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Abstract. We develop and evaluate a new approach to phase estimation for observational
astronomy that can be used for accurate point spread function reconstruction. Phase estimation
is required where a terrestrial observatory uses an adaptive optics (AO) system to assist astron-
omers in acquiring sharp, high-contrast images of faint and distant objects. Our approach is to
train a conditional adversarial artificial neural network architecture to predict phase using the
wavefront sensor data from a closed-loop AO system. We present a detailed simulation study
under different turbulent conditions, using the retrieved residual phase to obtain the point spread
function of the simulated instrument. Compared to the state-of-the-art model-based approach in
astronomy, our approach is not explicitly limited by modeling assumptions, e.g., independence
between terms, such as bandwidth and anisoplanatism—and is conceptually simple and flexible.
We use the open-source COMPASS tool for end-to-end simulations. On key quality metrics,
specifically the Strehl ratio and Halo distribution in our application domain, our approach
achieves results better than the model-based baseline. © The Authors. Published by SPIE under
a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work
in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JATIS.9.1.019001]
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1 Introduction

Adaptive optics (AO) systems are an important component of astronomical imaging for large
ground-based telescopes, enabling the capture of high-contrast images of faint objects.
Aberrations due to Earth’s atmospheric turbulence are a significant impediment to astronomical
imaging, so the ability to estimate and compensate is critical. The scale of data requirements for
this estimation problem increases quadratically with the telescope diameter, an ongoing problem
while astronomers build larger telescopes to capture the light from fainter objects such as exo-
planets or distant galaxies.

An AO system contains three main components: (i) a deformable mirror with a reflective
surface that can be adjusted with an array of actuators to counteract some of the wavefront
phase aberrations, (ii) a wavefront sensor (WFS) that collects information about the wavefront
phase, and (iii) a controller that interprets the wavefront sensor information and computes a
control solution to drive the actuators of the deformable mirror. These three components work
in closed-loop in real-time, typically in the order of several kHz. In practice, the correction is
not perfect, so the residual point spread function (PSF) after AO correction differs from the
diffraction-limited PSF.
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To deliver the most science from an astronomical observation, it is crucial that astronomers
have access to an accurate estimate of the effective PSF during that observation window. State-
of-the-art workflows1 employ model-based techniques to estimate the residual phase and the
corresponding PSF, enabling the quality of captured science images to be improved, e.g., by
deconvolution.

The WFS is used to capture the instantaneous state of the phase into intensity variations in
an image. In the case of the Shack–Hartmann (SH) concept, the telescope aperture is split into
sub-regions, called sub-apertures, and an image of the reference guide source is created for each
of these sub-apertures and captured by a camera. A centroider algorithm is then used to estimate
the spot displacements, in each of these sub-apertures, with respect to a reference position. These
displacements are directly related to the local slopes of the wavefront.2 This information is used
for mirror control, and is a significant part of the telemetry data used by existing PSF recon-
struction techniques, the latter being our application here. A drawback of existing model-based
wavefront phase estimation is that all non-linear, high-order wavefront information captured on
the WFS is neglected. It is highly desirable for the non-linear information to be available to
maximize the value of captured science assets.

1.1 Related Work

AO systems have been used to compensate for atmospheric turbulence since the late 1980s, when
the available computer technology was first able to match the requirements for controlling the
available deformable mirror technology. Since then, efforts to improve PSF and wavefront esti-
mates have been ongoing both in model-based statistical estimation and other techniques using
advances in artificial intelligence.

Model-based methods for wavefront and PSF estimation produce highly accurate estimates
using fitting, reconstruction, and simulation methods.1 The current state-of-the-art uses a com-
prehensive breakdown of error sources3 and allows for frame-by-frame validation of end-to-end
models using AO loop simulation tools such as COMPASS.4 As these models are statistical in
nature, they require thousands of iterations for wavefront estimation, which becomes demanding
on computational equipment as the scale of the telescope increases.

AI-based techniques for improving AO systems have been investigated with many studies
using slope estimates from centroider data5 and typically making wavefront estimates by pre-
dicting the weights of a small number of low order, linearly independent Zernike modes6,7 that
can be added to create the wavefront phase image. Using the slope estimates from centroider
algorithms limits WFS data to low-order information, as these wavefront slope estimates filter
out higher-order information captured on the SH-WFS. (Wavefront) sensor-less methods have
used convolutional neural networks (CNNs)8 to estimate the wavefront from the PSF in the AO
loop, rather than from a WFS. That approach can avoid the loss of some higher-order informa-
tion but are best suited to low turbulence conditions and small telescope settings, and is not used
for PSF reconstruction. Work on PSF reconstruction with deep neural networks has been pre-
sented by Guyon et al.,9 however, the method is not described in detail, is applied to Pyramid
WFS, and that work does not describe thorough testing in a range of operating conditions.

