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Abstract. Interferometers (e.g., ALMA and NOEMA) allow us to obtain the detailed brightness
distribution of astronomical sources in three dimensions (R.A., Dec., and frequency). However,
the spatial correlation of the noise makes it difficult to evaluate the statistical uncertainty of the
measured quantities and the statistical significance of the results obtained. The noise correlation
properties in the interferometric image are fully characterized and easily measured by the noise
autocorrelation function (ACF). We present the method for (1) estimating the statistical uncer-
tainty due to the correlated noise in the spatially integrated flux and spectra directly, (2) simu-
lating the correlated noise to perform a Monte Carlo simulation in image analyses, and
(3) constructing the covariance matrix and chi-square χ2 distribution to be used when fitting
a model to an image with spatially correlated noise, based on the measured noise ACF. We
demonstrate example applications to scientific data showing that ignoring noise correlation can
lead to significant underestimation of statistical uncertainty of the results and false detections/
interpretations. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
International License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JATIS.9.1.018001]
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1 Introduction

Recent developments in large interferometers (e.g., ALMA and NOEMA) have made it possible
to spatially resolve the brightness distribution of many more astronomical objects. These obser-
vations have enabled us to obtain a three-dimensional (right ascension, declination, and the line-
of-sight velocity) structure of the gas emission and two-dimensional images of the continuum
within galaxies with high spatial resolution and sensitivity. As a result, the data allow for detailed
image analysis; e.g., investigating spectral features of spatially resolved regions, characterizing
faint and extended structures, performing Fourier analysis of the image, etc. However, the spatial
correlation of the noise in interferometric images makes it difficult to evaluate the uncertainty of
the results. There has been a lack of quantitative understanding of the spatial correlation of noise
and methods to evaluate the statistical uncertainty of measured quantities and the significance of
scientific results, such as signal detection and image analysis.

To estimate the statistical uncertainty of integrated fluxes or spectra under correlated noise,
both variance and covariance of the pixel pairs in the integrated region need to be taken into
account for the uncertainty propagation. Sun et al.1 proposed a method based on an approximation
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that the covariance of noise between pixels is proportional to the synthesized beam. However, the
covariance is actually proportional to the autocorrelation of the synthesized beam.2 Also, more
importantly, the method approximates the synthesized beam with a single Gaussian. In contrast,
the true synthesized beam has a complex structure with a main lobe inducing short-range strong
noise correlation and side lobes inducing long-range weak noise correlation. Such an oversim-
plified assumption can lead to underestimation of the uncertainty. A more widely used method
to estimate the statistical uncertainty of integrated fluxes is based on an intuitive interpretation
that the noise can be regarded as independent across beam-sized regions as described by Alatalo
et al.3 The noise variance in the integrated values is evaluated by scaling the noise variance of
individual pixels by the number of the beam area in the integrating aperture. This method also
implicitly assumes the Gaussian beam to estimate the beam area of the synthesized beam. To
evaluate the statistical uncertainty of the best-fitting parameters in a model fitting to the inter-
ferometric data with the correlated noise, Davis et al.4 proposed a method to construct a covari-
ance matrix from the synthesized beam, which describes the covariance of the noise and uses it
to compute the χ2 value. Again, they also assumed a simple Gaussian function for the syn-
thesized beam.

Several studies have used workarounds to avoid the need to characterize the correlated noise
using Monte Carlo methods. Harikane et al.5 measured the statistical uncertainty of the integrated
flux by randomly placing identical apertures to the emission-free region and adoptting the
root mean square (rms) of the summed values. Boizelle et al.6 estimated the statistical uncertainty
of the fitting parameters by Monte Carlo resampling of the best-fitting parameters: adding
noise extracted from the emission-free regions to the original data and refitting models. Another
common technique is to fit the model in the visibility plane to measure the source size and shape
where the noise in the visibility measurements is independent. This method is particularly ben-
eficial if the source is small compared to the resolution of the interferometer since the model
needs to be simple and axisymmetric for computational efficiency. However, in many cases,
analysis in the image plane is necessary (e.g., complex structures, such as spiral arms, bar, and
clumpy structures).7

There have yet to be any attempts to evaluate the statistical uncertainty for the general mea-
surements using interferometric images (e.g., integrated flux, spectra, and fitting) by fully char-
acterizing the detailed noise correlation. Refregier and Brown2 proposed to use the noise
autocorrelation function (ACF) to characterize the correlated noise of the very large array
FIRST radio survey data. They used the noise ACF to explore the effect of the spatially corre-
lated noise in the signal of the ellipticity correlation function, which encodes the imprint of the
weak lensing signal by the large-scale structure of the universe. The noise ACF fully character-
izes the noise correlation properties of interferometric images and provides the covariance of
noise between different pixels, which allows us to measure statistical uncertainty under the noise
correlation.

In this paper, we present a method and associate Python code to characterize the spatial
correlation of noise in interferometric images by measuring the noise ACF and evaluating its
effect on the measured quantities and the analysis results.

This paper is organized as follows. In Sec. 2, we present the noise correlation properties of
ALMA data characterized by the ACF and show that the noise correlation originates from the
synthesized beam (dirty beam) structures, which remain even in the CLEAN image and cannot
be removed by any deconvolution algorithm. In Sec. 3, we introduce methods for (1) estimating
the statistical uncertainties associated with spatially integrated flux or spectra; (2) generating
simulated noise maps from the measured noise ACF, which are useful to estimate the statistical
significance of the result obtained by any image analysis; and (3) constructing the covariance
matrix from the noise ACF which can be used in the χ2 formalism of the model fitting to the
observed image, with example applications to real scientific data from Ref. 8.

