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Abstract. Typical image-guided diffuse optical tomographic
image reconstruction procedures involve reduction of the
number of optical parameters to be reconstructed equal
to the number of distinct regions identified in the structural
information provided by the traditional imaging modality.
This makes the image reconstruction problem less ill-
posed compared to traditional underdetermined cases.
Still, the methods that are deployed in this case are
same as those used for traditional diffuse optical image
reconstruction, which involves a regularization term as
well as computation of the Jacobian. A gradient-free
Nelder–Mead simplex method is proposed here to perform
the image reconstruction procedure and is shown to provide
solutions that closely match ones obtained using established
methods, even in highly noisy data. The proposed method
also has the distinct advantage of being more efficient owing
to being regularization free, involving only repeated forward
calculations. © 2013 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JBO.18.3.030503]
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Diffuse optical tomography (DOT) is an emerging medical im-
aging modality that uses nonionizing near-infrared (NIR) light
in the range of 600 to 1000 nm as the probing medium with a
capability of estimating the pathophysiological state of the tis-
sue under investigation.1 Multiple scattering of the NIR light in
the turbid medium inherently limits the resolution of the recon-
structed diffuse optical image to around 0.5 cm,1 which is at
least five times lower than in traditional medical imaging modal-
ities, such as computed tomography (CT) and magnetic reso-
nance imaging (MRI). Recent advances in developing hybrid
optical imaging modalities, which combine the traditional im-
aging modalities (MRI/CT) with diffuse optical imaging,
have proven that the diagnostic/therapeutic information pro-
vided by hybrid optical imaging is of greater value than that
of the stand-alone individual imaging modalities.1

One of the main aspects of hybrid optical imaging is utiliza-
tion of structural prior information provided by the traditional
imaging modality to either guide or improve the solution.
Among methods that guide the solution using the structural
information, soft priors and hard priors are prominent.2–5

Other approaches, such as use of region boundary informa-
tion,5 makes the estimation problem into a two-stage approach,
first performing the hard priors, and second incorporating
the obtained solution as a initial guess into the traditional
reconstruction scheme (no-priors). The soft-priors approach
uses the structural information in the regularization scheme
to effectively guide the solution.2–4 In this, the number of opti-
cal parameters to be estimated remain the same as in a tradi-
tional approach, except that the regularization matrix consists
of the structural information. In the hard-priors approach, the
number of optical parameters that needs to be reconstructed
is reduced to the number of distinct regions identifiable
with traditional imaging, leading to substantial reduction in
the problem size. For the case of breast imaging, the typical
regions that are identifiable are adipose (fatty), fibro-glandular,
and tumor,4,6 resulting in the number of optical parameters to
be reconstructed equal to three.

The hard-priors approach makes the diffuse optical image
reconstruction problem less ill-posed compared to the traditional
approach (including soft priors). Specifically, this converts the
problem from underdetermined in nature to overdetermined.
Even then, the reconstruction procedures that are adapted in
the hard-priors case are the same as those used in the traditional
approach, the most popular being Levenberg–Marquardt (LM)
minimization scheme.2–5 LM scheme requires a regularization
parameter, which not only controls the convergence (number
of iterations required),7 but also sometimes leads to biased solu-
tions. Moreover, the LM scheme that is typically adapted to
diffuse optical imaging requires calculation of the Jacobian
(first-order derivative of the model).8

This work aims to show that a gradient-free simplex
method,9,10 which does not require regularization or computa-
tion of gradient (or its variant Jacobian), is highly efficient
compared to the existing methods for solving the image
reconstruction problem with the hard-priors approach. The
reconstruction results using the proposed method are compared
with traditional methods using numerical and gelatin-phantom
experimental cases.

Continuous-wave (CW) light propagation through a highly
scattering medium such as biological tissues is modeled
using an approximation of radiative transport equation called
diffusion equation (DE),11 given by

− ∇ · ½DðrÞ∇ΦðrÞ� þ μaðrÞΦðrÞ ¼ QoðrÞ; (1)

whereΦðrÞ represents the photon density (real values) at position
r. The isotropic light source is given byQoðrÞ at r. The diffusion
coefficient DðrÞ is defined as DðrÞ ¼ 1∕f3½μaðrÞ þ μ 0

sðrÞ�g;
with μ 0

sðrÞ and μaðrÞ representing the reduced scattering coeffi-
cient (assumed to be known for CW case) and absorption coef-
ficient, respectively. For the above DE, the type III (Robin-type)
boundary condition is used, as it models the refractive index mis-
match at the boundary of the tissue. This partial differential equa-
tion, along with the boundary condition, is solved using finite
element method (FEM),12 and ΦðrÞ is obtained. The modeledAddress all correspondence to: Phaneendra K. Yalavarthy, Indian Institute of
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data [GðμaÞ] for the CW case becomes the natural logarithm of
the amplitude data.12

The estimation of the optical absorption coefficients (here,
equal to the number of regions) involves matching the experi-
mentally measured boundary data (y) iteratively with GðμaÞ in a
least-square sense by varying μa in different regions.