We describe a novel technique for PSF reconstruction based on wavefront phase estimation,
by adapting an extremely general translational image(input)-to-image(output) artificial neural
network (ANN). Our contributions are based on machine learning technology for general com-
puter vision tasks, and thereby, leverage many decades of conceptual advances from investiga-
tions into supervised connectionist machine learning for a wide variety of specialized computer
vision tasks. Specifically, generative networks of the type we investigate have their history in:
(i) biologically inspired convolutional networks for interpreting visual scenes,10 whose genesis
and first successful applications lie in character recognition applications,11 (ii) the development
of general and robust activation functions that are compatible with automated differentiation,
developed for modern ANNs,12,13 (iii) deep feed-forward networks pursued by an active research
program since their extraordinary representational power and applicability was understood,14,15

and more directly relevant to our contribution, their practical development to a very broad range
of computer vision tasks, such as biomedical image segmentation tasks motivating the convolu-
tional UNet,16 and (iv) fast parallelizable optimization procedures for learning the parameters of
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multi-layered/deep architectures.17 Furthermore, our contribution is based on the adversarial
learning setting. Two ANNs are trained simultaneously, in our case with a feed-forward UNet
trained to produce the desired phase estimates, and a Markov discriminator (i.e., a classifier)
network that is trained to distinguish between real phase screens and those generated by the
UNet. Usefully for PSF reconstruction, adversarial learning enables us to train a network that
precisely represents fine/sharp detail, whereby generated artifacts exhibit the statistics of the
training corpus.18

1.2 Contribution

In this paper, we develop a new method for phase estimation in AO that exhibits similar or better
accuracy than the state-of-the-art model-based approach while being conceptually simpler and
avoiding strong assumptions on the nature and properties of the stochastic process or system
geometry, which solves an important engineering problem for practical implementations. We
use a translational CNN to infer the phase directly from the SH-WFS image. Our method takes
advantage of high-frequency information available in the SH-WFS that has not been used by
existing estimation methods that instead use data-intensive statistical estimation methods from
AO loop telemetry data (e.g., mirror control voltages). Our approach has immediate application
in science image deconvolution workflows, and future application in the control of AO systems.

The paper is structured as follows. First, we discuss the AO setting and current methods.
Second, we describe COMPASS—a state-of-the-art GPU-accelerated AO simulation package.
Third, we describe our approach to using image-to-image CNNs for phase recovery in our set-
ting. Fourth, we describe current methods in wavefront phase estimation and PSF analysis.
Finally, we present a detailed analysis of experimental results comparing our approach to
residual phase estimation with the state-of-the-art model-based method.

2 Background and Methodology

2.1 Adaptive Optics

The goal of AO is to obtain a sharp image of an observed target. Any aberrations of the incoming
wavefront create perturbations in the image, which reduces the contrast of the observation—this
translates as blur. A perfectly unaberrated image of a point source obtained through a telescope
will produce a PSF that is diffraction limited, i.e., the image quality and resolution are only
limited by the diffraction of the telescope aperture. Adding other sources of aberration, such as
atmospheric turbulence, perturbs the wavefront by introducing optical path differences between
the different points of the telescope aperture, affecting the PSF, and therefore image quality.

The PSF can be calculated from the wavefront phase as the absolute square of the Fourier
transform of the complex electromagnetic field. This is an important relationship and is not
invertible from PSF to phase, shown in Eq. (1)

EQ-TARGET;temp:intralink-;e001;116;248PSF ¼ jFFTðamplitude · ei·phaseÞj2: (1)

The AO loop is shown in Fig. 1 with each of the main components labeled. As the corrections
made with the deformable mirror are imperfect, there will be some residual error passed on in the
system and into telescope observations.

The residual error (AO loop error) is made up of several contributing sources and are dealt
with in detail through an error budget estimation.3 The error budget describes the total AO loop
error in terms of components for bandwidth error, anisoplanatism, aliasing, noise, wavefront
measurement error, mode filtering, and fitting error. All of these error sources contribute to the
decrease in image quality at the output of the telescope, and are incorporated into the state-of-
the-art PSF reconstruction technique described by Ferreira et al. in Ref. 3.

