
Maximizing throughput in label-free
microspectroscopy with hybrid
Raman imaging

Nicolas Pavillon
Nicholas I. Smith



Maximizing throughput in label-free
microspectroscopy with hybrid Raman imaging

Nicolas Pavillona,* and Nicholas I. Smitha,b,*
aOsaka University, Immunology Frontier Research Center (IFReC), Biophotonics Laboratory, Suita, Osaka 565-0871, Japan
bPRESTO, Japan Science and Technology Agency (JST), Chiyodaku, Tokyo 102-0076, Japan

Abstract. Raman spectroscopy is an optical method providing sample molecular composition, which can be
analyzed (by point measurements) or spatially mapped by Raman imaging. These provide different information,
signal-to-noise ratios, and require different acquisition times. Here, we quantitatively assess Raman spectral
features and compare the two measurement methods by multivariate analysis. We also propose a hybrid
method: scanning the beam through the sample but optically binning the signal at one location on the detector.
This approach generates significantly more useful spectral signals in terms of peak visibility and statistical infor-
mation. Additionally, by combination with a complementary imaging mode such as quantitative phase micros-
copy, hybrid imaging allows high throughput and robust spectral analysis while retaining sample spatial
information. We demonstrate the improved ability to discriminate between cell lines when using hybrid scanning
compared to typical point mode measurements, by quantitatively evaluating spectra taken from two macro-
phage-like cell lines. Hybrid scanning also provides better classification capability than the full Raman imaging
mode, while providing higher signal-to-noise signals with shorter acquisition times. This hybrid imaging approach
is suited for various applications including cytometry, cancer versus noncancer detection, and label-free discrimi-
nation of cell types or tissues. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.1.016007]
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1 Introduction
Raman spectroscopy is an optical measurement technique that
enables the retrieval of sample molecular information, based on
the inelastic scattering of light.1 As it is based purely on an opti-
cal process, it has the advantages of being noninvasive and not
requiring the insertion of any dye for measurement, which
makes it ideal for biological samples which can be measured
nondestructively and without prior processing. Raman spectros-
copy has, therefore, been extensively used as a characterization
tool, where the spectral information acquired from locations in
the sample can be employed to extract information, which then
allows the mapping of the molecular content of cells and/or tis-
sues, with extension to assess the viability of cell lines as models
for primary cells2 or to measure molecular changes during cell
death processes.3 It has also been employed to discriminate
between species, such as different bone cell types,4 or to sepa-
rate differentiated cells from embryonic ones,5 detect cancer
cells6,7 or tissues,8 or analyze blood samples in situ.9

Since Raman spectroscopy extracts molecular signatures
based on excitation in the visible or near-infrared light range,
it shares the spatial resolution benefits of light microscopy so
that label-free images based on molecular contrast can be
obtained by scanning the excitation beam through the sam-
ple.10,11 The measurement becomes, in this case, a three-dimen-
sional data set, containing both spectral and spatial (x, y)
information from imaging. There is, thus, a duality in the treat-
ment of the information. Strictly spectroscopic analysis, based
on peak assignments or multivariate analysis, can be carried out

with additional imaging analysis, based on the treatment of spe-
cific spectral band contrasts and/or the precise location of spe-
cific molecules. This approach has been applied, for instance, to
monitor molecular changes during apoptosis,12 for the observa-
tion of malignant cells in tissue sections,13 or to discriminate
cancerous cells at a subcellular level.14

However, the Raman process has the drawback of being
fairly inefficient, so that the amount of signal retrieved from bio-
logical samples is rather low, significantly limiting the measure-
ment speed that can be achieved. This can become critical,
especially in imaging cases where the measurement requires
scanning within a whole region, in contrast to pure spectro-
scopic point measurements. As experiments are usually limited
by total laser exposure, the detector noise becomes significant
when spreading the signals out over a large detector array as is
done in Raman imaging.11 One way to circumvent this issue is to
turn toward more efficient or enhanced processes, such as non-
linear optical responses15 [coherent anti-Stokes scattering16

(CARS) or stimulated Raman scattering17], but often at the
cost of spectral range or resolution unless refined excitation
schemes are employed.18 Another process is relying on sur-
face-enhanced Raman scattering,19 which relies on the plas-
monic resonance of metal nanoparticles, which can be employed
in imaging, for instance, by tracking particle trajectories.20

