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Abstract. A composite set of ovarian tissue features extracted from photoacoustic spectral data, beam
envelope, and co-registered ultrasound and photoacoustic images are used to characterize malignant and nor-
mal ovaries using logistic and support vector machine (SVM) classifiers. Normalized power spectra were calcu-
lated from the Fourier transform of the photoacoustic beamformed data, from which the spectral slopes and
0-MHz intercepts were extracted. Five features were extracted from the beam envelope and another 10 features
were extracted from the photoacoustic images. These 17 features were ranked by their p-values from t -tests on
which a filter type of feature selection method was used to determine the optimal feature number for final clas-
sification. A total of 169 samples from 19 ex vivo ovaries were randomly distributed into training and testing
groups. Both classifiers achieved a minimum value of the mean misclassification error when the seven features
with lowest p-values were selected. Using these seven features, the logistic and SVM classifiers obtained sen-
sitivities of 96.39� 3.35% and 97.82� 2.26%, and specificities of 98.92� 1.39% and 100%, respectively, for
the training group. For the testing group, logistic and SVM classifiers achieved sensitivities of 92.71� 3.55% and
92.64� 3.27%, and specificities of 87.52� 8.78% and 98.49� 2.05%, respectively. © 2015 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.1.016002]
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1 Introduction
Ovarian cancer has the highest mortality of all gynecologic can-
cers because it is predominantly diagnosed in the late stage due
to the nonspecific early stage symptoms and lack of efficacious
screening techniques.1,2 Basic examinations including pelvic
examination, blood test for CA-125, and transvaginal ultrasound
have a low positive predictive value.3–8 X-ray computed tomog-
raphy (CT) is also poor in detecting small metastases of less than
2 cm in diameter.6 Furthermore, magnetic resonance imaging
(MRI) is expensive to use and is only reserved as a secondary
imaging method when transvaginal ultrasound is not determin-
istic, though it is more sensitive than x-ray CT.9 Positron emis-
sion tomography (PET) is useful for detection of recurrent or
residual ovarian cancer and for monitoring response to therapy,
but it may yield false-negative results in patients with small,
necrotic, mucinous, cystic, or low-grade tumors.10

Based on ultrasound and CA-125 levels, the risk of malig-
nancy index (RMI) was developed to estimate the risk of ovarian
cancer. An RMI2 (RMI of method 2) has been estimated to have
a sensitivity of 74% to 80%, a specificity of 89% to 92%, and
a positive predictive value of approximately 80% for ovarian
cancer detection.11,12 Unfortunately, the subjective scoring with
different physicians may result in different diagnostic results for
the same patient. Other complex models, such as artificial neural
network models and relevance vector machines, have been used

to improve ovarian cancer diagnosis, with the relevance vector
machine showing the best performance.13,14

Recently, photoacoustic tomography (PAT) has been widely
investigated as a noninvasive tool for cancer detection and diag-
nosis.15–18 PAT utilizes high optical contrast and high resolution
ultrasound to image tumor vasculature distribution. In PAT, bio-
logical tissue is illuminated by short laser pulses with wave-
lengths in visible red or near-infrared range, to achieve better
penetration depth. Laser energy absorbed by tissue produces
transient thermoelastic expansion and generates wideband
acoustic waves, which can be detected by ultrasound transducer
arrays for reconstruction of the optical absorption distribution of
the tissue. Optical absorption distributions at multiple wave-
lengths can be used to map tumor hemoglobin distribution
and oxygen saturation which are directly related to tumor pro-
liferation, growth, and metastasis.19