Throughout this paper, we use the noise map from emission line cube and continuum image
data taken by ALMA band 7 (2017.1.00394.S; PI: González López, Jorge) as an example, but
the method proposed by this paper can be applied to other interferometric images. A Python
package for easy application of the methods described in this paper, Evaluating Statistical
Significance under Noise Correlation (ESSENCE), is publicly available at https://github
.com/takafumi291/ESSENCE.
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2 Noise Characterization of Interferometric Image

2.1 Characterization of Spatially Correlated Noise

First, we consider a two-dimensional noise map NðxÞ, where x denotes the position of the pixels.
Pixel regions with signal from the object of interest are excluded. The statistical properties of the
noise are assumed to be uniform in the noise image, which appears to be valid in the interfero-
metric image (We discuss this in Sec. 2.2.) In most of the literature, the noise in the radio inter-
ferometric image is quantified and reported with the rms of the noise map NðxÞ:

EQ-TARGET;temp:intralink-;e001;116;633

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hNðxÞ2i

q
≡ σN; (1)

where the brackets denote the expected value for each pixel, which is practically estimated by
averaging over the noise map. The mean of the noise in the image μ ≡ hNðxÞi ≈ 0, since the most
of the noise represented by the system temperature Tsys is not correlated in a pair of antennas
and the power of the noise does not appear in the correlator output of interferometers, such as
ALMA. Extended background emission, such as the cosmic microwave background, is resolved
out without total power observation. However, these sources of noise contribute to the random
noise associated with visibility measurements that propagate into the noise on the image by the
Fourier transform. In the reminder of this paper, we assume that the mean of the noise map to be
zero or already have been subtracted in other cases, and thus the rms and the standard deviation
of the noise can be used interchangeably. Figure 1 shows the example ALMA band 7 noise map
and its histogram from the observation targeting the hyper luminous infrared galaxy BRI 1335-
0417 at redshift of 4.4, which will be used in the later sections. The noise map is created by
eliminating astronomical sources by 4 sigma clipping as well as removing pixels adjacent to
these clipped regions out to 3 times the full-width of half-maximum (FWHM) of the synthesized
beam. The histogram of the pixel values in the noise map is well fitted by a Gaussian function.

When noise can be assumed to be Gaussian, the statistical and correlation properties of noise
are fully quantified by the noise ACF:2

EQ-TARGET;temp:intralink-;e002;116;388ξðxi;jÞ ≡ hNðxþ xi;jÞNðxÞi; (2)

where the expected value is estimated by averaging all pairs of pixels with the relative distance
xi;j ¼ ði; jÞ in the noise image. The value of the ACF noise at zero lag, xi;j ¼ 0, is equal to the
variance of the noise as ξð0Þ ¼ hNðxÞ2i ¼ σ2N . When the noise has no interpixel correlations, the
noise ACF becomes

EQ-TARGET;temp:intralink-;e003;116;307ξðxi;jÞ ¼
�
σ2N; if xi;j ¼ 0;

0; otherwise:
(3)

(a) (b)

Fig. 1 (a) Example ALMA band 7 noise map. The source emission region is eliminated with the
4 sigma clipping; see text. (b) The histogram of the pixel values of the noise map. The red dashed
line indicates the best-fit Gaussian with the mean μ ¼ 0.000 and the standard deviation σ ¼ 0.036
(m Jy beam−1).
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To evaluate the statistical uncertainty of the derived noise ACF, we first considered the number of
independent pixel pairs Npair in the number of all available pairs N 0

pair used to evaluate the

bracket in Eq. (2), since the pixels within a beam area are expected to be strongly correlated
and not independent. We estimated the number of independent pixel pairs Npair as the ratio of the
number of all pixel pairs N 0

pair and the number of pixels in the beam (beam area in pixels) Abeam.

[The beam area in pixels is typically estimated by 2πbmajbmin∕8 ln 2, where bmaj and bmin are the
major and minor FWHMs of the mainlobe of the synthesized beam (the “CLEAN” beam)]:

EQ-TARGET;temp:intralink-;e004;116;646Npair ¼ N 0
pair∕Abeam: (4)

Then the associated statistical uncertainty of the noise ACF Δξðxi;jÞ is calculated as the usual
standard error of the mean but with an independent sample size Npair, that is, the standard
deviation of the multiplication of the values across all pairs of pixels with separation xi;j divided
by the root of the number of independent pixel pairs Npair:

EQ-TARGET;temp:intralink-;e005;116;562Δξðxi;jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hNðxþ xi;jÞ2NðxÞ2i∕Npair

q
: (5)

Figure 2 shows the results of the noise ACF [Eq. (2)] computed for the noise map shown in
Fig. 1, and the synthesized beam of the observation, both of which are normalized so that the
central value is one. The noise ACF shows a pattern similar to that of the synthesized beam, with
a correlation signal near the center and a correlation signal away from the center corresponding
to the main lobe and side lobe of the synthesized beam, respectively. This suggests that most of
the correlation of the noise originates from the discrete Fourier transform involved in the inter-
ferometric imaging, which is illustrated in the following section.

Note that the noise ACF is measured for the noise maps of the band 7 continuum image
(shown in Fig. 2), [CII] line (velocity integrated over the velocity range of −400 to 400 km s−1,
where the velocity is computed with respect to the redshifted [CII] line frequency with the
galaxy’s redshift of 4.40749) moment 0 map, and the [CII] line cubes (each velocity channel
map). These maps are primary beam uncorrected and cleaned images produced by the CLEAN
algorithm in CASA (see details in Ref. 8).

2.2 Origin of the Noise Correlation

In interferometric observations, measurable quantities are visibility (Fourier amplitude and
phase) of the astronomical image at the given spatial frequencies ðu; vÞ ¼ D∕λ, which are related
to the antenna baseline vector D (separation vector of pairs of antennas) projected onto the plane
of the sky and the observed wavelength λ. The image is then computed by the Fourier transform
of the measured visibility.

