[2(12n0)]21 ~n0<2,n0Þ1 !,
(37)

where n05(n11n2)/2. Among the mutually
supplementing formulas, Eqs. (33)–(37), one can
choose those that are stable at n values of near 2
and even near 4 for the case of agglutination. When
using them, there is no necessity for special calibra-
tions and computer processing, taking into account
the relative refractive index and other initial par-
ticle characteristics (this seems to be very important
for structurally complex systems).

We have restricted the consideration to the com-
monly used agglutination processes, when the
number of initial particles in an aggregate does not
exceed about 10–20 which is far, e.g., from the frac-
tal regime.71,72 Detailed calculations were made by
Khlebtsov73,74 for some models for fractal aggrega-
tion. In particular, it was shown that measurements
of the wavelength exponent n could be used to
evaluate the fine structural features of fractal
clusters.73 In addition, these calculations resulted in
relationships74 coincident with formula (33), when
the value of fractal dimension F was equal to 3. The
use of this F value in the agglutination cases con-
sidered was substantiated in Ref. 54. This probably
may serve as additional evidence for a conclusion
given in Refs. 75 and 76 that the useful range of the
theory of homogeneous particles is wider than is
usually presumed.76

3 PRINCIPLES OF SPECTROTURBIDIMETRY
OF ORIENTATION-ORDERED
DISPERSE SYSTEMS

As the data presented above suggest, in the general
case of randomly oriented nonspherical particles, a
spectroturbidimetric experiment may result in the
following set of suspension parameters: r , C , N and
S , with m and p being known in advance; or m, C
(or r), N and S , with r (or C) and p being known in
advance. The need for a prior assessment of the
particle refractive index, size (or concentration) and
axial ratio by independent techniques (e.g., micro-
scopic, photometric, immersion–photometric, etc.)
499NAL OF BIOMEDICAL OPTICS d OCTOBER 1999 d VOL. 4 NO. 4
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essentially complicates the spectroturbidimetric
method and lays constraints on its accuracy.

It was shown in Refs. 77 and 78 that the effect of
particle orientation in combination with the effect
of orientation relaxation and the results of measure-
ments at random particle orientation may serve as a
source of additional information about the system’s
structure. Using algebraic terminology, this ap-
proach means increasing the number of indepen-
dent equations used for the determination of struc-
tural parameters of disperse systems. It allows one
to increase the number of these parameters (includ-
ing axial ratio, size, and refractive index of par-
ticles) being determined in a single combined ex-
periment. Principles of spectroturbidimetry of the
orientation-ordered disperse systems are consid-
ered here with a combination of the spectroturbi-
dimetry and an electro-optical technique used as an
example. Note that the electro-optical properties of
suspensions serve, in particular, for estimations of
the most important electrophysical parameters of
suspended particles and find wide application in
biophysical, biochemical, and physicochemical in-
vestigations of various suspensions.16–21,53,56,79

Figure 9(a) presents oscillograms77 reflecting tem-
poral changes in the transparency of an Escherichia
coli cell suspension under the action of bursts of
rectangular pulses of an orienting electric field in
unpolarized light (l5810 nm), directed perpen-
dicularly to the orienting field with an amplitude E
of 100 V/cm [Fig. 9(c)]. An electro-optical signal
consists of three parts, corresponding to the rela-

Fig. 9 Oscillograms of electro-optical signals (a) for E. coli cell
suspension (Ref. 77) at pulse frequencies of 2.5 (1), 7 (2), 14 (3),
25 (4) Hz and a scheme (b), (c) of p, r and m determination.
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tively fast clarification of the suspension (I), station-
ary part, corresponding to a given degree of par-
ticle orientation (II), and relaxation part,
corresponding to the transition of the suspension to
the state of random particle orientation with a time
of relaxation tR (III) (820 ms in these experiments).
At relatively low pulse frequencies [curves 1–3 in
Figure 9(a)], signal modulations are observed in the
region of stationary values of transmission which
can be explained by cell low-amplitude oscillations
about the direction of the particles’ primary
orientation.80 The turbidity spectra ta ,b correspond-
ing to the stationary [Figure 9(a)] parts and mea-
sured at the mutually perpendicular directions of
the orienting field [Figures 9(b), (c)] can be used to
determine the axial ratio p5a/b and phase shift
parameter r by appropriate formulae and
calibrations.77