Our research group has developed several co-registered ultra-
sound and photoacoustic imaging systems for small animal
imaging and ovarian cancer detection and characterization;
the ultrasound provides anatomical information, while the PAT
provides the corresponding light absorption distribution within
the anatomical structure.18,20–23 The study reported in Ref. 18
evaluated 33 ex vivo ovaries and showed that malignant
ovaries on average exhibited a much higher total absorption
than normal ovaries. The quantitative parameter used to evaluate
the total absorption was the measured “average maximum
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radio-frequency” (AMRF) PAT signal for each ovary, with the
maximum taken from the RF signal at each ultrasound array
element and the average taken across all the array elements.
This single parameter method achieved a sensitivity and
specificity of 83% between malignant and normal ovaries
(p ¼ 0.0237) in the postmenopausal group. The study reported
in Ref. 23 focused on the spatial frequency and statistical prop-
erties of the PAT images. The support vector machine (SVM)
classifier in this study achieved 100% sensitivity and specificity
for the training group of 33 ovaries, and 76.92% sensitivity and
95.12% specificity for the testing group of 37 ovaries. These
results suggest that photoacoustic imaging is a promising
modality for improving ultrasound diagnosis of ovarian cancer.
However, the above two methods have their own drawbacks. For
the single parameter testing used in Ref. 18, the measurement of
the PAT signal can be affected by imaging system parameters
and signal-to-noise ratio (SNR). When the PAT signal from
an ovary has a low SNR, these RFs data-based method may
not be sensitive enough.

On the other hand, the method developed in Ref. 23 focused
on PAT images and their spatial patterns. PAT images represent
the amplitude of light absorption but cannot provide details
such as diagnostic information offered by the spectra of PAT
beamformed data or beams, which is the delay-and-sum of
all channel RF signals. Studies from other groups have revealed
that the spectrum parameters from a PAT channel signal24–27

or beam,28,29 such as the spectral slope and 0-MHz intercept,
are affected by the photoacoustic target dimension and chromo-
spheres’ concentration;24–29 these parameters could provide
valuable information for cancer characterization and classifica-
tion. Furthermore, in the formation of PAT images, the spatial
patterns of PAT images are affected by the manually set dynamic
range and the mapping method between beam envelope and
pixel values. Improper setting of the dynamic range or nonlinear
mapping of beam envelope and pixel values may lower the sen-
sitivities and specificities for image-based classifiers.23 In this
paper, we extract new features from photoacoustic beams and
their envelopes to explore the spectral information and spatial
homogeneity of light absorption in ovarian tissues and to com-
bine them with statistical and spatial features obtained from PAT
images to improve the performance of classifiers for ovarian
cancer diagnosis.

2 Methodology
The details of the experimental setup and imaging system can
be found in Ref. 30. Ovaries were freshly excised and obtained
within 90 min after the oophorectomy at the University of
Connecticut Health Center. All patients signed the informed
consent.

The typical size of human ovaries is in the range of 2 to 7 cm
with approximately elliptical shapes. In ex vivo studies, each
ovary was placed inside intralipid solution and supported by
a holder made of thin optical fibers. The distance between the
sample and the imaging probe surface was adjusted to approx-
imately 1 cm, which is the typical vaginal muscle wall thickness.
The intralipid had a reduced scattering coefficient of 4 cm−1 and
absorption coefficient of 0.02 cm−1 to emulate the optical
properties of tissue. Based on the measurements of pig vaginal
muscles, the reduced scattering coefficient is in the range of 3 to
5 cm−1 and the absorption coefficient is in the range of 0.02 to
0.04 cm−1. The details of the co-registered ultrasound and PAT
probe used for the reported experiments were given in Ref. 30.

Briefly, the probe consists of a transvaginal ultrasound probe
(6-MHz central frequency and 80% bandwidth, Gore and
Associates, Inc., Newark, Delaware) and 36 fibers of 200-μm
core diameter mounted around the ultrasound transducer to
uniformly deliver the light. Both ultrasound probe and the fibers
were shielded inside a protective sheath internally lined with
a highly reflecting aluminum sheet, with which uniform fluence
underneath the probe surface can be achieved. The laser energy
density on the tissue surface was ∼17 mJ∕cm2 at 750-nm
wavelength, which is below the American National Standards
Institute safety limit of 24 mJ∕cm2 at this wavelength.