(a) (b)

Fig. 2 (a) The noise ACF computed for the ALMA band 7 noise map and (b) a similar pattern in
the synthesized beam of the observation.
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To explore the origin of the noise correlation in the image, seen in (Fig. 2), we start with
the ideal case in which the observation measures visibilities at all spatial frequencies ðu; vÞ. The
visibility of the source of interest is Vðu; vÞ, which is the Fourier transform of the true flux

distribution of the source in the image, Ŝðx; yÞ ¼ FT½Vðu; vÞ�, where FT denotes the Fourier
transform. A measurement of Vðu; vÞ usually involves uncorrelated random noise, which we

describe with the random variable N̂visðu; vÞwith zero mean. We assume that the statistical prop-

erty of the random variable N̂visðu; vÞ is uniform as a function of u and v, that is, the system noise
temperature is the same for all antennas. The image obtained Iðx; yÞ is the Fourier transform of

the measurement Vðu; vÞ þ N̂visðu; vÞ

EQ-TARGET;temp:intralink-;e006;116;620Iðx; yÞ ¼ Ŝðx; yÞ þ N̂ðx; yÞ ¼ FT½Vðu; vÞ þ N̂visðu; vÞ�; (6)

N̂ðx; yÞ ¼ FTðN̂visðu; vÞÞ is the noise component of the image, which is a random variable with
zero mean. (The Fourier transform of the random variable with zero mean is also random variable

with zero mean.) The noise component of the image N̂ðx; yÞ is due to the random noise asso-

ciated with visibility measurements N̂visðu; vÞ, and the resulting noise map Nðx; yÞ ¼ N̂ðx; yÞ is
not spatially correlated in the ideal case where all spatial frequencies are measured.

In practice, visibilities are measured only at the limited spatial frequencies fðu1; v1Þ;
ðu2; v2Þ; : : : ; ðuM; vMÞg (uv coverage). The spatial transfer function Wðu; vÞ is used to de-
scribe the spatial frequencies ðu; vÞ, in which we measure the visibility. This function Wðu; vÞ
is nonzero if the visibility at ðu; vÞ is actually measured, which can be expressed as

EQ-TARGET;temp:intralink-;e007;116;473Wðu; vÞ ¼
XM
i¼0

δðu − ui; v − viÞ þ δðuþ ui; vþ viÞ; (7)

where δ is the Dirac delta function. The synthesized beam bðx; yÞ is the Fourier transform of the
spatial transfer function Wðu; vÞ, bðx; yÞ ¼ FT½Wðu; vÞ�. The resulting image Iðx; yÞ, decom-
posed as the signal Sðx; yÞ from the source and noise map Nðx; yÞ, is

EQ-TARGET;temp:intralink-;e008;116;387

Iðx; yÞ ¼ Sðx; yÞ þ Nðx; yÞ
¼ Ŝðx; yÞ � bðx; yÞ þ N̂ðx; yÞ � bðx; yÞ
¼ FT½ðVðu; vÞ þ N̂visðu; vÞÞWðu; vÞ�; (8)

where � represents convolution. As the noise correlation pattern (noise ACF) and the synthesized
beam show a similar pattern in Fig. 2, the noise component of the image Nðx; yÞ is the con-

volution product of the random variable N̂ðx; yÞ and the synthesized beam bðx; yÞ. Because
of this, the noise in the image is well behaved; in particular, its statistical properties are uniform
over the image, as assumed in Sec. 2.1, when measuring the noise ACF.

For convenience, by replacing the sky position of ðx; yÞ with the pixel position x, the noise
map of the image in Eq. (8) is written as

EQ-TARGET;temp:intralink-;e009;116;232NðxÞ ¼ bðxÞ � N̂ðxÞ ¼
X
i;j

bðxi;jÞN̂ðxþ xi;jÞ: (9)

The autocorrelation of the noise map then becomes2

EQ-TARGET;temp:intralink-;e010;116;176

ξðxi;jÞ ¼ hNðxþ xi;jÞNðxÞi

¼
�X

i 0;j 0
bðxi 0;j 0 ÞN̂ðxþ xi;j þ xi 0;j 0 Þ

X
i 00;j 00

bðxi 00;j 00 ÞN̂ðxþ xi 00;j 00 Þ
�

¼
X
i 0;j 0

X
i 00;j 00

bðxi 0;j 0 Þbðxi 00;j 00 ÞhN̂ðxþ xi;j þ xi 0;j 0 ÞN̂ðxþ xi 00;j 00 Þi

¼ σ2Nαðxi;jÞ; (10)
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where we used the noise ACF property of uncorrelated noise N̂ [Eq. (3)] for the fourth equality
and we have defined αðxi;jÞ as beam autocorrelation:

EQ-TARGET;temp:intralink-;e011;116;709αðxi;jÞ ¼
X
i 0;j 0

bðxi 0;j 0 Þbðxi;j þ xi 0;j 0 Þ: (11)

Equation (10) implies that the noise ACF is related to the ACF of the synthesized beam with a
constant multiplicative factor, which is the variance of the noise. In Fig. 3, we compare the ACF
of noise and that of the synthesized beam, along with the residuals (noise ACF minus beam
ACF). Although the noise ACF and beam ACF show a common characteristic pattern, they
do not completely coincide. The difference of the two ACF shows an extended weak positive
correlation and a relatively large negative around the main beam in the residual. This disagree-
ment is likely due to not only (1) the remaining contamination by the emission from the sources,
but also (2) the process involved in the imaging of the visibility measurements. These are dis-
cussed in detail in Appendix A comparing Fig. 3 obtained from the actual data with the one
(Fig. 13) obtained from the simulated data with a similar observational setup and realistic noise
in the visibilities but without emission in the sky. Note that our interest is on the statistical prop-
erty of the noise in the image plane, which we characterize by the noise ACF including effects of
contamination from the source and the imaging process.