This numerical method of PSF reconstruction provides excellent results in simulation, though
it relies heavily on knowledge of the system parameters available to the simulation. It also
requires large buffers of data collected from the AO loop to estimate the wavefront error due
to the statistical methods used and has a high computational cost. This creates a highly
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challenging engineering problem if the numerical methods are to be applied to on-sky data as the
method is complex, and any parameters characterizing the real, on-sky observations (e.g., actual
turbulence strength or wind speed) that are not perfectly estimated will propagate through the
calculations and adversely affect the quality of the estimates. Other approaches19 can be con-
sidered to solve this engineering problem with Fourier-based methods, although including a
number of approximations on the PSF model. What we propose here is a high-fidelity estimate
that is data driven, and so does not make explicit assumptions.

The SH-WFS used in AO systems is designed to take the wavefront phase information and
encode it as an intensity image distributed over small sub-regions of the aperture. It does this
with an array of small lenslets that focus the aperture sub-region onto a sensor, creating a spot
that is tilted off axis by the average slope of the incoming wavefront sub-region in two
dimensions.

Figure 2 shows the one-dimensional (1D) case and how the aberrated wavefront of a sub-
region moves the focal point on the sensor off-center. This displacement gives an indication of
the average slope of the area of the wavefront covered by the sub-aperture. From the sensor
image for all sub-apertures, centroider algorithms are used to find the center of the spots and
so a granular map of the slopes is created and passed on to the mirror control system.

Fig. 1 AO Loop diagram, showing the benefit of adaptive optics when switched on (loop closed)
vs switched off (loop opened).

Fig. 2 SH WFS lenslet diagram showing displacement of spots due to wavefront perturbations.
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Slope measurements made from centroider data are lossy as there are limits to how small the
sub-apertures can be with a limiting factor on the amount of light required per sub-aperture for
effective measurements. Also, any non-linear information is lost when the algorithm picks the
centroid of the spot for each sub-aperture, reducing the image to points on an x, y plane. Figure 2
shows the off-axis measurements (Δx) that are used to measure the wavefront sub-aperture
slopes, where the higher-order wavefront information is lost. The size of the lenslets limits the
spatial frequency that can be measured, behaving like a low-pass filter.

The sensor image captured at each subaperture corresponds to a low fidelity PSF where the
captured irregular patterns of light intensity correspond to a representation of higher-order infor-
mation about the wavefront profile. A depiction of such patterns is given in Fig. 3, which shows a
portion of a simulated SH-WFS image. For the intuition about what is being lost using centroider
algorithms, Fig. 2 gives a simplified 1D schematic of the wavefront, lenslet array, and sensor
image. The dashed lines drawn in the turbulent wavefront above lenslets represent the gradient
measured by a centroider, here clearly missing out important details about high-frequency tur-
bulence. It remains an open question in astronomy, to quantify exactly how much information is
being lost in this setting depending on the actual instrument design (e.g., number of sub-apertures,
number of pixels per sub-apertures, measurement wavelength, etc.) While we are investigating
only the SHWFS in this paper, other sensors such as the Pyramid WFS and curvature sensors are
used for wavefront sensing. In Ref. 20, we apply our methodology to Pyramid WFS.

2.1.1 COMPASS simulation software

The COMPASS AO simulation software4 simulates atmospheric conditions, telescope, and AO
system to create accurate simulated residual wavefront and WFS images used to train the CNNs.

COMPASS is a GPU-accelerated AO loop simulator with a comprehensive application
programming interface (API) that allows simple integration with python code. Highly detailed
parameter information can be input to generate specific atmospheric conditions and other AO
loop characteristics such as sensor noise and control loop delay. This is perfect for both gen-
erating training data for the CNNs and also for testing ranges of conditions for inference per-
formance with trained models. A sample of the data is available in Fig. 4. Figures 4(b) and 4(d)
show the residual wavefront phase the SH-WFS images, respectively, these are the two images
we will use for training data.

3 Our Network-Based Approach

We estimate the residual phase by adapting an ANN for image-to-image translation,21 where
Fig. 5 gives a visual breakdown of the network. This design is a conditional generative adver-
sarial network (cGAN), with the translational encoding performed by a UNet and the adversarial
training performed using a Markov discriminator. The network learns to take an input of an SH
WFS image and output the inferred wavefront phase.