Signals from 128 channels of the transvaginal probe were
used to form the co-registered ultrasound and PAT images.
Both the pulse-echo (PE) ultrasound image and PAT image
were formed by using conventional delay-and-sum beamform-
ing techniques.31,32 In PE imaging, one angular beam is formed
by applying a delay-and-sum algorithm on the received RF sig-
nals from all channels or a certain number of channels (65 in our
study) centered in the direction of the transmission. A total of 93
evenly distributed PE beams over 120 degrees are used to form
PE images. In PAT, a sector scan is also used to co-register with
the corresponding PE image. Each angular beam is formed by
applying a delay-and-sum algorithm on the received RF photo-
acoustic signals synchronized with each laser pulse. A total of
151 PAT beams were formed and evenly distributed across the
120-deg image plane. The PE and PAT beam envelopes were
subsequently obtained by base-band demodulation and ampli-
tude detection. Spectral information was lost in the procedure
of demodulation and amplitude detection of beam envelope.
However, it was preserved in the PE and PAT beams. In the pre-
processing stage, the mapping between the PAT beam envelopes
and PAT image pixel values was set to be linear instead of the
conventional logarithmic mapping in ultrasound imaging. The
dynamic range of the image was set by mapping the system
noise threshold of the PAT beam envelope to a pixel value of
0 and mapping the maximum of the envelope to a pixel
value of 255. The system noise threshold for each image
frame was estimated from the averaged envelope peaks of non-
region-of-interests (nonROIs) identified from the co-registered
PE image. NonROIs are regions away from ovarian samples
in the imaging plane where the light absorption was negligible.
Both RF channel data from the transducer array and PAT beams
contained spectral information. However, the channel data were
the integration of signals from the arc with the center at the chan-
nel element and its SNR was low in general. In beamforming,
the coherent RF signals from the same absorber detected at all
channels were appropriately delayed and summed and the SNR
was improved. In the reported study, we have used the averaged
spectral parameter (see Sec. 2.2.1 for details) of PAT beams in
the suspicious area to extract features for classification.

2.1 Center Estimation for Suspicious Area

The ultrasound imaging field of view covers 120 deg in the lat-
eral dimension and 7.7 cm in depth, while reconstructed PAT
images are mainly confined to several centimeters’ area under-
neath the probe. Therefore, limiting data analysis within the
suspicious area will greatly reduce the total computation time.
To crop the suspicious areas, the centers of these areas should
be estimated. A simple method introduced in Ref. 23 was
applied as follows: the radon transforms of a PAT image
along 0 (x axis) and 90 deg (y axis) can be simply calculated
from the summation of the PAT pixel values along the column
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and row directions. After normalization to their respective
peaks, the radon transforms along 0 and 90 deg were used to
estimate the center of the suspicious area using the normalized
Gaussian model in the following equation:

fðxÞ ¼ exp

�
−
ðx − μÞ2
2σ2

�
: (1)

In Eq. 1, μ is the index of the estimated center and σ repre-
sents the spatial expansion of vasculature along the projection
direction. A 3.0 cm by 1.5 cm window (large enough in most
cases) with the estimated center was then applied to the PAT
image to crop the suspicious area as shown in Fig. 1. Note that
the normalized Gaussian model is used to estimate the center of
the suspicious area from 0 and 90 deg or x and y projections.

2.2 Feature Extraction

Seventeen features were selected from three categories: PAT
beams, PAT beam envelopes, and PAT images. Spectral param-
eters from the PAT beams revealed the distribution of the
frequency components within the frequency range of the trans-
ducer array which could be related to vasculature dimension and
concentration.24–29 Features from PAT beam envelopes, such as

the total summation of envelopes (PAT summation)33 and the
peak envelope, described the light absorption distribution within
the suspicious area. Statistical analysis was performed on the
PAT images to obtain their mean values and variances. By
separately applying several spatial filters constructed from the
joint frequency spectrum of the malignant or normal cases,
the common features which were not visibly distinguishable
but were embedded in the spatial spectrum of the PAT image
could be extracted.23