Due to the limited spatial frequency coverage, the synthesized beam bðx; yÞ has a complex
structure with sidelobes that extend from the center to a large radius. The flux from the source
is spread out by the side lobes to the distant pixels in the image. The CLEAN algorithm, which is
most commonly used in radio imaging, deconvolves the beam pattern bðx; yÞ for signals with
high S∕N ðSðx; yÞ∕σNÞ > 3) and replaces it with a CLEAN beam without side lobes (a Gaussian
that approximates the mainlobe of the synthesized beam). The CLEAN algorithm successfully
suppresses the influence of the sidelobe and produces a high-fidelity image, but cannot remove

(a) (b)

(c)

Fig. 3 (a) The same noise ACF shown in Fig. 2, (b) the ACF of the synthesized beam, and (c) the
residual of the noise ACF minus the ACF of the synthesized beam.
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the spatial correlations that exist in stochastic noise Nðx; yÞ. Therefore, it is important to evaluate
their effects on image analysis and signal detection, which we will describe in Sec. 3.

3 Example Application to Scientific Data

3.1 Contribution of the Correlated Noise to the Statistical Uncertainty
in the Measured Flux

The most fundamental measurement of astronomy is the total flux distributing over some sky
region in the images, which are measured by summing the pixel values over the region of interest
(i.e., aperture photometry in optical astronomy). In particular, at the submillimeter band of
ALMA, the flux of the continuum emission arising primarily from thermal dust, and line emis-
sion and absorption by the various atomic and molecular gases are used to estimate the physical
properties of the interstellar medium (e.g., dust mass, gas mass, and the energy source of the
ionization or excitation). It is important to estimate the uncertainty of the measured quantities.
As shown in Fig. 2, the noise in interferometric images correlates significantly between pixels,
making the estimation of the noise in the integrated flux difficult. In the previous literature,
statistical uncertainties of integrated fluxes were estimated by one of the two methods: (1) ran-
domly placing identical apertures in the noise region of the image, measuring the sum within
each aperture and then adopting the rms as the noise in the sum of pixels in the aperture5 and
(2) assuming that the regions in the image separated with a beam size do not correlate and adopt-
ing σNAbeam

ffiffiffiffiffiffiffiffiffiffiffiffi
Nbeam

p
, where Nbeam is the number of beams (independent regions) in the aperture.3

Nbeam is estimated as Aaperture∕Abeam, where Aaperture and Abeam are the aperture area and the
CLEAN beam area in pixels, respectively. For convenience, we call methods (1) and (2) “random
aperture method” and “independent beam method,” respectively, in this paper.

In the “independent beam method” (σNAbeam

ffiffiffiffiffiffiffiffiffiffiffiffi
Nbeam

p
), the factor σNAbeam is the standard

deviation of the sum of noise in individual pixels within a beam assuming that the noise perfectly
correlates within a beam. Then the standard deviation of the sum of the noise of each indepen-
dent beam area in the aperture is computed by scaling by the square root of the number of in-
dependent beams Nbeam within the aperture. The terms Abeam and Nbeam in the σNAbeam

ffiffiffiffiffiffiffiffiffiffiffiffi
Nbeam

p
denote just the number of data points to be summed. Therefore, we caution readers that
σNAbeam

ffiffiffiffiffiffiffiffiffiffiffiffi
Nbeam

p
has the same unit as σN . Most interferometric maps and measured σN are

in brightness units, e.g., Jy beam−1 km s−1 or Jy beam−1. So we need to divide Abeam to compare
with the integrated flux or spectral flux density, e.g., Jy km s−1 or Jy. σNAbeam

ffiffiffiffiffiffiffiffiffiffiffiffi
Nbeam

p
is a factor

of Abeam different from σN
ffiffiffiffiffiffiffiffiffiffiffiffi
Nbeam

p
described by Alatalo et al.3 due to the unit difference where

they assume the quantity in the unit of flux.
This section introduces how to derive the statistical uncertainty associated with the spatially

integrated flux directly from the computed noise ACF. We consider adding all the pixel values at
pixel positions x within the sky region of interest S. The random noise NðxÞ in the map is char-
acterized by the noise ACF ξðxi;jÞ. The 1σ statistical uncertainty associated with the summed
value within the pixel region S σint can be estimated as

EQ-TARGET;temp:intralink-;e012;116;229

σ2int ¼ Var

�X
x<S

NðxÞ
�

¼
X
x<S

VarðNðxÞÞ þ
X
x<S

X
x 0≠x
x 0<S

CovðNðxÞ; Nðx 0ÞÞ

¼ Npixσ
2
N þ

X
xi;j¼x−x 0

x 0≠x
x;x 0<S

ξðxi;jÞ; (12)

whereNpix is the number of pixels in the region S. Var and Cov indicate variance and covariance,
respectively. The second term of the last line is the sum of the noise ACF for all possible pixel
separation vectors xi;j between two pixels within the region S. If the noise does not have an
interpixel correlation, the second term becomes zero, resulting in σint ¼ σN

ffiffiffiffiffiffiffiffiffi
Npix

p
. The method
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Sun et al.1 proposed to estimate σint is equivalent to Eq. (12) but approximately substituting the
covariance ξðxi;jÞ by σ2Nbðxi;jÞ. However, ξðxi;jÞ ¼ σ2Nαðxi;jÞ as shown in Eq. (10).

As an illustration, we used the spatially resolved [CII] moment 0 map of BRI 1335-0417
taken by ALMA, shown in Fig. 4, where the emission spreads over multiple pixels. We calcu-
lated the noise in the integrated flux measured using a variety of apertures S with different sizes.
The largest aperture is a dotted line shown in Fig. 4. Figure 5 shows the computed noise from the
measured noise ACF compared to the previously used “random aperture” and “independent
beam” methods. The noise calculated from the ACF is in excellent agreement with the random
aperture method, whereas the independent beam method tends to overestimate σint at smaller

Fig. 4 [CII] velocity integrated intensity map of BRI 1335-0417.8 The white contour is shown
every 4σ from 3σ to 27σ. The white elipse shown in bottom-left corner indicates the FWHM of
the main lobe of the synthesized beam. The dotted line circle shows the aperture corresponding
to the point with the largest number of pixels shown in Fig. 5. The [CII] spectrum within the aperture
is also shown in Fig. 8.