To motivate the UNet generator component of the network, it can be compared to the similar
and widely used auto-encoder—a CNN—that is used for image transformation. An auto-encoder
encodes an image to some latent variable through successive convolutional layers, and then

Fig. 3 SH WFS lenslet spots.
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through deconvolutional steps generates a new image from the latent variable. An auto-encoder
learns to transform images minimizing a reconstruction loss and can be used for several appli-
cations. For our purposes an auto-encoder is not ideal, because it is deterministic by design, and
because we need to preserve some structure from the original image in our application, such as
spatial relationships for translation. The UNet design adds skip connections, where information
from layers of the encoder is transported to corresponding decoder layers via concatenation,
allowing for some structure from the input image to be preserved. Because we aim to translate
WFS images from sensor data with incomplete information we cannot map from image-to-image
in a deterministic manner as there will be many possible wavefront phase images that could be
represented by each input image. To avoid the deterministic nature of the auto-encoder (and
UNet) structure, some stochastic process needs to be added to allow for variability in the output.
This is accomplished by introducing noise to the network via network dropout (z), where
Gaussian noise is ineffective because this approach learns to filter it.

Considering the variational auto-encoder (VAE) as an alternative—it also has the ability to
create varied translations from an input image and does not have deterministic outcomes due to

Fig. 5 cGAN architecture – UNet/PatchGAN.

(a) Atmosphere

(b) Residual phase

(c) Deformable mirror

(d) Shack-Hartmann WFS

(e) Tip-Tilt mirror

(f) Log scale PSF

Fig. 4 Typical data available through COMPASS simulator: (a) The simulated atmospheric phase
screen, (b) residual phase screen, (c) deformable mirror shape, (d) Shack-Hartmann wavefront
sensor image, (e) ‘tip-tilt’ mirror shape, (f) point-spread function in log scale.
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encoding and sampling from distributions. The output images from a VAE tend to be blurry and
faint, which is not ideal for our application, as we find this occurs in important regions of the
wavefront phase. The loss function for a VAE must be carefully designed, which is additionally
very difficult to do in practice. By contrast, a GAN18 has the benefit of learning a loss function,
and so simplifies the loss design problem associated with VAEs, as well as tending toward
sharper output images, while adding complexity to the network with the addition of a CNN
classifier forming the discriminator network that is trained simultaneously with the generator.

A conditional GAN improves the performance of the GAN by including a ‘semantic-image’
in the discriminator as a paired image with either the “real” or “fake” image, which acts as a label
for the distribution generated, adding supervision which further improves the sharpness and
accuracy of the translated image.

The discriminator in Fig. 5 is a PatchGAN discriminator, also known as a Markov discrimi-
nator.22 This discriminator architecture operates by classifying local image regions, and is
broadly motivated in computer vision applications due to the speed of inference (i.e., local infer-
ence is relatively fast), and the quality of PatchGAN architectures in preserving complex image
detail, such as texture. The discriminator component is a convolutional classifier, trained simul-
taneously with the generator, with the objective to maximize the value of Eq. (2).

The overall objective function [Eq. (3)] combines the cGAN loss [Eq. (2)], with the L1 recon-
struction loss terms [e.g., of the form in Eq. (4)] that provide strong guidance to learning of low-
frequency structure. It is noteworthy that a second reconstruction loss term is added in Eq. (3) to
reinforce the reconstruction loss where the network underestimates the upper and lower extreme
phase values GM (or G “masked”). These regions of the wavefront with the largest perturbations
substantially impact the important metrics in our setting, and our ablation testing of this param-
eter shows this term is required. The approach is to simultaneously train: (i) a generator, Gðx; zÞ,
that models the distribution of wavefront phases that are consistent with the input WFS image
x—i.e., z is a noise term, specifically dropout noise, and (ii) a discriminator, Dðx; yÞ, that esti-
mates the probability that a pair ðx; yÞ, comprising a wavefront phase image y and a correspond-
ing WFS image x, are “real.”

