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ABSTRACT. Adaptive optics (AO) corrected image restoration is particularly difficult, as it suffers
from the lack of knowledge on the point spread function (PSF) in addition to usual
difficulties. An efficient approach is to marginalize the object out of the problem and
to estimate the PSF and (object and noise) hyperparameters only, before deconvolv-
ing the image using these estimates. Recent works have applied this marginal
myopic deconvolution method, based on the maximum a posteriori estimator, com-
bined with a parametric model of the PSF, to a series of AO-corrected astronomical
and satellite images. However, this method does not enable one to infer global
uncertainties on the parameters. We propose a PSF estimation method, which
consists in choosing the minimum mean square error estimator and computing
the latter as well as the associated uncertainties thanks to a Markov chain Monte
Carlo algorithm. We validate our method by means of realistic simulations, in both
astronomical and satellite observation contexts. Finally, we present results on
experimental images for both applications: an astronomical observation on Very
Large Telescope/spectro-polarimetric high-contrast exoplanet research with the
Zimpol instrument and a ground-based LEO satellite observation at Côte d’Azur
Observatory’s 1.52 m telescope with Office National d'Etudes et de Recherches
Aérospatiales’s ODISSEE AO bench.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JATIS.9.4.048004]

Keywords: image restoration; myopic deconvolution; adaptive optics; astronomical
imaging; satellite imaging; Markov chain Monte Carlo

Paper 23037G received Mar. 22, 2023; revised Oct. 18, 2023; accepted Oct. 23, 2023; published Nov.
22, 2023.

1 Introduction
Ground-based high angular resolution imaging in the visible has numerous applications, such as
astronomy and satellite observation. The observations are limited by atmospheric turbulence,
which can be corrected in real time by adaptive optics (AO). However, the correction is partial
and residual blurring remains, impacting high spatial frequencies of the observed object.
Therefore, the observation system includes post-processing to restore the high frequencies.1

The residual blurring is described by the system point-spread function (PSF), which is not
entirely known, so both the observed object and the PSF are estimated. The historical way to
proceed is to estimate them jointly,2 which leads to a degenerate solution3,4 in the absence of
strong constraints, leading to the sharpest PSF thus the smoothest object. Another way to proceed
is to first estimate the PSF by “marginalizing” over the object, i.e., by integrating the joint
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probability density function over all possible objects with a given prior probability density
function and then to deconvolve the image with the estimated PSF.3 In our case, the PSF has
a physical parametric model, and the object is described by a Gaussian prior with a parametric
model for its power spectral density (PSD), whose parameters are also estimated along with PSF
parameters. The method we have been using so far, AMIRAL (standing for automatic myopic
image restoration algorithm), combines PSF and PSD parametrization as well as a marginal
maximum a posteriori (MAP) estimator.5

The method we propose in the present paper uses another Bayesian estimator, which
minimizes the mean square error on the sought parameters, corresponding to the mean of the
marginal posterior distribution. From this method, we also infer uncertainties on PSF and PSD
parameters.6,7 To do so, we include prior distributions for PSF and PSD parameters and we com-
pute the marginal posterior distribution by stochastic sampling. We first introduce a Markov
chain Monte Carlo (MCMC) algorithm to sample this posterior distribution.8,9 Then, we validate
our method on simulated data and we finally apply our method to experimental data, for both
astronomical and satellite observation contexts, corresponding to different instruments and
turbulence conditions.

2 Imaging Model and MMSE Estimator

2.1 Imaging Equation
We consider that the image i results from the 2D discrete convolution of the object o with the
PSF h, to which noise n (mostly photon noise and detector readout noise) is added, giving the
following imaging model10

EQ-TARGET;temp:intralink-;e001;114;460i ¼ h � oþ n: (1)

This can also be written in the matrix form as i ¼ Hoþ n, with H the convolution matrix
corresponding to the convolution of the object by h. In this study, we simulate and restore both
astronomical and satellite AO-corrected images, implying two different contexts: astronomical
images taken on a Very Large Telescope (VLT)/spectro-polarimetric high-contrast exoplanet
research (SPHERE)-like instrument11 with the Zimpol imaging polarimeter5 and ground-based
satellite observation at the Côte d’Azur Observatory (OCA) with the ODISSEE AO system.12

2.2 PSF Model
Throughout this work, we will consider having long-exposure PSFs, meaning that the exposure
time is greater than the typical variation time of turbulence. For the PSF, we use the PSFAO19
model,13 which has been designed specifically for describing an AO-corrected PSF with few
physical parameters. Roddier14 shows that the long-exposure PSF h re-writes as the convolution
of three PSFs

EQ-TARGET;temp:intralink-;e002;114;280h ¼ hstat � hdet � hatm: (2)

The first one is called the “static” PSF hstat and corresponds to the static aberrations, the
second one hdet is the “detector” PSF describing the integration of the image on the detector’s
pixels, and the last one is the “atmospheric” PSF hatm corresponding to the impact of atmospheric
turbulence. Conan15 shows that this description is still valid in the case of an AO-corrected PSF.
Both static PSF and detector contributions are supposed well known (and static) compared to
the highly variable atmospheric PSF. hatm can then be described by the phase PSD Wϕ

EQ-TARGET;temp:intralink-;e003;114;183hatm ¼ FT−1ðexpð−σ2ϕÞ × expðFT−1ðWϕÞÞÞ; (3)

with ϕ the turbulence-induced phase, coming from the residual aberrations [not corrected by AO]
in the pupil of the telescope, and σ2ϕ ¼ FT−1ðWϕð0ÞÞ, the phase variance, so that

P
hatm ¼ 1.