(b)

(a)

(b)

Fig. 5 (a) The noise rms in the integrated flux for apertures with different sizes estimated by
various methods: the one computed from the noise ACF (black points), the one estimated from
the random aperture methods (blue dashed line) with the standard error (blue shade), and the
one estimated from the independent beam method (black solid line). (b) The fractional difference
between the one computed from the noise ACF and the ones from the random aperture method
and independent beam method.
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apertures (considering the limiting case that the aperture is a single pixel, the obtained value by
“independent beam method”, σN

ffiffiffiffiffiffiffiffiffiffiffi
Abeam

p
) is clearly different from the fiducial value σN) and

underestimate σint at large apertures, showing that the assumption of “independent beam” is
oversimplified. When the field of view is small (the field of view becomes smaller at higher
frequency bands in ALMA) or the aperture area becomes larger, the random aperture method
cannot place apertures randomly in the limited area of the emission-free region, and thus the
standard error of the estimate increases, as shown in the blue shaded region in Fig. 5. The pro-
posed method of calculating σint, however, can provide the best estimate by exploiting all avail-
able data to estimate the noise ACF. The total [CII] flux measured with the aperture shown in
Fig. 4 is 29.51 �1.05 Jy km s−1 (1σ statistical uncertainty calculated from the noise ACF).

To demonstrate the significant effect of spatially correlated noise, Fig. 6 shows the noise vari-
ance σ2N in the integrated flux calculated from the ACF along with the contributions of the noise
variance of individual pixels in the aperture [the first term in Eq. (12), this is the value we obtain if
we are unaware of the noise correlation] and the interpixel correlation in the aperture [the second
term in Eq. (12)]. In the case of an aperture with two pixels, it is not mathematically allowed for
the first term to exceed the second term. However, as the number of pixels in the aperture Npix

increases, the contribution of the second term dominates over the first term because the number
of the first terms is Npix, whereas the number of the second terms is NpixðNpix − 1Þ. Ignoring the
noise correlation will lead to a significant underestimation of the integrated flux uncertainty.

Figure 7 further divides the variance due to noise correlation into the effects of the mainlobe
(correlation due to the mainlobe of the synthesized beam) and the sidelobe (long-range pixel
correlation due to the sidelobe of the synthesized beam). To illustrate the significance of the
long-range correlation conservatively, we define short-range/long-range correlation components
of the noise ACF inside/outside the ellipse with the beam FWHM in radius, respectively. After
Npix exceeds 200, the effect of the sidelobe becomes significant. This explains the deviation of
the estimate by the independent beam method from the true value (computed by the noise ACF
or the random aperture method; see Fig. 5); the number of independent beams Nbeam is estimated
by the area of the CLEAN beam, and the long-range correlation due to the sidelobe is not prop-
erly taken into account.

Another important measurement in astronomy is the shape of the spectrum integrated over a
certain region of interest. Similar to deriving the noise in the integrated flux, we can derive the
underlying noise in the spatially integrated spectrum using the noise ACFs computed for every

Fig. 6 The measured noise variance estimated from the noise ACF for different apertures S (blue
points and solid line), with the contribution from the noise variance of the individual pixels in the
aperture [the first term of the last line in Eq. (12), green points and dotted line] and the contribution
from the covariance due to the interpixel correlation (the second term of the last line in Eq. (12),
orange points and dashed line).
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velocity channel of the data cube. Figure 8 shows the spatially integrated [CII] spectrum enclosed
by the aperture shown in Fig. 4 with 1σ and 3σ noise levels. The [CII] spectrum of BRI 1335-0417
is well described by a single Gaussian without deviations from the Gaussian above 3σ. Because
emission lines from interesting astronomical phenomena, such as outflows and tidal tails, are
faint, it is important to accurately estimate the noise, otherwise, it will lead to false detections.

3.2 Simulating the Noise Maps

In image analysis, generating random noise based on the statistical properties of the noise is
useful to assess the significance of the results. In this section, we describe how to generate

Fig. 7 The covariance term due to the interpixel correlation shown in Fig. 6. [the second term of
the last line in Eq. (12), orange points and solid line], which are further decomposed into the com-
ponent of the long-range correlation due to the sidelobe of the synthesized beam (purple points
and dotted line) and short-range correlation due to the mainlobe of the beam (red points and
dashed line).

Fig. 8 (a) The spatially integrated flux within the aperture shown in Fig. 4 (solid black line) and
the best-fit Gaussian (solid blue line). (b) The residual (measured spectrum minus the best-fit
Gaussian). The gray shade and dashed line in both panels show the statistical uncertainty of
1σ and 3σ, respectively, calculated from the noise ACF. This figure is reproduced with permission
from Ref. 8 where the underlying noise is recalculated by the noise ACF of each velocity channel.
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random noise based on the noise ACF, which fully characterizes the correlated Gaussian noise.
Using an example of simulated noise, we demonstrate how ignoring correlated noise leads to
misinterpretation of results.