Another approach consists of adding another imaging modal-
ity which can be employed to target specific regions, which can
then be measured with Raman spectroscopy without needing the
entire slow raster scan of the sample. This method has been
employed in numerous applications where the selection of
the region to be measured by the Raman channel are first
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identified, for example, with autofluorescence21 or CARS
imaging22 for ex vivo section measurements, or with white
light reflectance23 or optical coherence tomography24 for tissue
observation, or two-photon autofluorescence25 or simultaneous
quantitative phase microscopy (QPM)26 for cell imaging.
Fluorescence has also been employed in this context, but the
overlap between the fluorescence and Raman emission spectra
often prevents the measurement of stained sample.27

If the additional mode provides enough information about
the sample morphology compared to Raman spectral imaging,
it may actually be advantageous in terms of useful sample infor-
mation to forgo the full Raman imaging and instead collect the
highest-quality Raman point spectra for chemical evaluation,
while monitoring the sample morphology with the additional
imaging mode. Therefore, we present here a hybrid approach
where the Raman measurement is performed in point mode
for optimum quality and higher throughput, coupled with
QPM to provide detailed spatial imaging information.

We also propose to exploit the spatial information from the
phase imaging to define a target region in the observed sample,
inside which the Raman excitation beam can be rapidly scanned,
so that the resulting spectrum measures a whole region of the
cell. By choosing the Raman scan region from the phase image,
we include much of the ensemble of molecules which are key to
discrimination and diagnosis of cellular reactions, avoiding the
possibility that the point spectrum is emitted by specific mole-
cules in the small measurement volume which are not neces-
sarily representative of the cellular state. In other words, the
best signal-to-noise ratio (SNR) Raman measurements come
from single point measurements, but these may be unduly influ-
enced by local conditions in the cell. By scanning a region of the
cell chosen from the phase image and optically binning or des-
canning the signal beam so that all signal photons are aggregated
at the detector, we gain the advantages of single point detection
but retain imaging information through QPM. The simultaneous
imaging information, the high SNR Raman measurements, and
the low dependence on local variations in the sample, make this
approach, denoted hybrid Raman imaging, ideal for robust
spectroscopic analysis.

To demonstrate this, we first assess the information content
of spectra measured on a population of cells for the fixed-point
and hybrid scanning approaches by employing estimators for
the variation and robustness of the data. We then quantitatively
compare three types of measurements in terms of their capability
to spectrally discriminate between two different macrophage-
like cell lines (J774A.1 and Raw264.7) using multivariate analy-
sis. The analysis is based on (1) spectra extracted from Raman
images, (2) spectra from point measurements with the beam
parked in the cell, as is standard, and (3) spectra measured
where our proposed hybrid imaging is used to select a measure-
ment region and the signal is descanned before the detector.
Measurements are performed on live cells, which are standard
for both image and point-mode Raman spectral measurements in
the literature.

2 Materials and Methods

2.1 Cell Culture

Macrophage-like cell lines J774A.1 and Raw264.7 are cultured
on 5 cm culture dishes (BD Biosciences, San Jose, California)
and immersed in Dulbecco’s modified Eagle’s medium (Nacalai
Tesque, Kyoto, Japan) supplemented with 10% fetal bovine

serum (Nacalai Tesque) and incubated at 37°C in a humidified
atmosphere with 5% CO2. One day before experiments, cells are
trypsinized with a solution containing 0.25% trypsin and 1 mM
ethylenediaminetetraacetic acid (Nacalai Tesque) for 5 to 10 min
at 37°C to detach them from the plastic surface, and plated on
3.5 cm quartz-bottom dishes (Fine Plus International, Kyoto,
Japan) containing cultured medium and incubated as above.
Just before measurements, the culture medium is replaced
with a phosphate buffer saline (Nacalai Tesque) solution supple-
mented with D-glucose (5 mM) andMgCl2 (2 mM) by washing
the dish three to four times. Cells are then observed at room
temperature.

2.2 Raman Acquisition and Imaging

All measurements are performed with a Raman imaging setup
described in detail in Ref. 26. Briefly, cells are observed on an
inverted microscope with a 60× objective (NA 1.27, water
immersion, Nikon, Tokyo, Japan). The excitation is performed
with a continuous wave laser at 532 nm (Verdi V-6, Coherent,
Santa Clara, California), with a power density of 480 mW∕μm2.
A dual-axis galvano-mirror placed in the descanned region
[GM2, see Fig. 2(a)] enables the selection of the location of
measurement for point excitation.