The two main parameters ofWϕ, thus of the PSFAO19 model, are the Fried parameter r0 taken at
the imaging wavelength (850 nm), describing the turbulence’s strength, and the variance of the
residual turbulent phase vϕ, describing the quality of AO correction. Indeed, the residual phase
PSD Wϕ can be separated in two different spatial frequency zones, depending on the AO cutoff
frequency fAO
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EQ-TARGET;temp:intralink-;sec2.2;117;624Wϕ ðfÞ ¼
�
AN α;βð1þ f2∕α2Þ−β þ C if f ≤ fAO
0.023r−5∕30 f−11∕3 else:

For the corrected spatial frequencies, a Moffat model is used to describe the core of the PSD.
The main parameter is the amplitude A, which is very close to the residual phase variance:
vϕ ≈ Aþ CAAO, withAAO the AO-corrected area in the spatial frequency domain (for a circular
AO-corrected area, AAO ¼ πf2AO). C is a constant giving the AO-corrected phase PSD back-
ground, useful to model the AO-corrected PSD near AO cutoff frequency (where the Moffat
function is close to zero). The parameters α (giving the width of the Moffat function) and
β (Moffat’s power law) do not impact the computation of the residual phase variance, thus they
have a less important impact on the PSF. Throughout this work, α, β, and C will be considered
as known parameters, and their value will be fixed to the values in Table 1. Finally, N α;β is
a normalization factor, which is used to normalize the integral of the Moffat function over the
corrected spatial frequencies

EQ-TARGET;temp:intralink-;e004;117;455N α;β ≜
β − 1

πα2

�
1 −

�
1þ f2AO

α2

�
1−β�−1

; (4)

which requires that β > 1. For the high spatial frequencies, the theoretical Kolmogorov model of
turbulence is used, the main parameter being the Fried parameter r0 describing the turbulence’s
strength, at the imaging wavelength. This model has been validated on several AO systems and
on different telescopes.12,13

2.3 Prior Distributions
Noise is taken independently from the object and is approximated as zero-mean, additive, white,
and Gaussian, which is a fine description given the flux levels in typical images. Moreover, in this
paper, we approximate the noise precision (inverse variance) as homogeneous, and we denote it
by γn. Therefore the noise covariance matrix is Rn ¼ 1∕γnI, with I the identity matrix and the
noise PSD is Sn ¼ 1∕γn.

An example of simulated astronomical observation is given in Fig. 1, with the true object on
the left and the simulated image on the right. The image is simulated using the PSFAO19 model,
and with uniform zero-mean additive white Gaussian noise.

As a prior for the object, we consider a Gaussian model described by its mean mo and its
PSD So. Given that we have little information on the the mean object mo, it is taken uniform on
all pixels, estimated at the average value of the image considering that

P
h ¼ 1, supposing flux

conservation. For the object PSD, we use the following parametric model:

EQ-TARGET;temp:intralink-;e005;117;201Soðf Þ ¼
1

γo
S̄oðf Þ; with Soðf Þ ¼ 1∕ðkþ fpÞ; (5)

and f ¼ jf j the radial frequency. This circularly symmetric model is a slightly modified writing
of Matérn’s model.16,17 In this model, γo sets the global PSD level, p is the PSD decrease rate at
high frequencies, and k gives the breakpoint between the two regimes of the model. In previous
works,5 attempts to estimate hyperparameter p jointly with the other parameters have been shown
to strongly decrease PSF parameter estimation accuracy. Therefore, we choose to work in a
“mostly unsupervised” mode, where p is fixed to a standard value. In the case of astronomical
observations of asteroids, a well-fitting empirical value is around p ¼ 3, whereas for satellite
observation a standard value for p would be around 2.5 to 2.6.

Table 1 Moffat fixed parameters.

Parameter Value

Moffat width α (m−1) 0.05

Moffat power law β 1.5

AO area constant C (rad2 m2) 10−10
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Let P ¼ N2 the image size in pixels. Given previous assumptions and the matrix form of
the imaging model of Eq. (6) where we consider i and o as vectors and H as a P × P matrix, the
likelihood writes

EQ-TARGET;temp:intralink-;e006;114;493

pðijo; γn; r0; vϕÞ ¼ det ð2πRnðγnÞÞ−1∕2

× exp

�
−
1

2
ði −Hðr0; vϕÞoÞtR−1

n ðγnÞði −Hðr0; vϕÞoÞ
�
: (6)

In Eq. (1), we consider o and h as arrays of the same size and approximate them as periodic.
Thus, the likelihood in Eq. (6) can also be written in the Fourier domain given previous
approximations

EQ-TARGET;temp:intralink-;e007;114;402pðijo; γn; r0; vϕÞ ¼
�
γn
2π

�
P∕2Y

f

exp

�
−
γn
2
jĩðf Þ − h̃ðf Þõðf Þj2

�
; (7)

where :̃ denotes the discrete Fourier transform (DFT) and the product on f is on all pixels in the
spatial frequency domain. For the object and the image, the DFT is normalized so as to comply
with Parseval’s theorem. For the PSF, the DFT is normalized so that h̃ð0Þ equals the sum of
the PSF on the numerical array. Moreover, as said previously, this value is set to 1 by convention,
to express flux conservation. ~h is also called the (discretized) optical transfer function (OTF).

Given the previous approximations, the object covariance matrix is circulant-block-circulant
and we can write the object prior distribution as follows:

EQ-TARGET;temp:intralink-;e008;114;274pðojγo; kÞ ¼ det ð2πRoðγo; kÞÞ−1∕2 exp

�
−
1

2
ðo −moÞtR−1

o ðγo; kÞðo −moÞ
�
: (8)

Similarly to the likelihood, the object prior in Eq. (8) can also be written in the Fourier
domain. Indeed, given the structure of the object covariance matrix Ro, the latter is diagonalized
in the discrete Fourier domain, with So as written in Eq. (5) on its diagonal, so that

EQ-TARGET;temp:intralink-;e009;114;200pðojγo; kÞ ¼
�
γo
2π

�
P∕2Y

f

�
Soðf Þ−1∕2 exp

�
−
γo
2
Soðf Þ−1jõðf Þ − m̃oðf Þj2

��
: (9)

Thus, given that the mean object is taken uniform in the spatial domain, it corresponds to
a delta function in the Fourier domain. Regarding PSF parameters as well as noise and object
PSD parameters, hereafter called parameters, we consider that each parameter γn, γo, k, r0, and vϕ
can take any value in a given range. Therefore, following the Laplace rule (or principle of
insufficient reason), we use uniform priors for each of them.18 The prior interval for each param-
eter is taken large enough. For γn, γo, and k, the prior interval is from 0.1 to 10 times the usual
value of the parameter (given empirical knowledge on them). The prior intervals taken for PSF
parameters are the following: for r0 we take [5 cm; 30 cm] and for vϕ we take ½0.5 rad2; 3.0 rad2�,

Fig. 1 (a) Synthetic view of Vesta (true object o), of size 512 × 512. (b) Simulated image i , with
true parameters r 0 ¼ 0.15 m, vϕ ¼ 1.3 rad2, and γn ¼ 2.62 × 10−4 ph−2.
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which correspond to a large range of values taking into account the global knowledge on the AO
system and the turbulence. These values are summarized in Table 2.