EQ-TARGET;temp:intralink-;e002;116;400LcGANðG;DÞ ¼ Ex;y½logðDðx; yÞÞ� þ Ex;z½logð1 −Dðx; Gðx; zÞÞ�; (2)

EQ-TARGET;temp:intralink-;e003;116;356G� ¼ arg min
G

max
D

LcGANðG;DÞ þ λLL1ðGÞ þ λMLL1ðGMÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;329LL1ðGÞ ¼ Ex;y;z½ky − Gðx; zÞk1�: (4)

It is worth noting that, by removing the cGAN loss term from the loss function and the dis-
criminator component, the cGAN schema can very easily be modified into a standard feed-
forward CNN setting. Specifically, here we are thereby reduced to the scenario of training a
UNet, the generator component within the cGAN schema. Removal of the PatchGAN discrimi-
nator has the effect of limiting capacity to learn about the fine detail of the phase image.
Consequently, the trained network is only good at estimating low-frequency parts of the signal.
The contribution of the PatchGAN is to enable a trained network to model the distribution of
high-frequency information in the phase images, and thereby generate phase estimates that con-
tain accurate high-frequency information from the target distribution. We demonstrate this effect
in the following results section by contrasting the UNet results to the complete cGAN network,
validating our motivation for using a cGAN for PSF reconstruction.

3.1 Network Architecture

We adapted our network architecture and code from Ref. 21, where much of the architectural
details remains the same, and we will follow the same labeling conventions. Ck denotes a
convolution-batchnorm-ReLU layer with k filters and CDk denotes a convolution-batchnorm-
dropout-ReLU layer. Dropout rates, stride, downsample scaling, and upsample scaling, are
all determined as per the literature mentioned above. Choice of hyper-parameters, where not
specified in literature, were made through experimentation.
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3.1.1 Generator architecture

Our network uses a UNet generator, consisting of an encoder, a decoder, and skip connections
between all layers as shown in the following layer structures:

UNet encoder:

EQ-TARGET;temp:intralink-;sec3.1.1;116;680C64-C128-C256-C512-C512-C512-C512-C512

UNet decoder:

EQ-TARGET;temp:intralink-;sec3.1.1;116;637CD1024-CD1024-CD1024-C1024-C1024-C512-C256-C128

3.1.2 Discriminator architecture

The Markovian discriminator architecture by layer:

EQ-TARGET;temp:intralink-;sec3.1.2;116;556C64-C128-C256-C256

3.2 Data Transformations

The raw data from astronomical instruments and simulators requires some transformation to be
amenable to the translational architecture we have just discussed. First, the piston mode—i.e., a
constant phase shift across the full aperture—is removed from the residual phase data, since it is
not measured by the WFS. This is done by subtracting the average value of the wavefront phase
that is inside the pupil from the phase array. Experiments where the training data was not
adjusted to remove piston experienced early mode collapse that prevented effective training.
Second, the residual phase data is normalized to sit in the accepted range [0,1] for the network
by dividing through by a constant value, with null-piston fixed at 0.5, so that the amplitude is
restored for application by multiplying any inferred image from the network by the same con-
stant, reversing the normalisation.

The normalisation factor is a tuning parameter, with high values scaling small wavefront
errors too much, leading to mode collapse. When normalized perfectly, so the largest value
in the training data is exactly 1, we find the trained network does not perform well in gener-
alization evaluations, e.g., where we infer a residual phase in turbulence unseen during training.
In our work we have set this factor to 10, leaving some headroom over the minimum required
value, ∼7. This normalized range allows for inference of wavefront phase estimates with stronger
turbulence (r0) than the training dataset to stay within the range [0,1], while not reducing the
amplitude of the lower turbulence data to the point of being ignored during training. As the
wavefront phase amplitude is related to the degree of turbulence (r0), this is a key relationship
for the network to learn. Inference of WFS data that exceeds the normalization range will
decrease estimation accuracy by generating artifacts in the wavefront phase estimates.

The WFS image is also normalised, again dividing by a constant value which is slightly
above the maximum. The WFS scale is preserved because the WFS amplitude information,
along with the shape of the WFS spots, is the additional nonlinear information captured using
our estimation method. In all cases, our networks use a constant scaling factor of 1.2 million
for WFS images. This value is chosen according to the magnitude of the guide star and opti-
cal throughput to the WFS subapertures, with our simulations using a fixed guide star of
magnitude 10.

4 Simulation Results

4.1 COMPASS Parameters

Parameters for simulation were selected to demonstrate performance for realistic large telescope
AO loop scenarios. The degree of turbulence is defined by the so-called Fried parameter,
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r0, which is a measure of the coherence scale of the turbulence2 and depends on the observing
wavelength. Typically the real-world operating conditions for r0 are in the range of 0.16 m—at
visible light wavelengths for the lower range of atmospheric turbulence—to 0.05 m for very
extreme conditions. For the purposes of this study, we focus training around the typical r0 value
of 0.093 m, and when interrogating a trained network for robustness to a range of atmospheric
turbulence we have r0 ranging from 0.08 to 0.18.