For imaging, the measurement is performed in slit-scanning
conditions, i.e., the signal emitted by a whole line is measured
during one frame acquisition [see Fig. 2(a)], enabling parallel
detection. The excitation line is generated by rapidly scanning
the laser spot (at 100 Hz) in the vertical direction with the gal-
vano-mirror located outside the descanned region of the micro-
scope (GM1) to form a line on both the sample and the detector,
leading to an average power density of 2.44 mW∕μm2.

The collected backscattered light is separated from the exci-
tation laser with a long-pass dichroic mirror and sent into a
500 mm focal length Czerny-Turner spectrometer (Shamrock,
Andor Technology, Belfast, Northern Ireland). The light
dispersed by the grating (300 lp∕mm) is then measured with
a low-noise CMOS camera (Orca-Flash 4.0, Hamamatsu
Photonics, Hamamatsu, Japan) with an exposure time of 3 s.

Quantitative phase images are recorded with an interferomet-
ric setup based on off-axis digital holography.28 Acquisition and
reconstruction of the holograms are performed according to the
description given in Ref. 26.

2.3 Spectra Preprocessing

Before analysis, all spectra are baseline corrected by employing
an estimated curve at large intervals based on low quantile val-
ues (i.e., it has a high probability of being smaller than the sig-
nal), which is then computed for all points with cubic spline
interpolation.29 Cosmic ray removal is then applied by consid-
ering that points having a value outside a range of three times the
standard deviation in a window of 20 pixels are cosmic rays,
which are replaced by the median value within this interval.

In the case of hyperspectral images, a background signal esti-
mated by measuring an empty region of the substrate is also first
subtracted from the spectra. The remaining baseline is then
removed as described above.

2.4 Multivariate Analysis

All multivariate analysis procedures are performed after spectra
preprocessing and are implemented in the MATLAB®
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environment (The MathWorks, Natick, Massachusetts). In the
case of imaging data, pixels containing cell spectra are separated
from the background in the preprocessed Raman image by cre-
ating an image from the C-H stretching region (2910 to
3020 cm−1). Cell spectra are then selected by applying a thresh-
old on the image, as cells have a strong Raman response in this
region. The pixels extracted from the three-dimensional data set
are then concatenated into a two-dimensional matrix for multi-
variate analysis.

Vertex component analysis (VCA) is a method that extracts
the endmembers of a spectra data set as the vertices of a simplex,
and is applied here based on the implementation described by
Nascimento and Bioucas Dias.30

Principal component analysis (PCA) is a method that defines
a new orthonormal basis representing the data which maximizes
the variance of data. It is applied here by first mean-centering
every variable in the data set and then factorizing the matrix
through singular value decomposition, defined as

X 0 ¼ UΣVT; (1)

where Σ is a diagonal matrix, and ðÞT represents the transpose
operator. If X 0 represents the mean-centered data, then V is the
new vector basis of PCA.

3 Results

3.1 Raman Imaging and Spectroscopy

Raman imaging is illustrated in Fig. 1(a), where a color-coded
image of live J774A.1 cells can be extracted from the three-
dimensional hyperspectral data by highlighting specific bands
in the spectra [see Fig. 1(b)]. The general shape and content
of the cells is highlighted in green with a C-H stretching
band (2970 to 3000 cm−1), while lipids (2850 to 2880 cm−1)
in red are essentially visible in the cytoplasm and in lipid drop-
lets, making nuclei particularly visible by their absence. A

specific protein, which provides a strong signal due to its
resonance at 532 nm, cytochrome c, can also be seen in blue
located in certain regions of the cytoplasm (1570 to
1600 cm−1). The corresponding image acquired by QPM, con-
taining a larger field of view, is shown in Fig. 1(c), with a full
dynamic range corresponding to 5.1 rad.

In the imaging case, the laser power is distributed along a
whole region, effectively reducing the amount of signal retrieved
per pixel. Furthermore, despite the parallel detection of the slit-
scanning configuration,31 the 3-s exposure per line employed
during measurement means that the 400 × 200 pixels image
of Fig. 1(a) still requires 10 min for acquisition. The limitation
in the amount of signal can be partially overcome by averaging
together detected signals, as shown in Fig. 1(b), where spectra
extracted as spatial averages from 5 × 5 square regions within
specific locations of cells are shown. However, the spectra
still exhibit a significant amount of noise despite the spatial aver-
aging. It is also interesting to note that even though highly con-
trasted images can be extracted [see Fig. 1(a)], the spectral
differences between different locations in cells are tenuous.