In Fig. 2, we provide the chosen hierarchical model, which sums up the variable interde-
pend-ency. [Ref. 19, chap. 8] Each upper node (parent) is connected with an edge to a node below
(child), and the model says that a child’s distribution, given all nodes above, is only a function of
its parents. In our model, it means for example that pðijo; γn; γo; k; r0; vϕÞ ¼ pðijo; γn; r0; vϕÞ.
Therefore pði; γo; kjo; γn; r0; vϕÞ ¼ pðijo; γn; r0; vϕÞpðγoÞpðkÞ, which means that the image i
and object PSD parameters γo and k are independent conditionally to the object and the other
parameters. Additionally, the object, the noise variance, and the PSF parameters are independent
conditionally to object PSD parameters meaning pðojγn; γo; k; r0; vϕÞ ¼ pðojγo; kÞ. Moreover,
as the hierarchical model reads, all parameters (γo, k, r0, vϕ and γn) are modeled as a priori
independent.

2.4 Marginal Estimator
The joint distribution is, following the conditioning rule, the multiplication of the likelihood by
the prior distributions. Given the hierarchical model of Fig. 2 and as explained previously

EQ-TARGET;temp:intralink-;e010;117;236pði; o; γn; γo; k; r0; vϕÞ ¼ pðijo; γn; r0; vϕÞpðojγo; kÞpðγnÞpðγoÞpðkÞpðr0ÞpðvϕÞ: (10)

From it, we can derive the expression of any target distribution. As explained above, a way to
estimate the object and the parameters is to first estimate the parameters by computing the so
called marginalized posterior probability, meaning integrating the posterior density over the
object

EQ-TARGET;temp:intralink-;e011;117;163pðγn; γo; k; r0; vϕjiÞ ¼
Z

pðo; γn; γo; k; r0; vϕjiÞdo ¼ 1

pðiÞ
Z

pði; o; γn; γo; k; r0; vϕÞdo: (11)

In practice, we write the marginal posterior distribution following the Bayes rule, from the
marginal likelihood and the priors taken as uniform and independent, as mentioned in Sec. 2.3:

EQ-TARGET;temp:intralink-;e012;117;102pðγn; γo; k; r0; vϕjiÞ ¼
pðγnÞpðγoÞpðkÞpðr0ÞpðvϕÞ

pðiÞ pðijγn; γo; k; r0; vϕÞ: (12)

Table 2 Prior intervals and tuning of the Gaussian standard deviation for
γn, r 0, vϕ, γo , and k .

Parameter Prior min - max Step tuning

γn (ph−2) 2.62 × 10−5 to 2.62 × 10−3 2.62 × 10−6

r 0 (m) 0.05 to 0.5 0.001

vϕðrad2Þ 0.5 to 3.0 0.01

γo (ph−2) 2.62 × 10−15 to 2.62 × 10−11 2.62 × 10−14

K 0.01 to 10 0.1

Fig. 2 Hierarchical model summing up the inter-dependency between the object, the image, and
all parameters.
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Given that the noise is taken Gaussian, white, homogeneous and a priori independent from
the object considered Gaussian, the image being a linear combination of both is also Gaussian.
Therefore, the marginal likelihood writes:

EQ-TARGET;temp:intralink-;e013;114;700pðijγn; γo; k; r0; vϕÞ ¼ ð2πÞ−P∕2
Y
f

�
Siðf Þ−1∕2 exp

�
−
1

2
jĩðf Þ − m̃iðf Þj2∕Siðf Þ

��
; (13)

with image PSD Si and mean image mi

EQ-TARGET;temp:intralink-;e014;114;647Siðf Þ ¼ Soðf Þjh̃ðf Þj2 þ Sn m̃iðf Þ ¼ h̃ðf Þm̃oðf Þ: (14)

[Given Eq. (13), maximizing the marginal likelihood, as in the previous method,3,5 can be
interpreted as finding the parameters for the image PSD model Si of Eq. (14) that best fit the
empirical PSD jĩðf Þ − m̃iðf Þj2.] The marginal posterior distribution for the parameters can then
easily be written using Eqs. (12)–(14)

EQ-TARGET;temp:intralink-;e015;114;573

pðγn; γo; k; r0; vϕjiÞ ¼
pðγnÞpðγoÞpðkÞpðr0ÞpðvϕÞ

pðiÞ pðijγn; γo; k; r0; vϕÞ

¼ 1

pðiÞUγnðγnÞUγoðγoÞUkðkÞUr0ðr0ÞUvϕðvϕÞ

× ð2πÞ−N∕2
Y
f

�
1

γo

1

kþ fp
jh̃ðf ; r0; vϕÞj2 þ

1

γn

�
−1∕2

× exp

�
−
1

2

jĩðf Þ − h̃ðf ; r0; vϕÞm̃oðf Þj2
γ−1o ðkþ fpÞ−1jh̃ðf ; r0; vϕÞj2 þ γ−1n

�
; (15)

with UxðxÞ the uniform probability distribution for parameter x, in the range defined for x. In our
case, these minimum and maximum values are given in Table 2.