2.2.1 Spectrum parameters of photoacoustic tomography
beams

Power spectra were calculated using fast Fourier transform
(FFT) on the PAT beams inside the cropped window. The
cropped rectangular window defined the angular sector and the
depth range of PAT beams inside the window, as shown in
Fig. 2. To ensure a high quality spectral estimation, any beams
with SNR below 15 dB were excluded from spectral information
extraction. The spectrum of PAT beam normalized to the spec-
trum of an approximate point-like target (a 100-μm black thread
orthogonal to PAT imaging plane) was used to estimate the
spectral slope and 0-MHz intercept (Fig. 3).29 A linear fitting
was performed on the normalized spectrum in logarithmic
scale within the 80% bandwidth of transducer’s 6-MHz central

Fig. 1 (a) A representative co-registered ultrasound/PAT image of malignant ovary and its radon trans-
form along x axis and y axis; (b) a representative co-registered ultrasound/PAT image of normal ovary
and its radon transform along x axis and y axis. The red rectangles are the cropped suspicious areas.
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Fig. 2 Illustration of photoacoustic tomography (PAT) beams and the selection of beams for extracting
spectral information of malignant [Fig. 1(a)] and normal [Fig. 1(b)] ovarian samples. PAT beams fan out
from the transducer surface (arc LM) and form an angular scan range of 120 deg with the center at the
origin O. The sector OLM is physically occupied by transvaginal probe and the PAT beam length is
7.7 cm. Enclosure DEGF defines the minimal annular segment covering the whole cropped window.
PAT beam segment JK contains noise only and PAT beam segment HI covers the absorbing area.
The waveform, spectra, and linear spectral fitting of PAT segment HI are shown in Fig. 3. The rectangles
confined by two horizontal dashed lines in (a) and (b) are shown in Fig. 1.

Fig. 3 Waveform of representative PAT beams within cropped windows, their spectra and linear fittings.
Subfigures (a) and (c) are the waveform, spectrum (blue), and linear fitting (red) of PAT beamHI of malig-
nant ovarian tissue shown in Fig. 2(a). Subfigures (b) and (d) are the waveform, spectrum (blue), and
linear fitting (red) of PAT beam HI of normal ovarian tissue shown in Fig. 2(b). The malignant sample has
a smaller absolute value of fitted slope than that of the normal sample, indicating more high frequency
components in its beams.
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frequency. The spectrum of an approximate point-like target
characterizes the frequency response of the transducer and the
electrical receiving system.29 The PAT beam and its spectrum
obtained from the approximate point target-like were shown in
Fig. 4. After taking the average of the spectral slopes and 0-MHz
intercept obtained from all high quality beams, the mean spec-
tral slope and 0-MHz intercept were chosen as spectral features.

2.2.2 Features of photoacoustic tomography beam
envelope

PAT beam envelopes contain the amplitude information of PAT
beams. The system noise threshold was estimated first from
the average peaks of the PAT beam envelopes in the nonROIs,
where almost no photoacoustic signals were generated. The sys-
tem noise threshold was used as a cutoff value for PAT image
formation. The count of image pixels with light absorption
higher than the system noise threshold is defined as the PAT
area and the summation of the envelopes of these pixels is
defined as PAT summation.33 PAT summation describes the
total light absorption within the suspicious area. Peak envelope

is the maximum of PAT beam envelope within the suspicious
area, representing the maximum light absorption. It is a replace-
ment for the single parameter AMRF used in Ref. 18. Compared
with AMRF, peak envelope is less affected by noise since the
delay-and-sum beamforming can effectively increase the SNR
of the PAT beams. We characterized the homogeneity of the
PAT beam envelopes by the mean correlation coefficients of
adjacent envelopes within the cropped windows since the light
fluences along adjacent beam directions were similar. The histo-
gram of PAT beam envelope was used to carry out an estimation
of probability density function of Rayleigh distribution.34 The
scale parameter of the Rayleigh distribution was also chosen
as one of the features.