AO loop data has been simulated for a typical wind speed of 10 ms−1. About 50 k sample
image pairs are generated for each of the r0 values in [0.093, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40].
We thereby are able to train the network with a range of turbulence scenarios so that it learns to
robustly estimate wavefronts in a range of turbulent conditions that would be expected for on-sky
operating conditions. The training and evaluation atmospheres are different. In particular, when
interrogating network model performance, in a control setting below and otherwise, we use sim-
ulations that are seeded uniquely, and therefore are of atmospheres not seen during training. See
Table 1 for simulation parameters.

4.2 Network Parameters

We adapted our network architecture and code from Isola et al.,21 where much of the architecture
details remain the same. Dropout rates, stride, downsample scaling, and upsample scaling, are all
determined as per the literature mentioned above.

Both generator and discriminator networks used 64 filters. The generator performs better
with 64 filters over trials run with 32 or 16, however, this comes with a computational cost
as the number of parameters is significantly increased, which in turn increases training time

Table 1 Simulation parameters for training data.

Telescope parameters

Diameter 8 m

Simulated atmospheric parameters

Number of layers 1

r 0 0.093 to 0.400 m

Wind velocity 10 ms−1

Target parameters

Wavelength λt 1.65 μm

WFS parameters

Number of sub-apertures 16 × 16

Number of pixels per sub-aperture 8 × 8

Wavelength λwfs 0.5 μm

AO parameters

Loop frequency 500 Hz

Delay 2 frames

Integrator gain 0.4

DM parameters

Number of DM actuators 17 × 17

1 tip-tilt mirror
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and hardware memory requirements. Datasets consisted of 350 k image pairs selected in random
order with a batch size of 1, and validation is done by varying the pseudo-random seed for
atmospheric generation in COMPASS.

Our adaptation of the cGAN architecture includes an additional weighted loss parameter,
which we optimized for our setting. We found that the original loss configuration from the liter-
ature is unable to yield a network that accurately reconstructs extreme maximum and minimum
values. This is a concern because the consequent discrepancies in generated phase images have a
substantial effect on the overall performance in our application, and specifically in PSF recon-
struction. To compensate for this, a second L1 loss term was introduced for the extreme values
(the upper and lower 10% of phase amplitude), increasing the effect of the L1 loss term on these
regions of the training image by masking out all but the extreme phase errors. This extends
Eq. (3) with the additional masked L1 loss term, where GM defines the region of extremes
masked in the generated image G, and λM is the weighting coefficient for the added masked
loss term. All cGAN simulation results in this paper use a single trained network with
hyper-parameters λ ¼ 150 and λM ¼ 30.

4.3 Evaluation Metrics

Assessing the predictions of the trained models will follow methods used by the state-of-the-art
in long-exposure PSF reconstruction.1,3 Our network infers a short-exposure wavefront image
that is converted to a short-exposure PSF as per Eq. (1), and then averaged over 20 k samples.
The simulated long-exposure PSF is generated in COMPASS and compared with the inferred
long-exposure PSF, and also a PSF reconstructed using the state-of-the-art method3 using iden-
tical simulation parameters. By training on simulated data for given telescope parameters, we
hope to create a network that can infer accurate wavefront phase estimates from real WFS data in
future work. In this paper, we are using simulated telescopes and so cannot be totally confident
that this will work for real WFS data (Figs. 6 and 7).

The PSFs are compared (Figs. 8 and 9) in log scale due to the characteristic shape of the PSF
having a central peak that rapidly falls off towards the edges of the image in the range of [0, 1]. In
the COMPASS simulator the flux from the PSF is normalised, so that the central peak maximum
corresponds to the Strehl ratio (SR), a measurement of the intensity of the image against the one
obtained on an ideal system. SR is used to assess image quality and performance of AO systems.
Our ability to accurately estimate the SR is a key metric. A second important feature of PSF
comparison used here is the overall fit of the PSF shape outside of the central peak, i.e., PSF halo.
The residual phase error information is contained in the halo, with the low spatial frequency
information close to the central peak and the higher spatial frequency information radiating out-
wards. The majority of the residual will be in the low-order information near the center, so this is
the most important region to match correctly. Higher spatial frequencies will affect the contrast
in the halo. To compare both of these elements of the PSF estimates, an X, Y cross-section view is
compared in logarithmic scale.