2.5 MMSE Estimator and Sampling
The minimum mean square error estimator is known to be the mean of the posterior distribution,
whereas the MAP estimator, computed by AMIRAL, is its mode.20 Given the complexity of the
posterior, there is no known analytical way to calculate it. Away to compute it is to draw samples
under the posterior distribution using a MCMC method for instance and compute the sample
mean. The posterior distribution being complex, it is not possible to sample it directly, therefore
we use a Metropolis–Hastings algorithm to bypass the problem.21 It consists, for each iteration, in
drawing samples under a chosen proposal distribution qðθjθ 0Þ and accepting the samples (else,
duplicating the previous value) with a prescribed probability α. For the k’th iteration, α writes

EQ-TARGET;temp:intralink-;e016;114;298α ¼ pðθpropjiÞ
pðθðk−1ÞjiÞ

qðθðk−1ÞjθpropÞ
qðθpropjθðk−1ÞÞ ; (16)

with θprop a sample drawn from the proposal distribution.
Several versions are possible: in particular, we can either draw all the parameters simulta-

neously (standard Metropolis–Hastings) or separately (Metropolis–Hastings-within-Gibbs).
Drawing the parameters together can make the acceptance probability fall (except if we use more
advanced, e.g., gradient-based algorithms, such as Metropolis-adjusted Langevin algorithm or
Hamiltonian Monte Carlo methods),21–23 whereas drawing parameters individually can slow
down the algorithm as it changes parameters one by one and requires more likelihood compu-
tations. For simplicity, we use here the second version. In a standard Gibbs algorithm, each
parameter is drawn under its own conditional posterior distribution, which is proportional to
the prior of the considered parameter times the marginal likelihood of Eq. (13). The conditional
posterior distribution for each parameter writes

EQ-TARGET;temp:intralink-;e017;114;128pðθnji; θm≠nÞ ¼
pðθnÞpðijθÞ

pðiÞ ; (17)

where θn is the considered parameter and θm≠n the four other parameters. Note that pðiÞ is not
needed due to the fact that it cancels out in the acceptance ratio α computed in Eq. (16).
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As mentioned above, because drawing the parameters under their conditional posterior
distribution is difficult, we use a Metropolis–Hastings-within-Gibbs algorithm instead of the
standard Gibbs. Asymptotically, the samples are under the marginal posterior distribution for
all parameters, and the sample mean tends towards the mean of the distribution.21

In our case, we use a random walk Metropolis–Hastings algorithm: the proposed sample
for each parameter is drawn under a symmetric (Gaussian) distribution qðθnjθn 0 Þ around the

current value of the parameter. The proposal distribution being symmetric, qðθðk−1Þn jθpropn Þ ¼
qðθpropn jθðk−1Þn Þ thus qðθðk−1Þn jθpropn Þ

qðθpropn jθðk−1Þn Þ in α [in Eq. (16)] simplifies. The standard deviation of the

Gaussian proposal distribution σθn is chosen to be 0.01 times the allowed range of the prior.
Precisely, the tuning for each parameter is given in Table 2. This choice is based on the empirical
sensitivity of the PSF (or noise PSD, or object PSD) to the parameters. Moreover, this choice
only impacts the convergence time, which is an issue we do not tackle in this paper. A typical
number of iterations needed to reach convergence (including the boiling time) would be around
30,000 iterations, corresponding to an hour (on an ordinary laptop).

The random walk Metropolis–Hastings-within-Gibbs algorithm we use in this paper is
provided in Algorithm 1.

3 Results on Simulated Astronomical Data

3.1 Simulation Conditions
The obtained results are shown for the simulated image displayed in Fig. 1, using as the true
object the synthetic view of asteroid Vesta, built by the OASIS software,24 on a dark background
of size 512 × 512 pixels. True PSF parameters are r0 ¼ 0.15 m and vϕ ¼ 1.3 rad2 at the imaging
wavelength λ ¼ 550 nm, which correspond to realistic turbulence and correction conditions. The
AO system is a “SPHERE-like” AO system and its parameters are taken identical to those used
with the previous method,5 for comparison purposes. Noise is taken zero-mean, additive, white,
and Gaussian with a variance equal to the empirical mean value of the object as a first approxi-
mation of the photon noise. The total flux of the object is set to Fo ¼ 109 ph (photons), typical
from VLT/SPHERE/Zimpol asteroid observations (ESO Large Program ID 199.C-0074), there-
fore γn ¼ P∕Fo ¼ 2.62 × 10−4 ph−2. The PSF and PSD parameters are estimated following the
proposed method, except the mean object mo, which are estimated to the average value of the
image, and the object PSD power, which is fixed to p ¼ 3, which corresponds to a reasonable

Algorithm 1 Metropolis–Hastings-within-Gibbs algorithm.

Define initial θð0Þ

for each iteration k do

for each parameter θn do

Propose θpropn ∼N ðθðk−1Þn ; σθn Þ

Acceptance rate α←min
�
1; pðθ

prop
n Þpði jθðkÞm<n ;θ

prop
n ;θðk−1Þm>n Þ

pðθðk−1Þn Þpði jθðkÞm<n ;θ
ðk−1Þ
m≥n Þ

�
▹ Eqs. (16) and (17)

Random acceptance u ∼ Uð½0; 1�Þ

if u < α then

Accept the proposal θðkÞn ←θpropn

else

Duplicate previous sample θðkÞn ←θðk−1Þn

end if

end for

end for
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default value of p for asteroids. The Gibbs sampler is run for 100,000 iterations, which corre-
sponds to a few hours, to verify the convergence.

3.2 Results on the Estimated Parameters and Derived Uncertainties
In Fig. 3, we plot the samples chains and the corresponding histograms for γn, r0, and vϕ. The
inspection of Fig. 3 suggests that chains have a short burn-in period, followed by a stationary
state. As expected fromMarkov chains, for each parameter the samples are correlated. Moreover,
the samples are concentrated in a small interval relatively to their prior interval.

The sample mean values m, corresponding to our estimates, and standard deviations σ,
corresponding to our predicted uncertainties, for each parameter are displayed in Table 3. First,
we can note that the error on the parameters is small: the noise precision is very precisely estimated,
with an error smaller than 0.2%, and PSF parameters are also well estimated, with a 5% error on
r0 and a 10% error on vϕ. Additionally, the estimated r0 and vϕ are very close to the previous
results obtained with AMIRAL: for similar conditions,5 the estimated PSF parameters were
r0 ¼ 0.142 m and vϕ ¼ 1.13 rad2 (compared to r0 ¼ 0.142 m and vϕ ¼ 1.17 rad2 in Table 3).