Once the noise ACF is measured, the noise at the xi;j positions in images with a size of
M ×M pixels can be generated randomly by the joint probability distribution, the probability
that Nðxi;jÞ takes the value in small intervals (Ni;j þ dNi;j) given by10

EQ-TARGET;temp:intralink-;e013;116;662dp ¼ dN1;1 · · · dNi;j · · · dNM;M

ð2πÞM2∕2jBj1∕2 exp

�
−
1

2
ΣM
a;b;c;d¼1Na;bB−1

a−c;b−dNc;d

�
; (13)

where B−1 is the inverse of the matrix B defined by

EQ-TARGET;temp:intralink-;e014;116;603Bi;j ¼ ξðxi;jÞ: (14)

Figure 9 shows the comparison of the noise of the observed data, the noise randomly
generated from the measured noise ACF using the joint Gaussian probability distribution
[Eq. (13); we used the MULTIVARIATE_NORMAL function from the scipy package11], and
the spatially uncorrelated Gaussian noise, all of which have the same standard deviation σN .
The observed noise and the randomly generated noise using the noise ACF are qualitatively
similar, whereas the spatially correlated noise and the spatially uncorrelated noise look com-
pletely different, illustrating how dangerous it is to assume naively that noise is uncorrelated
in image analysis.

In the literature, emission-free regions have been extracted and used as realistic noise maps to
estimate the statistical uncertainty associated with the parameters derived by the model fitting.6

The field of view of the interferometric observation is generally small, preventing us from
obtaining a sufficient number of independent noise maps or cubes to conduct Monte Carlo
experiments. (As the Tsys is not strongly variable across a spectral window, we may use the line-
free channels with cautions of the channels affected by emission lines in the atmosphere and the

(a)

(c)

(b)

Fig. 9 (a) Noise map in the observed data, (b) noise map generated from the measured noise
ACF, and (c) uncorrelated noise map. All of which have the same standard deviation σN .
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usually negligible variation of spatial frequencies ðu; vÞ with spectral frequency.) The proposed
method can generate random noise repeatedly from the measured statistical properties of the
noise (the noise ACF) in the interferometric image with the best precision limited by the avail-
able area of the emission-free region.

There are many potential applications of generating noise. We illustrate the significance of
the correlated noise using one example: the image analysis done in Ref. 8, which expands the
image with series of logarithmic spirals and identifies the dominant spiral structure in the image.
In Fig. 10, we show the Fourier spectrum of the logarithmic spirals in the [CII] intensity map of
the BRI 1335-0417 shown in Fig. 4 (black solid line) and the underlying noise spectra estimated
from the simulated noise maps from noise ACF (blue shaded region) and the simulated noise
maps with no spatial correlation but the same standard deviation σN (orange shaded region). The
spectrum shows the amplitude of the logarithmic spiral with m arms (m-fold symmetry) as a
function of a variable p, which is related to the pitch angle of α ¼ arctanð−m∕pÞ. To calculate
the spectrum, the image (Fig. 4) was first deprojected to be viewed face-on with an inclination
angle of 37.8 deg and a position angle of 4.5 deg, where the package SCIKIT-IMAGE performed
rotation and stretching for the deprojection (which induces an additional noise correlation in the
image). Then the amplitude of each Fourier component of the logarithmic spiral m and α is
calculated (see Equation S2 in Ref. 8). The noise spectrum was measured by generating 300
noise maps, calculating the amplitude of each Fourier component in the same way as the image,
and taking the 84th percentiles. The noise spectrum computed by assuming the uncorrelated
Gaussian noise map significantly underestimates the true noise spectrum, which could lead to
the false detection of statistically insignificant structures, such as the second peak in m ¼ 2 and
multiple peaks in m ¼ 3; 4. The estimated noise spectra are higher than those reported in the
original paper because the image stretching and rotation were not applied to the noise maps in
the original paper, resulting in an underestimation of the noise level. However, the result of the
original article does not change except for the updated statistical significance of each peak in

Fig. 10 Fourier spectra of logarithmic spiral models (solid black lines) and the underlying 1σ noise
due to the noise in the images computed from the simulated noise maps by the noise ACF (blue
shaded region) and the uncorrelated Gaussian noise maps with the same standard deviation
(orange shaded region). The peak in m ¼ 2 indicates that the dominant component of the image
is a 2 armed spiral structure with a pitch angle of α ¼ 26.7. This figure is adopted with permission
from Ref. 8 and the underlying noise spectrum is recalculated using the noise maps simulated
by the noise ACFs.
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m ¼ 1; 2; 3; 4 being 2.1σ, 3.5σ, 1.7σ, and 1.6σ, respectively. The m ¼ 1 peak with 2.1σ corre-
sponds to the fact that the northern arm is longer than the southern arm.

3.3 Fitting a Model to an Interferometric Image Under Spatially Correlated
Noise

Fitting an analytic model of the intensity distribution to the 2D observed image is one of the most
fundamental tasks in astronomy, allowing us to extract information to characterize astronomical
sources from images efficiently. For a simple example, fitting 2D Gaussian to the intensity image
provides essential information regarding the source’s position, size, and brightness. This section
introduces the construction of a covariance matrix from the measured noise ACF, which is
required to calculate χ2, to properly estimate the statistical uncertainty on the parameters derived
by fitting the model to the observed interferometric image.

Consider fitting a 2D model Ii;jðθÞ to an observed image I 0i;j with M ×M pixels, where θ

denotes a set of model parameters. We denote the flattened model image and the observed image
by ImðθÞ and I 0m, respectively, with the flat indices m ¼ ð1; 2; 3; : : : ;M2Þ that correspond to the
coordinate indices ði; jÞ ¼ ðð1;1Þ; : : : ; ðM; 1Þ; ð1;2Þ; : : : ; ðM; 2Þ; : : : ; ðM;MÞÞ in the images.
The formal expression to calculate χ2 is

EQ-TARGET;temp:intralink-;e015;116;514χ2 ¼ rðθÞTC−1rðθÞ; (15)

where C−1 is the inverse of the covariance matrix C with the size of M2 ×M2, and rðθÞ is the
residual vector with the elements rmðθÞ ¼ I 0m − ImðθÞ. When noise has no correlation between
pixels, the covariance matrix C ¼ σ2NE (E is the identity matrix) and χ2 leads to

EQ-TARGET;temp:intralink-;e016;116;445χ2 ¼
XM2

m

ðI 0m − ImðθÞÞ2∕σ2N: (16)

When fitting the 2D model to the observed interferometric image, in the literature, the noise
correlation has been ignored to estimate the statistical uncertainties on the derived parameters
using Eq. (16) instead of Eq. (15); therefore, the statistical uncertainties reported are, in most
cases, significantly underestimated.