2 Explicitly,
the objective function that needs to be minimized with respect to
μa here is given by

ΩðμaÞ ¼ ky − GðμaÞk2; (2)

where the dimension of y and μa is given byM (number of mea-
surements) and R (number of regions), respectively. Even
though R ≪ M, the minimization problem is still ill-posed
(also nonlinear), requiring regularization. The popular LM min-
imization scheme results in an updated equation:2

Δμa ¼ ½JTJ þ λI�−1JT ½y − GðμaÞ�; (3)

where JT represents the transposed Jacobian J(¼ ∂GðμaÞ∕∂μa,
dimension: M × R), I is the identity matrix, Δμa is the update,
and the regularization parameter is represented by λ. The λ is
systematically decreased with each iteration, here by a factor
100.25. As J is known to be semipositive definite in the case
of hard priors,2 the λ affects the convergence properties of
the solution.7 After every iteration, the μa is updated by adding
Δμa followed by recomputing of J andGðμaÞ before proceeding
to Eq. (3). This procedure is repeated until the change in Ω
[Eq. (2)] becomes <2% between successive iterations, ensuring
the convergence of the solution.

As the convergence is dependent on λ for the LM minimi-
zation, a direct search method that can minimize a scalar-valued
nonlinear function, such as Ω [Eq. (2)], is the Nelder and Mead
simplex algorithm.9,10 This algorithm is extremely popular for
the unconstrained minimization problem, which does not
require explicit or implicit calculation of the derivatives (or
its variant gradients),9 making it one of the most efficient tech-
niques. The only requirement for this algorithm is that it
involves repeated calculation of GðμaÞ. Because the objective
function (Ω) has only R number of parameters, the direct search
method forms the initial simplex with Rþ 1 points, with each
point having a dimension of R × 1 using the initial guess of μa.
These form the vertices of the simplex. The simplex method of
minimization is achieved through a series of steps deployed
repeatedly. Let the maximum value of the objective function
(Ω) be at the point μRa , which is replaced by a new point μra
via reflection, i.e.,

μra ¼ ð1þ αÞμ̄a − αμRa ; (4)

where μ̄a represents the centroid of the the simplex and α is
the reflection coefficient (positive value here it is 1). If the
ΩðμraÞ lies between Ωðμ1aÞ (lowest value) and ΩðμRa Þ, then μra
becomes the μa and we terminate the iteration. Otherwise, if
ΩðμraÞ < Ωðμ1aÞ, then we expand using

μea ¼ ð1þ χÞμ̄a − αμRa ; (5)

where χ is the expansion coefficient taking a value of 2. If
ΩðμeaÞ < ΩðμraÞ, then we make μa ¼ μea if ΩðμeaÞ ≥ ΩðμraÞ,
then μa ¼ μra and we terminate the iteration. In case the expand
condition is not satisfied, then the contract step is taken, similar
to earlier Ω, and using the contraction, μa is compared and
updated.10 This follows a shrinkage step.10 The coefficients

that are used here are 0.5 (contract) and 0.5 (shrinkage).
Note that these coefficients are universally accepted10 as the
standard and fixed for the method proposed here. More details
of the algorithm, along with the flow chart and tie-breaking
rules, are given in Ref. 10. The procedure is repeated until
the change in μa between the successive iterations becomes
<10−12 or the objective function reaches a value <0.1% of
the initial objective function value ½Ωðμa0Þ�. The simplex algo-
rithm requires repeated computation of Ω (Eq. 2), which in turn
evaluates GðμaÞ at every step, for converging to solution. This
algorithm is known to provide an optimal solution when the
parameter space dimensionality is within the range of data
space.10 So the hard-priors method becomes a good case for
deployment of this method.