Figure 10 presents double logarithmic plots of the
turbidity spectra of E. coli suspensions for three dif-
ferent states of particle orientation. Changing the
slope of these plots from nb52.32 (plot 3) to na
51.67 (plot 1) reflects the increase in the central ray
phase shift with the change in particle orientation.
The value n52 (plot 2) was obtained in the case of
random particle orientation. It is worth noting that,
if prolate optically soft particles are large enough
and their r values are small (n'2), the axial ratio p
is just equal to ta /tb , while in the more general
case (unlimited r values) p5(ta /tb)1/(n21). For in-
stance, many bacterial suspensions satisfy these
conditions. As a source of additional particle size
information, the coefficient of rotary diffusion Q
(0.2 s−1 in this case) determined by the relaxation
curves is used. When combining the results of the
independent determinations of the particle size r
and the phase shift parameter r, one can determine
the particle relative refractive index m77 (see Figure
9). Finally, the orientation turbidimetric effect,20 i.e.,
increments of turbidity Dta ,b corresponding to the
stationary parts of the electro-optical signals, nor-

Fig. 10 Plots of log Da,b vs log l for E. coli suspensions (Ref. 77)
with ordered (1, 3) and random (2) cell orientation.
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Table 2 Results of determination of E. coli cell parameters by the spectroturbidimetric (1) and indepen-
dent (2) methods.

Parameter r r (mm) p m m

1 0.95 0.6 2.45 1.046 1.39

2 — 0.64a 2.5a 1.035b 1.38b

Parameter N31026 (ml−1) C (mg/ml) S (cm2/ml) Dg•1029 (F m2) —

1 15 34 6.9 4 —

a Light microscopy.
b Immersion photometry (Refs. 50 and 82).
malized to the values of t obtained at random par-
ticle orientation, is utilized. Its dependence on the
strength of the orienting electric field E obtained
experimentally and calculated theoretically (with
due account of the particle parameters determined)
can be used for the evaluation of particle surface
polarizability Dg. The latter is defined as the Dg
value which gives the best accord between theory
and experiment.20,77 Table 2 gives an example of the
use of the method considered77 corresponding to
the data of Figures 9 and 10.

Thus, combining the stationary and relaxation
spectral characteristics of the electro-optical effect in
the cases of random and ordered particle orienta-
tion, it is possible, in principle, to obtain in situ the
following set of suspension’s characteristics: (1)
mean particle size; (2) refractive index; (3) axial ra-
tio; (4) the number of particles per unit volume of
the suspension; (5) particle mass–volume concen-
tration; (6) the total surface area of suspended par-
ticles per unit volume of the suspension; and (7) the
effective value of particle electrical surface polariz-
ability. Notice that the general approach and the
data described in this section provided the basis for
further development of effective algorithms of solv-
ing the inverse problems in a wide range of particle
sizes, axial ratios, and refractive indices. Specifi-
cally, the basic problems of interpretation of relax-
ation measurements21,81 were considered, and itera-
tion procedures making (when necessary) more
accurate results of the determination of particle pa-
rameters were developed78 by the use of the
T-matrix method.6,26,27 A prototype electro-optical
spectroturbidimeter, which can be used in particular
to create the optimal conditions for experimental
realization of the above potentials, was designed
and made on the basis of collaboration between IB-
PPM RAS, the Samara Medical Institute (Samara),
and the State Research Institute of Applied Micro-
biology (Obolensk).
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