3.3 Results on the OTF, on Object and Image PSD
We also compare the resulting OTF to the true OTF in Fig. 4. The slight underestimation of r0
leads to the lowering of the global OTF level, the impact of which can mainly be seen at low
frequencies. Concerning vϕ, its mild underestimation leads to a slower decrease of the OTF and
impacts the slope of the latter at medium-high frequencies.5 Thus, we notice that the errors on

Fig. 3 From top to bottom: γn, r 0, vϕ, γo , k . (a) Chain of samples for simulated astronomical image.
(b) Corresponding histogram. True values in dashed line.

Table 3 Mean value, associated standard deviation and true value, for γn, r 0, vϕ, γo , and k for
simulated astronomical image (stationary Gaussian noise), with p ¼ 3 and mo ¼ mi .

Parameter m � σ True

γn (ph−2) 2.620 × 10−4 � 0.008 × 10−4 2.621 × 10−4

r 0 (m) 0.142� 0.007 0.15

vϕðrad2Þ 1.17� 0.03 1.30

γo (ph−2) 2.37 × 10−13 � 5.41 × 10−14 —

K 0.768� 0.594 —
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both parameters partially compensate. As a result, the normalized root mean squared error

(RMSE) for the OTF, computed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jmh̃−h̃j2P
jmh̃j2

r
with true OTF ~h and estimated OTF m ~h, is quite

small (around 7%).
Concerning the uncertainties derived from our method, we notice in Table 3 that the true

value for parameter r0 is in the range ½mr0 � 2σr0 �, and the true vϕ is in the interval ½mvϕ � 5σvϕ �,
therefore the uncertainties on PSF parameters seem under-estimated. We can also compute uncer-
tainties directly on the sought OTF: for each sample ðr0; vϕÞ, we compute the corresponding OTF
to compute its sample mean m ~h and standard deviation σ ~h, meaning the mean and standard
deviation for each frequency of the OTF. As shown in Fig. 4, the true OTF is within the interval
½m ~h � 2σ ~h�, for all frequencies. Therefore, even though the uncertainties on PSF parameters are
somewhat under-estimated, our method gives a very satisfactory uncertainty estimation on the
OTF itself.

In Fig. 5(a), we perform an important sanity check of the method to verify that our model for
the image PSD of Eq. (14), which combines object PSD, PSF and noise PSD, accurately fits the
empirical image PSD averaged azimuthally [cf. Eq. (13)]. Moreover, given the fact that the true
object is not the realization of a Gaussian random field following our PSD model, a way to check
γo and k’s estimation accuracy is to look at the fitting of our model to the object empirical PSD,
averaged azimuthally. As displayed in Fig. 5(b), the object PSD model visually fits correctly the

Fig. 4 True (in green) and estimated (in blue) OTF for simulated astronomical image, including
computed uncertainties (in blue, + and − for upper and lower uncertainty bounds).

Fig. 5 PSDs for simulated astronomical image. Model in solid line and empirical PSD averaged
azimuthally in dashed line. (a) Image PSD and (b) object PSD.
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empirical object PSD, the slight overestimation being consistent with the slight underestimation
of the OTF.

3.4 Results on the Restored Image
After having estimated the PSF and hyperparameters, the object is restored by maximizing the
joint distribution, given the PSF and hyperparameters, as in a classical non-myopic deconvolu-
tion framework. Given the expression of the joint distribution in Eq. (10), maximizing it with
respect to the object is equivalent to maximizing the product of the likelihood in Eq. (7) and
the object prior (corresponding to a quadratic regularization) in Eq. (9)

EQ-TARGET;temp:intralink-;e018;114;628

ô ¼ arg max
o

pði; o; γn; r0; vϕ; γo; kÞ

¼ arg max
o

pðijo; γn; r0; vϕÞpðojγo; kÞ

¼ arg max
o

− lnðpðijo; γn; r0; vϕÞpðojγo; kÞÞ

¼ arg max
o

X
f

�
1

2
jĩðf Þ − h̃ðf Þõðf Þj2∕Sn þ

1

2
jõðf Þ − m̃oðf Þj2∕Soðf Þ

�
: (18)

Without any specific constraint on the object, the solution of Eq. (18) corresponds to the
Wiener filtering [Ref. 1, chap. 4] with a non-null prior mean mo

EQ-TARGET;temp:intralink-;e019;114;494ôðf Þ ¼
h̃�ðf Þĩðf Þ þ Sn

Soðf Þ m̃oðf Þ
jh̃ðf Þj2 þ Sn

Soðf Þ
: (19)

However, it is also possible to minimize the criterion in Eq. (18) under some constraints,
such as positivity (on the pixels value), which is a natural constraint given the context.
It is also possible to use not solely a quadratic regularization but a L1-L2 regularization as
an “edge-preserving” regularization.

Figure 6 shows the image in Fig. 1 restored with the estimated OTF, using a quadratic
regularization (which hyperparameters are the ones estimated by the method) with positivity
constraint. Many details of the Vesta surface can be seen, that were not visible on the data.
Particularly, with our method we retrieve sharp edges of the asteroid from which one can estimate
the object volume and sphericity, as well as main crater and albedo features.

3.5 Posterior Coupling Between Parameters
Sampling the whole posterior distribution, instead of computing a single point of it (for example,
the maximum), enables us to study the a posteriori coupling of the parameters. In Figs. 7 and 8,
we display the scatter graph of the samples, after boiling time, for two different couples of param-
eters: (r0, vϕ) and (r0, γo). Most couples of parameters have a scatter graph similar to Fig. 7,

Fig. 6 (a), (b) True object and image for simulated asteroid observation, 256 × 256 cropped from
Fig. 1. (c) Restored object from the estimated PSF and PSD parameters using a L2-norm regu-
larization, with positivity constraint, also cropped.
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where the 2D-histogram is rather Gaussian and along the axis suggesting that most parameters
are not correlated a posteriori.

The only pair of coupled parameters that does not have an elliptical-like scatter graph, but
instead shows a strong a posteriori correlation, is r0 and γo. We explain this correlation by the
fact that as shown in Ref. 5, r0 impacts the global level of the OTF whereas γo gives the global
level of the object PSD. Therefore, given the expression of the image PSD in Eq. (14), both
(r0, γo) have a similar impact on the global level of the image PSD, which is fitted by our method;
that explains their strong correlation.