As Raman imaging requires significant acquisition times and
is technically challenging, a common measurement approach in
single cell analysis is then to acquire spectra in point-mode
acquisition, where a single spectrum from one point is measured
with the detector acting as a line detector, as depicted in
Fig. 2(a). This approach provides signals as shown in Fig. 3(a),
where spectral features can be identified far more easily than in
the case of specific pixels or averaged regions from within a
Raman image, and are assumed to be representative of the
molecular content of the whole cell.

The important question then becomes how well a spectrum
taken from a single location in the cell represents the overall
cellular content. As illustrated in Fig. 1(a), different cell
locations do possess different molecular contrasts. This is par-
ticularly important when considering, for example, the distribu-
tion of cytochrome c, which is sequestered in mitochondria and

IN
T

E
N

S
IT

Y
 [1

]

−100

0

100

200

300

400

500

600

700

RAMAN SHIFT [cm-1]

600 800 1,000 1,200 1,400 1,600 2,800 3,000

Nucleus
Lipid droplet
Cytoplasm

(a)

(b)

(c)

Fig. 1 (a) Color-coded contrast of a Raman image of J774A.1 cells (scale bar 10 μm). Red: lipids (2850
to 2880 cm−1). Green: C-H stretching (2970 to 3000 cm−1). Blue: cytochrome c (1570 to 1600 cm−1).
(b) Raw Raman spectra extracted from 5 × 5 pixels square regions of the image in (a), in various parts of
the cells. Spectral bands used to make the image in (a) are also represented. (c) Corresponding QPM
image with a larger field of view.
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clearly not homogeneously distributed in the cytoplasm. The
measured spectra may then vary significantly not only by the
overall morphology of the cell (i.e., whether measured inside
the cytoplasm, nucleus, etc.), but also by the local molecular
content (for example, the mitochondrial distribution in the cyto-
plasm). These variations cannot easily be assessed unless a full
Raman image is acquired, which is time-consuming, as noted.
This implies that point-based measurement approaches may
require a very large amount of samples in order to ensure
that local variations within individual cells are not influencing
the data analysis.

To circumvent this local variation, we propose a hybrid spec-
tral point measurement based on a random scanning pattern
within a predefined region in the target cell. In this case, the
excitation beam is rapidly scanned in a square region within
the cell body, as represented in Fig. 2(a), which is selected
from the additional imaging modality [see Fig. 2(b)].
Importantly, in contrast to the full Raman imaging case, the
scanning is performed here through an x-y galvano-mirror
located in the descanned region of the setup (GM2), so that
the emitted signal stays located as a single point at the slit of
the spectrometer, still yielding a strong signal as in the standard
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Fig. 2 (a) Different approaches in scanning principles of the Raman microscope. Imaging is performed
by slit-scanning with two scanning mirrors, with only one being in the descanned region. Fixed point
measurement is done with no scanning, while hybrid scanning is performed with two descanned mirrors,
resulting in a scan pattern at the sample but a nonscanned point at the slit plane, giving the same signal to
noise as fixed point measurements. (b) Quantitative phase image of J774A.1 cells, with the square scan-
ning region used for hybrid Raman imaging represented by the dashed square.
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fixed-point case, but with a measurement derived from a
larger region of the cell, which is expected to provide informa-
tion more suitable for the analysis of cellular changes. This
approach is also more efficient than averaging pixels from a
Raman image, since by optically averaging the emission on
one location for acquisition, the read-out noise (one of the
most significant noise sources in Raman imaging) is signifi-
cantly reduced.

In order to reduce any systematic error in the measurement,
the laser spot is scanned randomly within a square region of
∼10 × 10 μm2 with a scanning frequency of 200 Hz in both
directions, as represented by the dashed square in Fig. 2(b).
The size of the square is first chosen according to the size of
the sample to measure, so that the region should be large enough
to enclose a region that can be considered significant of the
whole sample (e.g., large enough to contain parts of the cyto-
plasm and the nucleus in case of cells in culture), while being
small enough that it is contained within the cell area and does
not sample significant regions outside the cell. The measured
region shape is here arbitrarily chosen as a square, but could
be adjusted to other shapes by simply changing the scanning
pattern. The random scan is important so that, even for varying
exposure times, we do not change the effective sampling
patterns within the cell. To accurately set the location of the
square region in the cell, an additional modality is necessary.
In our case, we are using simultaneous QPM based on digital
holography, which provides additional useful information,
although the scanning approach, denoted here as hybrid
Raman imaging, could be generalized to include other types
of imaging.