4.4 Results and Analysis

Using the methodology description in the previous section, we run experiments using a variety of
Nvidia GPU hardware (such as V100 GPUs) and PyTorch v1.8.0 to train our networks, using
numerical models in the work of Ferreira et al.3 using an end-to-end error breakdown model of
the PSF as a reference benchmark. (Code available at https://github.com/GANs4AO/.)

This is an exciting result, as it is visible in the inferred residual phase image, as evidenced by
accurate features showing much finer detail than just the average slopes across the width of the
lenslets. This is evidence that there is high-order information being interpreted by the network
from a single SH-WFS image.

The PSFs are broken down by cross-section in Fig. 8 where the SR can be compared, and
the profile of the halo can be observed. We use the methods discussed previously to compare
long-exposure PSFs shown in Fig. 9, including the model-based reconstruction (reference) and
network-based (inferred) results with the simulated ground truth (COMPASS).
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From the result in Fig. 8, the inferred PSF has slightly better accuracy in SR than the model-
based reference PSF, observable in the relative errors of the inferred (solid green line) and the
model-based reference (dashed orange line) and on comparison in the tabulated SR data shown
in Table 2. (It is noteworthy that Fig. 8 shows results for r0 ¼ 0.093 m. The range of charts
corresponding to tabular values are available in Appendix.) To verify the robustness of our
trained translational network we run the same long-exposure experiments for a range of r0 values
over the same network, including some that were not available in the training dataset. Table 2
shows the resulting SR for the simulated ground truth, the referenced numerical model bench-
mark and our inferred results. As shown by the data, the inferred results from our network dem-
onstrate a remarkable robustness to changing atmospheric conditions and in most cases improve
on the numerical model benchmark, over much of the typical range of real–world atmospheric
viewing conditions.

Figure 8 shows a direction-dependent error, which ends up comparable for both estimation
methods, for the specific direction chosen in this case. The difference between our network-
based approach and the model-based approach becomes stark when we examine the direction
independent error. The circular average plot of Fig. 9, which is a direction independent estimate
of the error, shows how the symmetry assumptions of the model-based approach have a profound
impact on the overall error. The bump highlighted in the top-right plot from Fig. 9 indicates a
potential sensitivity loss of 103 with the model-based approach. Practically, it means that if the
astronomer is looking for a faint companion (e.g., an exoplanet) in this area of the image, the
sensitivity of the observations after post-processing using this PSF estimate will be 103 times
lower if using the model-based approach.

4.5 Comparison with Feed-Forward Networks

Removing the discriminator and the cGAN loss term from the loss function we transform our
cGAN into a UNet. Training for this network is a great deal faster, only requiring a few epochs to

Fig. 6 (a) High turbulence residual wavefront simulated and (b) inferred, with error measurement
shown as square of difference relative to (c) square of true amplitude. (d) Shown with correspond-
ing WFS image.
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Fig. 8 Long-exposure PSF cross-section comparison in units of log normalized intensity
(r 0 ¼ 0.093 m).

Fig. 7 (a) Low turbulence residual wavefront simulated and (b) inferred, with error measurement
shown as (c) square of difference relative to square of true amplitude. (d) Shown with correspond-
ing WFS image (bottom right).
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train. This represents a dramatic reduction in training time to that of a cGAN. However, there are
drawbacks to the UNet, as without the discriminator the ability to learn high-frequency infor-
mation about the wavefront is lost.

GAN training proceeds according to an adversarial loss regime. We employ a Markovian
discriminator specifically, otherwise known as a PatchGAN. In that setup, the trained generator

Fig. 9 Long-exposure PSF (r 0 ¼ 0.093 m) in log scale. Top: Simulated PSF (left), circular aver-
age of PSF errors (right). Middle: Reconstruction from literature (left) and inferred result (right).
Bottom: Error as absolute difference.

Table 2 Long-exposure SR robustness of translation results to
atmospheric turbulence variation (Fried parameter – ’r 0’), referenced
to numerical model benchmark and simulated truth.

r 0 (m)

Long exposure SR

Simulation Inferred Reference

0.080 0.490 0.514 0.463

0.093 0.572 0.568 0.553

0.100 0.608 0.599 0.592

0.120 0.690 0.689 0.679

0.150 0.771 0.773 0.763

0.180 0.823 0.829 0.818
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models a distribution of phase images that locally matches the statistics of the training corpus.
A generator—in our case feed-forward UNet—trained without this adversarial loss would be
optimized according to the L1 loss terms alone. In this section we showcase the importance
of the adversarial loss, showing that training the feed-forward network using L1 terms alone
fails to yield phase estimates with realistic or accurate fine detail.