3.6 Test on Several Noise Realizations
To test the robustness of our method to noise, we ran the algorithm for 10 different noise
realizations, in the simulation conditions described above. We compute the bias and standard
deviation of the estimated parameters on these 10 noise realizations, as well as the maximum
error. We also compute the minimum and maximum predicted uncertainty (i.e., the standard
deviation of the posterior distribution). These values are summed up in Table 4.

In these 10 cases, we notice very little variation in the estimates: the computed standard
deviations (fifth column in Table 4) are small with respect to the true values (second column).
Moreover, the estimates are satisfactory: first, the errors on the estimated parameters are quite

Fig. 7 Marginal posterior scatter graph of the samples for (r 0, vϕ) after boiling time.

Fig. 8 Marginal posterior scatter graph of the samples for (r 0, γo) after boiling time.
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small (third column), particularly on the noise precision (error is <1%). Moreover, the predicted
uncertainties for γn are close to the empirical average error made on the noise precision. For the
PSF parameters, the error is smaller than 11%. Concerning parameter r0, the predicted uncer-
tainty is very satisfactory: the true value is always within the interval ½mr0 � 2σr0 �. For parameter
vϕ, we notice that the error is here dominated by the bias, which is more than 10 times greater
than the standard deviation (which is not the case for the other parameters). Our interpretation is
that this bias is due to the choice of p, which will be further discussed in 3.7.

Finally, even though the uncertainties are under-estimated for vϕ with the default p,
concerning the OTF itself the uncertainties are always well estimated: for all 10 cases, the true
OTF is within the interval ½m ~h � 2σ ~h�, as shown in Fig. 9. Moreover, the RMSE on the OTF is
smaller than 1.3 times the posterior standard deviation on OTF (averaged on noise realizations),
for all frequencies.

3.7 Impact of Hyperparameter p
In Ref. 25, we have tested our method in the exact same conditions, for another value for hyper-
parameter p, tuned slightly differently, towards the “best” value5 in the supervised mode
p ¼ 2.91. (Both p ¼ 2.9 and p ¼ 2.91 were tested with our method, giving the same results.)
The results on estimated parameters and derived uncertainties are summed up in Table 5. With a
value of p ¼ 2.9 instead of 3.0, the error on vϕ becomes smaller and the estimated uncertainties
are then satisfactory (the true vϕ is then in the interval ½mvϕ � 2σvϕ �). Similarly to the correlation

between r0 and γo showed in 3.5, we interpret these results as another strong correlation between
vϕ and the fixed hyperparameter p, due to the similar impact they have on the image PSD.
Indeed, vϕ impacts the slope of the OTF in medium-high frequencies5 whereas p corresponds

Table 4 Summary of results on 10 noise realizations: true value, maximum error and bias (if avail-
able), standard deviation of estimates for γn, r 0, vϕ, γo , and k , and minimum/maximum predicted
uncertainty.

Parameter True Max. error Empirical bias Empirical std. dev. Predicted uncertainty

γn (ph−2) 2.621 × 10−4 2.3 × 10−6 9.5 × 10−8 9.0 × 10−7 ∈ ½7.8 × 10−7; 8.0 × 10−7�

r 0 (m) 0.150 0.012 0.006 0.005 ∈ ½0.006; 0.009�

vϕðrad2Þ 1.30 0.14 0.12 0.01 ∈ ½0.02; 0.03�

γo (ph−2) — — — 4.1 × 10−14 ∈ ½4.5 × 10−14; 8.9 × 10−14�

K — — — 0.1 ∈ ½0.4; 0.7�

Fig. 9 Results on OTF uncertainties for 10 realizations of a noisy simulated astronomical image:
true OTF (in black) and predicted range ½m~h � 2σ~h� (+ and − for upper and lower uncertainty
bounds, each color corresponds to a noise realization).
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to the slope of the object PSD in medium-high frequencies. Therefore, both vϕ and p tune the
decrease of the image PSD in medium-high frequencies, which can explain their strong posterior
correlation.

However the differences on the restored image, as displayed in Figs. 10 and 11, are quite
small, at most around 10 times smaller than the global image level.

Table 5 Mean value, associated standard deviation and true value, for γn, r 0, vϕ, γo , and k for
simulated astronomical image (stationary Gaussian noise), with p ¼ 2.9 and mo ¼ mi .

Parameter m � σ True

γn (ph−2) 2.620 × 10−4 � 0.008 × 10−4 2.621 × 10−4

r 0 (m) 0.141 ± 0.006 0.15

vϕðrad2Þ 1.33 ± 0.02 1.30

γo (ph−2) 2.65 × 10−13 � 5.39 × 10−14 —

K 0.619� 0.469 —

Fig. 10 (a) Restored image, fixing p ¼ 3. (b) Restored image, fixing p ¼ 2.9. (c) Ten times the
absolute difference between the two first images.

Fig. 11 Horizontal sectional plot of the restored images (at N∕2), fixing p ¼ 3 and p ¼ 2.9, and
their difference.
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3.8 Results with a More Realistic Noise
We now simulate the observation of Vesta using the same conditions than in Sec. 3.1, except that
we now simulate a more realistic noise, using a Poisson distribution to mimic the photon noise
with the same total flux as previously, namely 109 ph, and an additive stationary Gaussian noise
for the read-out noise with a standard deviation of 20 photo-electrons. The results are summed up
in Table 6.

Even if the simulated noise does not exactly match the stationary Gaussian noise model, all
estimated parameters are still very close to the previous estimations, with a difference between
the two estimations smaller than the derived uncertainties σθ, except for γn, which does not have
a true value because of the inhomogeneous simulated noise. The PSF parameters are still well
estimated, with an error around 3% for r0 and around 8% for vϕ. Their associated uncertainties
are also still satisfactory for r0 and, similarly, slightly underestimated for vϕ as discussed pre-
viously. Thus deviating from the stationary Gaussian noise model does not impair the results with
our method, given our simulation conditions. The small impact of deviating from the stationary
Gaussian noise model was also shown by Fétick,5 using the marginal MAP estimator.