2.2.3 Features of photoacoustic tomography images

The features from the PAT images were mainly adopted from
Ref. 23. The mean and variance of the PAT images describes
the average light absorption intensity and the spatial variation
of the absorption. From our experimental observations, the
PAT images of malignant cases usually showed clustered

Fig. 4 Waveform of PAT beam of a point-like target (a) and its spectrum (b).

Fig. 5 (a) Mean radon transform and its Gaussian fitting of the malignant ovary shown in Fig. 1(a);
(b) mean radon transform and its Gaussian fitting of the normal ovary shown in Fig. 1(b); malignant ova-
ries often have a clustered absorption distribution while normal ovaries are more diffused. More than one
spike may present in the mean radon transform of malignant PAT images, resulting larger fitting errors
than those of normal ovaries.
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distributions due to the abundant and localized smaller vessels,
whereas the distribution was more diffused, scattered, and
spatially spread out in normal cases.23 The center estimation
method outlined in Sec. 2.1 was extended to quantify this obser-
vation as follows: the normalized radon transforms from 0 deg to
90 deg with an interval of 1 deg were calculated and fed to the
Gaussian model after averaging. The parameter sigma (σ) esti-
mated from the mean radon transform was used as a feature to
describe the overall spatial spread of photoacoustic intensity
(Fig. 5). A high value of Gaussian fitting error meant a high
irregularity of PAT spatial distribution.23 This error was defined
as the norm of the difference between the mean radon transform
and the fitting value of the Gaussian model.

Two sets of optimum spatial filters were constructed from the
existing malignant23 and normal ovarian tissue PAT images,
which served as image templates for malignant and normal ova-
ries, respectively (see Ref. 23 for more details). When the order
parameter k of the spatial filter was set to 1, the filter was linear.
Additional nonlinear versions (cubic root and binary) of this
filter were achieved by setting k to 1∕3 and 0.01, respectively,
to make them more tolerant to distortions and obtain better
recognition SNR.35 The peak outputs of the two sets of spatial
filters were chosen as features for two classifiers. High peak out-
puts of spatial filters constructed from malignant PAT image
templates and low outputs of spatial filters constructed from
normal PAT image templates were expected to be an indication
of cancer. On the other hand, high peak outputs of spatial

filters constructed from normal PAT image templates and low
outputs of spatial filters constructed from malignant PAT
image templates were more likely to be an indication of normal
cases.

2.3 Logistic and Support Vector Machine Classifier

Logistic regression was widely used for the binary classifica-
tion36 in clinical studies using the following logistic function

Fð~xÞ ¼ 1

1þ e−ðβ0þΣn
1
βixiÞ : (2)

In the above equation, ~x is the feature vector, β0 is a constant
term, and βi is the coefficient for each feature xi. The constant
term and coefficients can be estimated from the training group
data using maximum-likelihood estimation with label 0 repre-
senting “normal” and label 1 representing “malignant.” For
the testing group, samples with corresponding logistic function
values less than the cutoff value (usually 0.5) are classified as
label 0 (normal) while the rest are classified as label 1 (malig-
nant). By varying the cutoff value, the receiver operating
characteristic (ROC) curve can be derived and the area under
ROC curve (AUC) can be calculated to demonstrate the perfor-
mance of this logistic classifier.

Our previous study had shown the feasibility and good per-
formance of SVM classifier for ovarian tissue characterization

Table 1 Seventeen extracted photoacoustic tomography (PAT) features and indices of the 13 features after feature correlation analysis and
ranking.