By inspecting the phase estimate inferred by the UNet in Fig. 10, it is clear that there is a
lack of detail in the image. This lack of detail has the effect of lowering the fidelity of the
phase estimate and when transforming to a PSF [Eq. (1)]. The high-frequency information is
missing, altering the shape of the PSF as seen in Figs. 11 and 12. This effect of filtering the
high-frequency information out of the estimate hampers the PSF reconstruction. Clearly a
cGAN is a better choice for PSF reconstruction with image-to-image translation, because the
network can form a more accurate phase estimate by learning about: (i) the low-frequency
structure of the phase via the L1 loss, and (ii) the high-frequency information with the cGAN
loss. The GAN approach leads to good PSF reconstruction using the estimated wavefront
information.

5 Discussion and Future Work

We have shown that our approach can utilize high order information from the SH-WFS in an AO
loop that is inaccessible with current centroider algorithms applied by current practical methods
and theoretical models for wavefront estimation. With this high order data, our translational
network can accurately estimate the wavefront from just the WFS image, with no loss of accu-
racy when compared with best case theoretical models. Using network estimates we are able to
improve the quality and accuracy of corresponding long-exposure PSFs, with the consequence in
our application being the ability to increase the value of astronomical images according to decon-
volutional post-processing workflows. This work is a proof of concept based on a very realistic
end-to-end simulator, but applicability on real systems will need fine tuning and will require new

Fig. 10 Residual wavefront simulated (top left) and UNet-only generated inference (top right), with
error measurement shown as square of difference relative to square of true amplitude (bottom left).
Shown with corresponding WFS image (bottom right). Notice that the UNet can only capture low-
frequency wavefront information evident from the lack of detail in the estimate.
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Fig. 11 UNet-only generated long-exposure PSF cross-section comparison in units of log normal-
ized intensity (r 0 ¼ 0.10 m). Notice the poor accuracy of the UNet estimate for both central peak
and also for higher angular distance.

Fig. 12 Long-exposure PSF (r 0 ¼ 0.10 m) in log scale. Top: Simulated PSF (left) and circular aver-
age of PSF errors (right). Middle: Reconstruction from literature (left) and UNet-only generated infer-
ence result (right). Bottom: Error as absolute difference. Note that the PSF reconstruction from the
UNet-generated PSF is clearly unable to match the accuracy of the literature (or the cGANmethod).
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dedicated strategies for optimal training. In future work, we will investigate the accuracy of these
networks with a more rigorous statistical analysis.

Using a translational network is simpler than a model-based approach, which solves an engi-
neering problem. We do not require strong assumptions on the nature of the stochastic process or
system geometry, nor a large database to be processed to lead to comparable or better recon-
struction accuracy. It is noteworthy that storing and archiving telemetry data is an existing and
significant problem for post-processing workflows.

In future work, we shall investigate a range of network architectures and loss regimes, such
as Wasserstein GANs,23,24 and approaches using maximum mean discrepancy.25–28 An ideal
approach would have very low sensitivity to data preparation parameters related to scaling, and
to some extent network hyperparameters, while achieving the excellent high quality reconstruc-
tions we have demonstrated.

We are also examining applications of our phase reconstruction in real-time control with
impressive early results,20,29 and are encouraged about its applicability given we are measuring
an inference time of 0.34 ms on retail desktop GPUs. With optimization and dedicated hard-
ware30,31 and the COSMIC framework platform,32 wavefront inference from pre-trained networks
has potential for hard real-time AO loop control, and not just in postprocessing workflows via PSF
reconstruction. Future lab experiments will allow for verification of loop control with real sensor
equipment. The speed and simplicity, combined with demonstrated accuracy of our method is of
great interest in the AO community and shows a lot of promise for the in-construction ELT.33

6 Appendix: Long-exposure PSF Cross-sections for Robustness
to Turbulence

Figures 13–18 show the robustness of cGAN phase estimates for a single trained model over a
range of atmospheric turbulence parameters (r0), inferred from WFS image alone.

Fig. 13 Long-exposure PSF (r 0 ¼ 0.080 m).
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Fig. 15 Long-exposure PSF (r 0 ¼ 0.100 m).

Fig. 14 Long-exposure PSF (r 0 ¼ 0.093 m).
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Fig. 16 Long-exposure PSF (r 0 ¼ 0.120 m).

Fig. 17 Long-exposure PSF (r 0 ¼ 0.150 m).
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