3.2 Cell Molecular Content Represented with Point
Spectra

The faster acquisition rates available using point rather than im-
aging measurements make it possible to measure a larger
amount of samples, which is required for robust, statistically sig-
nificant analysis of biological effects in cell populations.
Measurements are performed on ∼100 cells per data set to
account for variations in cell condition. Furthermore, to also
account for possible changes due to different substrates and cul-
turing conditions, the measurements are spread over four dishes
per data set, with ∼25measurements per dish. To ensure that the
measurements are representative of the population, both proce-
dures (point and hybrid) are measured in random locations in the
cell. Since the measurement region of both hybrid and fixed-
point measurements is small compared to the overall size of
the cell, we position both square and point measurements ran-
domly throughout the cell to avoid systematic errors in the
measurements.

Typical point spectra measured on J774A.1 cells are shown
in Fig. 3 for both fixed-point [Fig. 3(a)] and hybrid scanning
[Fig. 3(b)], with the fingerprint region scaled for the sake of vis-
ibility. In order to estimate the variability of spectra within a data
set, the extreme ones are displayed here by retrieving five end-
members extracted by VCA. Spectra are then normalized by the
intensity of the peak at 1662 cm−1, to account for overall
changes in the signal intensity.

The spectra in Fig. 3 clearly show that the fixed-point scan-
ning approach provides more variability in the measurements,
with some spectra emanating essentially from one molecular
species, such as lipids (first curve), or with strong variations
in the background signal, such as the last curve, where a signifi-
cant contribution from the quartz substrate at 800 cm−1 is
present. As expected, the spectra measured with the hybrid scan-
ning approach seem far more similar to each other, as the meas-
urement throughout a whole region reduces the influence of
particular local content by optical averaging. It is worth remem-
bering that in imaging mode, the spatial variations in the sample
are part of the measured information, but single point Raman
measurements carry the inherent assumption that variations
are low so that they are representative of the whole sample.
This implies that the two approaches have different assumptions
on how molecular content is distributed in the cell. The large
variability of fixed point measurements results from the spatial
variation in the cell, whereas the hybrid scanning measurements
are much more consistent, indicating that the hybrid scanning
mode samples the molecular content more effectively.

In order to quantitatively compare the information content of
each data set, we also compute the covariance matrix defined as
C ¼ XXT , where X is the P × N data matrix for N measure-
ments and P data points in one spectrum. We then consider
the rank of C, which provides the number of linearly indepen-
dent dimensions contributing to the variance of the data. The
rank of C then is an estimation of the amount of information
present. The ranks of the data sets are shown in Fig. 4(a) for
both scanning approaches (fixed and hybrid) and for two cell
types, J774A.1 and Raw264.7. Each rank is the average of at
least three experiments, with the error bars representing the stan-
dard deviation.

Surprisingly, although fixed-point measurements seem
immediately more diverse than hybrid ones (see Fig. 3), the
information content is actually lower as the mean rank of the
fixed-point covariance matrices is 19 and 26.7 for J774A.1
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(b) excitation, where five endmembers obtained by vertex component
analysis are displayed, showing the variability of spectral profiles for
each scanning type. The fingerprint region (500 to 1700 cm−1) has
been scaled by a factor of 3 to improve visibility.
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and Raw264.7 cells, respectively, compared to 89.3 and 97.3 for
hybrid scanning, for a total of 104 dimensions. This demon-
strates that despite the fact that they appear similar, hybrid
scanning measurements possess more linearly independent
dimensions, denoting a larger information content compared
to the fixed-point case.

This aspect is also confirmed through another approach;
when applying PCA to the J774A.1 data set, where by consid-
ering the contribution to the data variance of each principal com-
ponent (PC) and plotting the cumulative variance [see Fig. 4(b)],
it is possible to see that the data based on the fixed-point scan-
ning can be represented with significantly fewer components.
Three PCs already account for >99% of the data variance,
while 47 PCs are required in the hybrid case. Applying PCA
on the Raw264.7 cell lines produces similar results.

3.3 Cell Line Classification Through Point Spectra

In order to test how the increased information available through
hybrid scanning relates to an actual cellular analysis implemen-
tation, we investigate the possibility of distinguishing J774A.1
and Raw264.7 cell types based on their respective spectra by
multivariate analysis. The cell line measurements, each com-
posed of spectra from ∼100 cells, are concatenated together
to perform PCA on the whole set and estimate the separability
of the two classes in the PCA space. Up to this point, there is no
use of a priori knowledge of the cell types, and loading vectors
are generated based on the inherent spectral variance in the data.