Feature category Number of features Features in each category Index after ranking

Spectral parameters from beam data 2 Mean spectral slope of PAT beams 4

Mean 0-MHz intercept 10

Features from beam envelopes 5 PAT area 5

PAT summation 13

Maximum PAT envelope 7

PAT envelope homogeneity 2

Scale parameter of Rayleigh fitting of envelopes 11

Features from PAT images 10 PAT mean 12

PAT variance 8

Spatial spread of suspicious area 9

Gaussian fitting error of mean radon transform 6

Peak outputs of spatial filters (malignant template, k ¼ 1) 1

Peak outputs of spatial filters (malignant template, k ¼ 1∕3) N.A

Peak outputs of spatial filters (malignant template, k ¼ 0.01) N.A

Peak outputs of spatial filters (normal template, k ¼ 1) N.A

Peak outputs of spatial filters (normal template, k ¼ 1∕3) 3

Peak outputs of spatial filters (normal template, k ¼ 0.01) N.A
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and classification.23 SVM with different kernels can be used to
map the input data to higher dimensional feature spaces and find
the hyperplane with maximum distance to the two input popu-
lations.37,38 In this application, a radial basis function (RBF)
kernel was used. The training was terminated when 100%
sensitivity and 100% specificity were achieved or when a
high number of iterations (1000) had been reached. The trained
SVM structure was then applied to the testing samples for
validation.

2.4 Features Selection

Both the logistic model and SVM have better performances if
the input features are independently distinguishable. However,
this is not the case for all of the 17 extracted features. There are
three features from the maximum output of spatial filters con-
structed from malignant PAT image templates and three from
normal PAT image templates. Each set of three features is highly
correlated and we have selected one feature each from the
maximum outputs of malignant and normal PAT templates,
respectively. These two features are independent and yielded
the lowest p-values from t-tests.

For the general purpose of feature selection, two types of
approaches may be used: (1) filters and (2) wrappers.39,40

With the first method, features are selected based on intrinsic
characteristics such as mutual information, statistical tests, or
correlations between features. The selected features are uncor-
related to that of the learning methods, resulting in a better
generalization property. In the wrappers type method, features’
selection is “wrapped” around a learning method: here, the use-
fulness of a feature is directly judged by the estimated accuracy
of the learning method.41,42 Though wrappers type methods can
give a high accuracy with a very small number of nonredundant
features, the generalization property is not as good as filter type
methods. Since the samples in our study were very limited, we
adopted the filters type method to rank the rest of the 11 features
for a better generalization property. The simplest way of “filter”
method is ranking features by the descending order of the p-val-
ues of t-tests between features and classes. It was reasonable
because the remaining 11 features were noncorrelated in nature.

Fig. 6 Mean misclassification error (MCE) of both logistic and SVM
classifiers for the testing group. Both logistic and SVM classifiers
obtain minimum mean misclassification error (7.06% and 6.05%,
respectively) when the first seven ranked features are used.

Fig. 7 Sensitivity, specificity, positive predictive value, and negative predictive value with respect to
different numbers of ranked features.
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Fig. 8 Means, standard deviations, and p-values of the seven selected features for all 124 malignant
samples and 45 normal samples.

Fig. 9 Means, standard deviations, and p-values of the average values of seven selected features for
four patients of malignant ovaries and six patients of normal ovaries.
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Then, logistic and SVM classifiers were trained on half of the
malignant samples and half of the normal/benign samples with
different numbers of ranked features, while the remaining sam-
ples were used for testing. The data resampling procedure was
repeated 50 times to obtain the mean values of sensitivities,
specificities, positive predictive values (PPVs), negative predic-
tive values (NPVs), and misclassification errors (MCEs) for the
evaluation of the performances of two classifiers. The number of
selected features was determined when the minimum of the
mean MCE was reached.