We can construct the covariance matrix C in Eq. (15) from measured noise ACF by

EQ-TARGET;temp:intralink-;e017;116;334Cm;m 0 ¼
�

ξðx0;0Þ ¼ σ2N; if m ¼ m 0;
ξðxi;j − xi 0;j 0 Þ; if m ≠ m 0:

(17)

Here recall that m (and m 0) are flattened indices with a one-to-one relationship with the pixel
coordinate m → ði; jÞ. As m and m 0 are exhangable, the covariance matrix C is a real-valued
symmetric matrix, whose inverse can be efficiently calculated using the LINALG.PINVH func-
tion in the Scipy package.

Now, the question becomes; what effect does the noise correlation have on the estimated
statistical uncertainties of the model parameters derived from the fitting process? To explore
this, we fit the 2D Gaussian model to a noiseless 2D Gaussian image and sampled the posterior
distribution of the model parameters: total flux of the Gaussian distribution L, center of the
Gaussian ðx; yÞ, major axis and minor axis of the Gaussian ðσmaj; σminÞ, and position angle (P.A.)
from the north to the major axis (counterclockwise). The noise effect perturbing the best-fitting
parameters is effectively taken into account by the covariance matrix C in the likelihood
[Eq. (15)]. We compared the posterior distributions that resulted in two cases where (1) the noise
has no spatial correlation [using Eq. (16)] and (2) the noise has spatial correlation characterized
by the noise ACF shown in Fig. 2 [using Eq. (15), and the covariance matrix constructed from the
noise ACF]. Note that in both cases, the noise variance in individual pixels is the same, but the
latter case has spatial correlation. We used emcee12 to sample posterior distributions with log-
arithmic likelihood L ∝ −0.5χ2 and a uniform prior. Figure 11 shows the posterior distributions
of the parameters of the Gaussian model in two cases. Accounting for the spatial correlation of
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the noise results in a significantly larger confidence interval than that obtained assuming that
there is no spatial correlation of the noise. The model parameters would appear to be constrained
too well if we ignored the noise correlation in the fitting process.

Figure 12 compares the posterior distribution sampled with the χ2 covariance matrix (the
same as Fig. 11) with the distribution estimated by Monte Carlo resampling. The resampling
is performed by repeatedly obtaining bestfitting parameter values after adding the randomly
generated correlated noise to the noiseless image (the method described in Sec. 3.2). This con-
firms that the posterior distributions estimated by the two approaches agree well.

In addition to the 2D fitting problem when investigating emission distributions, many recent
studies fit 3D model cubes to observe 3D data cubes (R.A., Dec., and velocity) thanks to the
improvement of interferometric imaging in terms of spatial resolution and sensitivity. Radio inter-
ferometer has sufficiently high-frequency resolution (0.01 km s−1 or R ¼ 3 × 107 at 110 GHz for

(a) (b)

(c)

Fig. 11 The posterior distributions that we obtain when fitting the Gaussian model to the image
with different assumptions about noise. Black: the posterior distribution sampled using the covari-
ance matrix constructed from the noise ACF shown in Fig. 2. Blue: posterior distribution sampled
assuming that there is no spatial correlation in the noise but with the same σN . The black dis-
tribution corresponds to the expected posterior distribution that we obtain if we properly take into
account the noise correlation by measuring the noise ACF, whereas the blue shows that we
obtain if we ignore the noise correlation and just naively use Eq. (16) with the sky noise level
σN . True values are shown with solid cyan lines. (a) A noiseless image to be fitted, (b) an exam-
ple image with the correlated noise added, and (c) an example image with the uncorrelated noise
added. The comparisons with (b) and (c) illustrate that the image data with uncorrelated noise
can retain more information on the intrinsic Gaussian distribution than the image with the corre-
lated noise with the same σN . The white contours show emission levels of 1σN , 3σN , and 7σN
in both images.
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ALMA), which is usually further binned to increase the signal to noise. Therefore, the noise can
be regarded as independent across the frequency (or velocity) channels, and the above method
described for the 2D case can be applied to compute χ2 for the 3D case. One of the main examples
of 3D cube fitting is the kinematical modeling of emission lines.

There are several publicly available modeling codes for this purpose, which assume the disk
geometry of the emission line, parametrize the rotation curve, velocity, dispersion, and 3D geom-
etry of the disk (position angle, inclination), and produce 3D model cubes that can be directly
compared to observations taking into account the resolution and pixel binning (e.g., TIRIFIC,13

KINMS,14 3D-BAROLO,15 GALPAK 3D,16 and QUBEFIT17). Under dynamical equilibrium,
rotation curves are powerful tracers for the mass distribution of galaxies that can be further
decomposed into black hole mass, stellar bulge, exponential disk, etc., depending on the data
quality. These codes have been widely used to measure galaxy mass distributions and BHmasses
from distant to nearby galaxies (e.g., Refs. 8 and 14). However, these codes do not consider the
correlation of the noise. As the number of data becomes large and the effect of noise correlation
becomes significant, estimates of the statistical uncertainty on best-fitting parameters are
too small.