To effectively assess the reconstruction performance of the
proposed method, a numerical experiment involving a typical
MRI-NIR human breast case is considered. The target distribu-
tion of the same is shown in the left top corner of Fig. 1. The
optical properties of the tissue types are μa ¼ 0.01 mm−1 for the
fatty region; μa ¼ 0.015 mm−1 for fibro-glandular; and tumor
with μa ¼ 0.02 mm−1. The μ 0

s is assumed to be known and
kept constant at 1 mm−1 throughout the imaging domain.
The boundary measurements are taken using the 16 light source
detector fiber-optic bundles arranged in an equispaced manner
along the edge when one fiber delivers the light, then the rest act

Fig. 1 Comparison of reconstruction performance for the case of
numerically generated data. The reconstruction techniques are given
on top of each figure, with the traditional being LM method and pro-
posed being Nelder–Mead simplex method; target represents actual μa
distribution. The noise level in the data is given in the parentheses
(middle two rows). The first-row results were obtained using an initial
guess of 0.001 mm−1 (for the rest it was 0.01 mm−1), which is indicated
in the parentheses, and the data noise level was 1%. The one-dimen-
sional cross-section plot along the dotted line on the target image is
given in the bottom row.

Journal of Biomedical Optics 030503-2 March 2013 • Vol. 18(3)

JBO Letters



as detectors, which providesM ¼ 240measurements. The mesh
used for the data collection is a fine mesh with 4876 nodes (9567
triangular elements), and 1%, 5%, and 10% Gaussian noise was
added to mimic the experimental case. For the reconstruction, a
coarse mesh with 1969 nodes (3753 triangular elements) was
used. The reconstruction results using fatty region as initial
guess is given in Fig. 1, except on the top row where the
guess of 0.001 mm−1, data noise level of 1% used which is
far away from the actual solution. The details of the computa-
tional cost for the case with 1% noise are noted as follows. The
traditional method converges to solution in three iterations
(1.9 s) for the initial guess, being close to the actual solution
(second row) with λ ¼ 0.01. If λ ¼ 100 is used in this case,
the convergence is achieved in 11 iterations, taking 15.5 s.
For the proposed simplex method, total computation time is
2.7 s (47 function evaluations). For the top-row results, the com-
putation time for the traditional LM method is 3.5 s with λ ¼
0.01 and 28.6 s with λ ¼ 100. The computational time is 12.8 s
for the proposed simplex method. For the cases of 5% and 10%
noise, the trend in the observed computational time is the same
as for the 1% case. Figure 1 results were obtained using
λ ¼ 100. The results obtained using the proposed simplex
method match within 2% of results that were obtained using
the traditional LM method.

Next, experimental data obtained from a cylindrical-shaped
three-layered gelatin phantom that mimics the breast structure,
of height 25 mm and diameter 86 mm, was used to test the effec-
tiveness of the proposed method. The details of the gelatin
phantom are given in Ref. 2 (Sec. 3.3). The reconstructed dis-
tributions of μa using both traditional LM and the proposed sim-
plex methods are given in Fig. 2 along with the one-dimensional
cross-sectional profiles. The number of iterations required for
the traditional method was 6 for λ ¼ 1, requiring 3.1 s. For
λ ¼ 100, the convergence was achieved in 11 iterations, requir-
ing 14.9 s. The proposed method computational time is 9.5 s
(180 function evaluations). This case also shows that the pro-
posed method results are in close agreement with the ones
obtained using the traditional LM method.

In both numerical and gelatin-phantom experiments, the total
computational time that was reported for the traditional LM
method was dependent on λ. The converged solution is the

same for cases when λ lies between 0.01 and 100; outside
this range, it is far away from the actual solution. Note that
there are automated methods for choosing the optimal λ, but
they result in an overhead time that is almost equivalent to per-
forming the reconstruction scheme, making it computationally
inefficient.13 The proposed method does not require regulariza-
tion, in turn removing the unwarranted bias introduced in the
solution in the traditional LM method. The proposed method
solves the minimization problem in an iterative manner,
where the number of iterations acts as indirect regularization
of the solution space (similar to least-squares QR14). As the
number of iterations is dependent on the stopping criterion,
the choice of the same becomes important in this case. More
importantly, the proposed method does not require any
Jacobian, which might be a time-consuming process even for
the image-guided DOT where the detection mechanism is
based on CCD cameras resulting in M ¼ 1e7.15

In conclusion, we have proposed a new approach for image-
guided diffuse optical tomographic image reconstruction that is
based on the popular gradient-free Nelder–Mead simplex
method. The reconstructed optical property images closely
match the ones obtained using traditional image reconstruction
methods. The developed algorithm for image-guided DOT is
provided as an open source16 for interested readers.
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