The prior mean object chosen in this work can also be questioned: indeed, taking a uniform
prior mean object equal to the mean image makes sense as we have little information on it, but
this choice is somewhat arbitrary, and above all, it depends on the data. To check that this choice
has little impact on the solution, we perform another reconstruction with a Poisson + Gaussian
noise, but changing this time the prior mean object value, which is estimated to zero (and not the
image mean value). The results are given in Table 7.

The results for all parameters do not change much, as previously the estimates for
each parameter change less than a standard deviation σ, except for γn. We thus conclude that
this uniform prior on the mean object does not impact much the results on the estimated
parameters.

Table 6 Mean value, associated standard deviation and true value, for γn, r 0, vϕ, γo , and k for
simulated astronomical image with a more realistic noise (Poisson + Gaussian noise), with p ¼ 3
and mo ¼ mi .

Parameter m � σ True

γn (ph−2) 2.569 × 10−4 � 0.008 × 10−4 —

r 0 (m) 0.145 ± 0.007 0.15

vϕðrad2Þ 1.20 ± 0.03 1.30

γo (ph−2) 2.49 × 10−13 � 5.57 × 10−14 —

K 0.717 ± 0.524 —

Table 7 Mean value, associated standard deviation and true value, for γn, r 0, vϕ, γo , and k for
simulated astronomical image with a more realistic noise (Poisson + Gaussian noise), with p ¼ 3
and mo ¼ 0.

Parameter m � σ True

γn (ph−2) 2.352 × 10−4 � 0.007 × 10−4 —

r 0 (m) 0.148 ± 0.008 0.15

vϕðrad2Þ 1.18 ± 0.03 1.30

γo (ph−2) 2.86 × 10−13 � 7.32 × 10−14 —

K 0.522 ± 0.408 —
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4 Results on Simulated Satellite Image

4.1 Simulation Conditions
We now show results for a simulated satellite image, using as the true object a synthetic view of
the SPOT satellite on a dark background of size 512 × 512 pixels.26 We simulate its observation
using the ODISSEE AO system at OCA,12 and with true PSF parameters r0 ¼ 0.10 m and
vϕ ¼ 1.85 rad2, at the imaging wavelength λ ¼ 850 nm, corresponding to a stronger turbulence,
and to a more modest correction than for the astronomical simulation because of a less complex
AO system. The noise is taken as zero-mean, additive, white and Gaussian, and its variance is
taken equal to the mean value of the object. Here, the mean flux is 104 photons per image pixel,
corresponding to a somewhat optimistic value. The pixel sampling is close to the Shannon-
Nyquist criterion, with slightly more than two pixels per λ∕D. The true object and the simulated
data are shown in Fig. 12.

The object PSD power p is fixed to an empirical standard value for satellites p ¼ 2.6, to fit
the empirical object PSD. The Gibbs sampler is run for 100,000 iterations.

4.2 Results on the Estimated Parameters and Derived Uncertainties
In Fig. 13, we plot the sample chains and the corresponding histograms for γn, r0, and vϕ.

Similarly to the previous simulations, the sample mean valuesm and standard deviations σ of
the posterior distribution for each parameter are displayed in Table 8. The noise precision γn as
well as PSF parameters r0 and vϕ are relatively well estimated, with an error of 2%, 14%, and
17%, respectively. These results are very close to those obtained with AMIRAL: for similar
conditions, the estimated PSF parameters are r0 ¼ 0.112 m and vϕ ¼ 2.16 rad2. We notice that
the error on PSF parameters is greater for the satellite observation than for the astronomical
observation. Our interpretation of these results, checked by complementary simulations, is that
it is due to the spectrum of the satellite object which is less isotropic than Vesta, and therefore
does not fit our isotropic PSD model as well.

Concerning uncertainties, similarly to previous asteroid case, the posterior standard
deviation for r0 seems to be a good uncertainty prediction for this parameter as the true value
is within the interval ½mr0 � 2σr0 �. On the contrary, σvϕ seems small, giving an under-estimated
uncertainty. The reasons for this under-estimation are being investigated, though it should be
linked to the more difficult observation conditions simulated here. Additionally, the previous
discussion about the correlation between parameters p and vϕ

25 is still valid and further work
on tuning hyper-parameter p for satellite observation should be done.

We also compare the resulting estimated OTF to the true OTF in Fig. 14. Here again, as dis-
cussed previously, we notice that the errors on both parameters partially compensate, as a result
the normalized RMSE for the OTF is quite low (around 8%). Concerning the uncertainties, we
notice again that even though the uncertainties on PSF parameters are under-estimated, the uncer-
tainties on the OTF itself are quite satisfactory as the true OTF is within the interval ½mh̃ � 3σh̃�.

Fig. 12 Left: Synthetic view of SPOT (true object), of size 512 × 512. Right: simulated image, with
true parameters r 0 ¼ 0.10 m, vϕ ¼ 1.85 rad2, and γn ¼ 1.0010−4 ph−2.
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Additionally, the estimations result in a good image PSD fitting, as shown in Fig. 15.
Moreover, as displayed in Fig. 15, the object PSD model visually fits well the empirical object
PSD. Finally, Fig. 16 shows results from the restoration of the image in Fig. 12 (right) using
the estimated OTF. We notice that details of the satellite surface are restored.

Fig. 13 From top to bottom: γn, r 0, vϕ, γo , and k . (a) Chains of samples for simulated satellite
image. (b) Corresponding histogram. True values in dashed line.

Table 8 Mean value, associated standard deviation and true value, for γn , r 0, vϕ, γo , and k , for
simulated satellite image (stationary Gaussian noise).

Parameter m � σ True

γn (ph−2) 1.02 × 10−4 � 3.63 × 10−7 1.00 × 10−4

r 0 (m) 0.114 ± 0.008 0.10

vϕðrad2Þ 2.16 ± 0.01 1.85

γo (ph−2) 1.90 × 10−14 � 2.37 × 10−15 —

K 3.14 ± 1.45 —

Fig. 14 True (in green) and estimated (in blue) OTF for simulated satellite image, including com-
puted uncertainties (in blue, + and − for upper and lower uncertainty bounds).
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5 Results on Experimental Astronomical Data
After testing our method on both astronomical and satellite simulated data, therefore for different
turbulence conditions and AO systems, we apply it to experimental images. Here we process an
experimental image of Vesta27 taken by SPHERE/Zimpol in the same mostly unsupervised mode
as previously where p ¼ 3, and run the Gibbs sampler for 100,000 iterations. Data and restored
object are shown in Fig. 17. We recognize the same surface features as from the synthetic view in
Fig. 1. In this experimental case, the bright edge corona starts to appear (on the left side), and
the image is slightly granular. This may be due to a slight over-deconvolution i.e., to a slight
under-estimation of the OTF, as to the quadratic regularization.