Davis et al.4 estimate a covariance matrix from a point spread function and use it to cal-
culate the χ2 values. They approximate the point spread function by a single Gaussian func-
tion ignoring the side-lobe, which is an oversimplification as seen in Fig. 7. We find that the
side-lobe effect can dominate as an image region becomes bigger. As a result, the estimates of

(a) (b)

Fig. 12 Black: same as in Fig. 11; green: posterior distribution estimated by Monte Carlo resam-
pling: repeating the fitting the Gaussian model to the image added with randomly generated noise
map from the noise ACF (the method described in Sec. 3.2), showing the agreement between
the black and green distributions. (a), (b) Same as in Fig. 11.
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the statistical uncertainty of parameters can be underestimated. In addition, as seen in Sec. 2.2,
the point spread function does not coincide with the actual noise correlation pattern in the
image. Therefore, we recommend constructing the covariance matrix using Eq. (17) from the
noise ACF, which fully characterizes the actual noise correlation pattern rather than from the
point spread function.

Boizelle et al.6 proposed to estimate the formal χ2 by block averaging the data and model
cube to form roughly beam-sized cells to avoid the need to calculate the covariance matrix men-
tioned above. They stated that the block averaging method does not fully mitigate the correlation
between neighboring pixels with the presence of the long-range correlation as shown in Fig. 7.
They estimated the final statistical uncertainty on the model parameters by Monte Carlo real-
isation using line-free channels.

The example calculation for the 2D fitting confirms that the two approaches, Monte Carlo
resampling (in 2D or 3D),6 as well as the use of the covariance matrix during fitting are equiv-
alent and should provide the correct estimation under spatially correlated noise.

4 Conclusions

Understanding the spatial correlation of noise in interferometric images is important to cor-
rectly evaluate the statistical significance of the result. We have shown that the noise ACF of
an ALMA noise image has a pattern similar to that of the synthesized beam (dirty beam) and
that the spatial correlation of the noise originates from the limited uv coverage. To correctly
evaluate the statistical uncertainty of the measured quantities, we propose first measuring the
noise ACF in the interferometric image, which can provide the best estimate of the full stat-
istical properties of the noise (correlation properties) with all emission-free regions available.
Once the noise ACF is measured, we can directly (1) evaluate the statistical uncertainty asso-
ciated with a spatially integrated flux or spectrum, (2) randomly generate noise maps with the
same correlation property, and (3) construct the covariance matrix and determine a χ2 value
when fitting a 2D model to an image. The method to deal with the spatially correlated noise in
the interferometric image has not been documented in the astronomical literature, even for the
basic spatially integrated flux measurements. We demonstrated example applications of our
methods to scientific data showing that ignoring noise correlation leads to significant under-
estimation of statistical uncertainty of the results and false detections. A Python package for
easy application of the method described in this paper, ESSENCE, is publicly available at
https://github.com/takafumi291/ESSENCE.

Drizzling has become a common technique in producing optical-IR observational images.
The drizzling method resamples raw under-sampled images and corrects for geometric dis-
tortion by shifting, rotating, and interpolation, and coadd these corrected images to have a
common Cartesian grid. This process induces significant pixel correlation (e.g., Refs. 18 and
19). Measuring the noise ACF does not require any assumption about the probability dis-
tribution of the noise (e.g., Gaussian). Therefore, our method has potential applications
to a range of astronomical images not only of interferometers but also of optical-IR
observations.

5 Appendix A: The Difference between the Noise ACF and the
Synthesized Beam ACF

Equation (10) implies that the noise ACF is identical to the ACF of the synthesized beam with a
constant multiplicative factor. However, they do not completely coincide, showing an extended
weak positive correlation and a relatively large negative around the main beam in the residual
(noise ACF-ACF of the synthesized beam, Fig. 3). To investigate the origin of the feature, we
simulate the observation with a similar setup: hour angle, sky position, antenna configuration,
and realistic atomospheric noise, but without emission in the sky, using SIMALMA in CASA.20

(The actual data are taken with ∼2 h observation, with 1 h of integration on a source intermit-
tently separated by calibrator observations and other overheads. In comparison, the simulated
observation is a continuous 1 h of integration on the source.) The visibility obtained is imaged
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with the same imaging parameters as those used for the actual data. Figure 13 shows the noise
ACF, the ACF of the synthesized beam, and their residual (noise ACF-ACF of the synthesized
beam) for the simulated observation without sky emisssion. The residual does not show the
extended positive correlation pattern seen in Fig. 3, suggesting that the positive correlation pat-
tern may be due to the sky emission of the sources and undetected background sources. The
emissions from the astronomical sources are spread in the noise region by long-range sidelobes
of the synthesized beam, which are generally removed for bright emissions down to the noise
level of 1.5 to 3 sigma by CLEAN. Weaker emissions and its leakage into the surrounding pixels
remain in the noise region. These uncleaned components and weak background sources hidden
in the noise map may produce the faint positive correlation pattern in the residual Fig. 3.
However, the residual obtained for the simulated observation without sky emission (Fig. 13)
still shows a similar negative around the main beam as seen in Fig. 3, suggesting that the large
negative cannot be attributed to emissions from the sky and may be due to the process involved in
the imaging. In practice, the Fourier transform in the imaging is performed by the discrete
Fourier transform, in which the visibility data are evaluated discretely using a rectangular grid.

The visibility data represented as (Vðu; vÞ þ N̂visðu; vÞÞWðu; vÞ in Eq. (8) are interpolated (more
precisely, the visibility data are convolved by a function to produce a continuous distribution.
The function is chosen to minimize the image aliasing)21 to estimate the visibility value in the
center of the grid. Each grid is further weighted depending on the number of data points in the
grid cell or the rms error of the data in the cell.22 The negative feature in the north–south direction
around the main beam may correspond to the fact that the sampling of ðu; vÞ is relatively denser
in the north–south direction (see Fig. 14), which is more affected by the averaging process, than
in the east–west direction.

(a) (b)

(c)

Fig. 13 (a)–(c) Same as in Fig. 3 but for the noise image produced from the simulated data with a
similar observational setup and without sky emission. The simulated data were produced by
SIMALMA in CASA.
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