3 Results and Discussions
Table 1 lists 17 extracted features and indices of the 13 features
after feature correlation analysis and ranking. Among the 17 fea-
tures, features from the first two categories and the maximum
output of the spatial filters constructed from normal ovaries
are new features in addition to those reported in Refs. 18 and
23. The new features provide additional information from the
spectrum of PAT beams and the quantitative description of
light absorption in suspicious areas. Figure 6 shows the mean
MCE of the two classifiers versus the number of features
after ranking. The mean MCE decreases quickly with the feature

number until 7. After 7, it slightly increases for both logistic and
SVM classifiers. The logistic and SVM classifiers achieve mini-
mum MCEs of 7.06� 3.29% and 6.05� 3.67%, respectively,
when the first seven features are used. Figure 7 compares the
sensitivity, specificity, PPV, and NPV of the two classifiers.
Though not every one of these four parameters obtains its maxi-
mum value when the first seven ranked features are used, the
improvement of these parameters beyond the use of the first
seven features is relatively small. Figure 8 shows the mean

Table 2 Performance of two classifiers on training and testing data.

Classifier

Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training Testing Training Testing Training Testing Training Testing

Logistic 96.39� 3.35 92.71� 3.55 98.92� 1.39 87.52� 8.78 98.88� 1.45 93.69� 4.12 96.55� 3.18 86.54� 5.60

SVM 97.82� 2.26 92.64� 3.27 100 98.49� 2.05 100 99.17� 1.09 95.99� 4.03 87.48� 4.92

Fig. 10 Receiver operating characteristic (ROC) curve for one set of
testing data of logistic classifier with an area under ROC of 0.98;
the mean area under ROC curve for the 50 sets of testing data is
0.92� 0.05.

Fig. 11 (a) The MCE of logistic and SVM with RBF kernel for each
individual feature, six PAT image features in Table 1 and all 13 fea-
tures after ranking and the selected optimal seven features. The
optimal seven features result in the lowest MCE comparing with
other feature combinations for both classifiers. (b) Average areas
under ROC curve (AUC) for logistic classifier and their average 95%
confidence interval. The optimal seven features yield the highest
average AUC (0.92) and the narrowest average 95% confidence
interval (0.86, 0.97).
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values, standard deviations, and p-values of t-tests of the first
seven ranked features for all malignant and normal samples.
They are ranked in the following order: the peak outputs of spatial
filters (with cancerous template, k ¼ 1), PAT envelope homo-
geneity, peak outputs of spatial filters (with normal template,
k ¼ 1∕3), mean spectral slope of PAT beams, PAT area,
Gaussian fitting error of mean radon transform, and maximum
PAT envelope. The p-values for the first seven features are all
smaller than 0.005, which is statistically significant. The p-values
for the eighth and ninth features are around 0.01. They are sta-
tistically significant but do not improve the overall performance
of these two classifiers. The p-values for the other four features
are larger than 0.14 and the inclusion of these features increases
theMCE of the two classifiers. Smaller absolute values of spectral
slopes and lower values of the PAT envelope homogeneity for
malignant ovaries in Fig. 8 demonstrate that the malignant
cases have relatively more high frequency components in the
PAT beams and abrupt changes in the PAT beam envelopes
because of rich microvasculatures in the tumor region.
Malignant ovaries show higher values in the maximum output
when the corresponding cropped PAT images were input into
the spatial filter constructed from the malignant template, and
lower values when fed into the spatial filter constructed from
the normal template. At the same time, malignant ovaries have
a larger PAT area, higher peak envelope, and higher (irregularity)
fitting error of mean radon transform of PAT images. The follow-
ing performance evaluation of classifiers is based on these seven
features.

We also obtained an average feature value of all samples
from each patient and calculated the average feature values
of four patients with malignant ovaries and six patients with
normal ovaries. The results of these two groups are shown in
Fig. 9 and the average features between these two groups are
statistically significant.

Table 2 lists the sensitivity, specificity, PPV, and NPV for the
training and testing data. For the training group, both classifiers
have achieved high accuracy. For the testing group, the sensi-
tivity and NPV of the SVM classifier are similar to those of
the logistic classifier while the specificity and PPV of the
SVM classifier are 7% to 11% better.

Figure 10 shows the ROC curve of logistic classifier for one
set of testing data with an AUC of 0.98. The average AUC for
the total 50 sets of testing data is 0.92� 0.05.