Results obtained for the PSF parameters (mean ± standard deviation) are the following:
r0 ¼ 0.26� 0.04 m and vϕ ¼ 2.62� 0.06 rad2. These values are close to the values obtained
with AMIRAL5 (r0 ¼ 0.32 m, vϕ ¼ 2.78 rad2) for the same conditions, the newly estimated r0
being more likely than the one estimated by AMIRAL according to the known statistics on r0.

13

We also look at the image PSD model and the empirical image PSD for Vesta in Fig. 18. They fit
well, especially at low and medium frequencies, where signal dominates noise. For high
frequencies, where the noise is dominant, we see that the noise floor is not flat (whereas
we model the noise as white), and believe it may be due to the data reduction by SPHERE/
Zimpol’s pipeline.

Fig. 15 PSDs for simulated satellite image. Model in solid line, and empirical PSD averaged
azimuthally in dashed line. (a) image PSD and (b) object PSD.

Fig. 16 (a), (b) True object and image for simulated satellite observation, 256 × 256 cropped from
512 × 512 (Fig. 12). (c) Restored object using a L2-norm regularization, with positivity constraint,
also cropped.
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6 Results on an Experimental Satellite Image
Finally, we test our method on an experimental image of Envisat, taken at the OCAwith Office
National d'Etudes et de Recherches Aérospatiales (ONERA)’s ODISSEE AO system.12 We fix
paramater p to a reasonable value for satellites (p ¼ 2.5) and run the Gibbs sampler for 500,000
iterations.

Our results on the estimated PSF parameters are the following: r0 ¼ 0.08 m and
vϕ ¼ 0.89 rad2, which can be compared to the results obtained with AMIRAL: r0 ¼ 0.06 m

and vϕ ¼ 1.13 rad2, for the same conditions. Concerning the restored image, as shown in Fig. 19,
we retrieve some elements of the satellite, and we checked on a computer aided design model of
Envisat that the bright spots we obtain on the restored image indeed correspond to instruments
and antennas on its surface.

Finally, concerning the image PSD model and the empirical image PSD for Envisat, as
shown in Fig. 20, we have a globally good image PSD fitting. The oscillations of the empirical
image PSD are likely to come from oscillations of the OTF, which are consistent with the expo-
sure time (≈1 s), which is short with respect to turbulence residuals averaging, and constitutes a
deviation to the infinite exposure assumption of our AO-corrected PSF model. These oscillations
might also come partly from the spectrum of the object itself, which deserves further studies by
means of simulations.

Fig. 17 (a) Vesta observed by SPHERE/Zimpol on the European VLT in Chile.27 (b) Restored
object with the estimated PSF using a L2-norm regularization, with positivity constraint.

Fig. 18 PSD model and Vesta empirical image PSD averaged azimuthally, in dashed line.
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7 Conclusion
We have presented a marginal myopic deconvolution method extending previous works, using a
MCMC algorithm, more precisely a random walk Metropolis–Hastings-within-Gibbs algorithm.
In addition to PSF and hyperparameter estimation combined with image restoration, we now
have access to the whole posterior distribution. This enables us to compute the optimal estimator
minimizing the mean square error. Additionally, with the posterior distribution, we can compute
uncertainties based on the posterior standard deviation. This method has been validated on
simulated images, giving accurate estimations of noise and object hyperparameters, as well
as satisfactory OTF estimations. Two different contexts were simulated: on the one hand, the
observation of asteroid Vesta on the VLT, and on the other hand, the observation of the
SPOT satellite using ONERA’s AO bench on the 1.52 m-telescope at OCA. The satisfactory
results obtained in both conditions suggest the broad applicability of the method. Additionally,
for the simulated asteroid images, we have computed our estimations for several noise realiza-
tions, to check the robustness of our method to noise, both for estimated parameter values
and predicted uncertainties. Finally, our method has also been applied to experimental images,
in both contexts.

In this work, hyperparameter p, which codes for the decrease of the object PSD, has been
fixed to a reasonable value according to the class of the object (either asteroids, or satellites). The
PSF estimation quality is sensitive to the choice of p, as we verified it by changing its value.25

Moreover, jointly estimating p with the other parameters is difficult as mentioned in earlier
studies.5 In the near future, we plan to tackle the joint estimation of p. Beyond the choice

Fig. 19 (a) Envisat observed by ODISSEE at the OCA.12 (b) Restored object using a L2-norm
regularization, with positivity constraint.

Fig. 20 PSD model and Envisat empirical image PSD averaged azimuthally, in dashed line.
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of p, for objects that are far from isotropic, which is the case for some satellites, it would be
worth considering an anisotropic prior model. To enable the estimation of such a richer
prior model and improve the PSF estimation quality, we plan to add constraints on the object
(namely, support and/or positivity contraints). Indeed, such constraints should help separate the
contributions of the object and of the PSF to the image. This would then change the prior model
on the object which can not be described by a simple Gaussian distribution anymore.

Finally, we currently sample each parameter individually, using a Metropolis–Hastings-
within-Gibbs algorithm and the convergence speed issue has not been investigated. To accelerate
the convergence, a possible development is to use a Metropolis–Hastings algorithm to sample all
parameters jointly, thus without using the Gibbs sampler, and to use gradient-based methods,
such as a Metropolis-adjusted Langevin algorithm.21–23

Code and Data Availability
The raw SPHERE astronomical data presented in this article are publicly available in Ref. 28, and
the deconvolved images as well as the estimated PSF can be found in Ref. 29. The satellite data
that support the findings of this article are not publicly available due to privacy concerns. They can
be requested from the author at cyril.petit@onera.fr. Supporting code that can be used to generate
PSFs according to the PSFAO19 model is publicly available in Ref. 30.
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