Selection of the optimal set of features is critically important
for achieving the best performance for classification of malig-
nant versus normal/benign ovarian tissue. Though all selected
seven features are of low p-values, the classification result
from single feature is not as good as that of the combined
seven optimal features. Figure 11(a) shows the MCEs of the
logistic and SVM classifiers for each individual feature from
the 7 optimal features set, 6 features from PAT images, all 13
features after ranking, and the optimal 7 features. The inclusion
of features from PAT beams and PAT beam envelopes results in
lower MCE when all 13 features are used; however, the MCE
achieved the lowest value when the seven optimal features are
used for classification. For 50 resampled datasets, the output
from the logistic function can be used to estimate the AUCs
and their 95% confidence intervals with 1000 stratified boot-
strap replicates.43 The averaged AUC and averaged 95% confi-
dence intervals for different feature combinations are shown in
Fig. 11(b). The optimal seven feature set generates the highest
average AUC (0.92) and narrowest average 95% confidence

interval (0.86, 0.97), while feature # 3 gives the lowest average
AUC (0.58) and widest average 95% confidence interval
(0.42, 0.73).

4 Summary
We extracted a total of 17 features from 169 datasets of 19 ex
vivo ovaries. In addition to features reported in Ref. 23, new
features from PAT beams and envelopes were extracted to obtain
spectral information and light absorption distribution in the
ovarian tissue. New spatial filters were constructed from normal
ovary PAT images to characterize normal ovaries. The perfor-
mances of the logistic and SVM classifiers were evaluated
using misclassification error criterion. Both classifiers achieved
the lowest MCE when seven optimal features were used. With
these seven optimal features, the logistic and SVM classifiers
obtained sensitivities of 96.39� 3.35% and 97.82� 2.26%,
and specificities of 98.92� 1.39% and 100%, respectively,
for the training group. For the testing group, the logistic and
SVM classifiers achieved sensitivities of 92.71� 3.55%
and 92.64� 3.27%, and specificities of 87.52� 8.78% and
98.49� 2.05%, respectively. SVM has a better performance
than the logistic classifier because its sensitivity and PPV are
higher than that of the logistic classifier while the specificity
and NPV of both classifiers are similar.

Among the four patients with malignant ovaries, one patient
had an early stage cancer on both ovaries. Three features in the
selected seven optimal features for this case were different from
those of other cancer cases. These features are PAT envelope
homogeneity, PAT spectral slope, and maximum PAT envelope
as summarized in the Table 3. As shown in Figs. 8 and 9, malig-
nant ovaries have a lower PAT envelope homogeneity, a smaller
absolute value of PAT spectral slope, and a higher maximum
PAT envelop than those of normal ovaries. The early stage
cancer case has shown 31.31% lower PAT envelope homo-
geneity and 33.45% lower absolute spectral slope than those of
other cancer cases. Thus, these two features for the early stage
cancer case show an even larger difference that those of normal
cases. However, the maximum PAT envelope of this early stage
cancer case is 39% lower than those of other three cancer cases.
This example further highlights the importance of using a set of
optimal features rather than any individual feature to character-
ize the malignant versus normal/benign ovarian tissue.

Ultrasound features have not been included in this study and
will be explored in our future studies. We believe this will fur-
ther improve the performance of our classifiers. Real-time fea-
ture extraction and implementation of the SVM-based classifier
can also be achieved by using well-established SVM libraries.37

Table 3 Comparison of features between the early stage cancer and
other cancer cases.

Early stage
cancer

Mean value
of other three
cancer cases

Difference
(%)

PAT envelope
homogeneity

0.33 0.48 31.31

PAT spectral slope
(dB/MHz)

−0.97 −1.46 33.45

Max PAT envelope 180.63 299.04 39.6
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With the help of our real-time co-registered ultrasound and
photoacoustic imaging system, the real-time classifier has a
great potential for in vivo detection and characterization of ovar-
ian cancer. Recently, we have received an institutional review
board approval for a human subject protocol and the results
of the in vivo patient study will be reported in the near future.
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