Two loading vectors are then selected to visualize the scores of
the data, as shown in Fig. 5. The best loading vectors for sepa-
rating the cell lines are selected by choosing the ones that maxi-
mize the distance between the centroids of the two classes based
on the a priori knowledge of the cell type. The two scanning
methods (fixed point versus hybrid) are compared on the com-
ponents best able to separate the cell lines since a one-to-one
comparison on each PC is unsuitable since, as shown above,
the number of relevant components is very different between
the two approaches. The loading vectors used to compute the
scores are shown in Figs. 5(a) and 5(c) for, respectively, the
fixed-point and hybrid scanning. The corresponding scores
are then displayed in Figs. 5(b) and 5(d), along with confidence
intervals, shown as ellipses whose major axes contain 95% of
the data points in their projection direction.

We can see that the hybrid scanning provides better separa-
tion, with the confidence regions being nearly fully separated, in
contrast to the fixed-point case, where the whole distribution of
J774A.1 cells is nearly fully enclosed within the confidence
region of Raw264.7 data points. It is also possible to see that
the data in the fixed-point case are less uniformly distributed
within the confidence regions, as can be expected from their
higher variability, identified in Fig. 3.

The loading vectors extracted by PCA for both measurement
methods also present rather different characteristics. In the case
of hybrid scanning, PC1 is always one of the two components
providing the best separation with a spectrum similar to the
global features of cells which can be seen by comparing it
with the spectra of Fig. 3. On the other hand, PCA applied to
fixed-point data always extracts fewer significant vectors (here
PC3 and PC5). This is likely due to the higher variability in
fixed-point spectra, so that the low numbered PCs are dominated
by the variation within the group rather than between the
cell lines.

A further point of note is the shape of the loading vectors,
which indicate the spectral contrast providing the separation.
PCA can produce loading vectors with both positive and neg-
ative features which can be difficult to interpret. The hybrid
scanning loading vectors appear to have easily identified
peaks and an overall shape that is more similar to raw spectra
(for example, those shown in Fig. 1), which should make inter-
pretation and later analysis simpler.

3.4 Imaging and Classification

While the use of multivariate analysis for discrimination is
common with point measurements in the literature, this analysis
approach has also been used with imaging data.32 We can then
extend our comparison of the separation power of Raman mea-
surements to include imaging as well as fixed-point and hybrid
scanning measurements. Prior to analysis, spectral data are first
extracted separately from images of, respectively, J774A.1 and
Raw264.7 cells (see Sec. 2.4), and then concatenated together,
leading to a matrix containing ∼50; 000 spectra. The analysis is
thereafter performed as in the previous section.

The PCA of imaging spectra is shown in Fig. 6, which
presents a separation distribution comparable to hybrid scanning
in Fig. 5(d), while the fixed-point separation is different from
both imaging and hybrid results. This similarity in separation
happens despite the large differences in how the data are mea-
sured: in the case of hybrid spectra, each data point represents
one cell, for a total of ∼100 cells per class; on the other hand,
PCA of image data involves one spectra from each pixel in the
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by principal component analysis (PCA) for both fixed and hybrid scan-
ning. All bars and curves are the average of at least three experi-
ments, with error bars representing standard deviations.
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image, with around four to eight cells in the field of view and
with far more data points (∼25;000 per class). The data outside
the 95% confidence region in the imaging case are also more
spread than in the point measurements case, and the separation
is less clear than for the hybrid scanning data. This can be
explained by the fact that image pixels contain several types
of spectra, leading, for example, to the image contrast in
Fig. 1(a), which will induce more spread than optically averaged
hybrid point spectra.

Despite these differences, it is interesting to note the similar-
ities between the two types of measurements, where the score
plots show almost identical trends between imaging data and
hybrid scanning. The extracted loading vectors, which maxi-
mize the class centroid distance, are very similar (PC1 and
PC3 or 4), and in both cases, PC1 is selected for all considered
experiments. PC1 presents general cell features in both cases,
with a nearly identical C-H stretching, and a fingerprint region
presenting general features of lipids and proteins in the imaging
case [1450 cm−1 δðCH2;CH3Þ, 1650 to 1660 cm−1 amide I)33,34

along with cytochrome c features (753, 1130, 1575 cm−1),35

while the hybrid PC1 also possesses additional features along
with the same peaks.

Of special interest is the striking similarity of the second
separating PC between the two measurement modes, where sev-
eral identical spectral features can be identified, such as 1575
and 1650 cm−1 as discussed above. Several identical features
are also present as compensating factors of previously discussed

features (asymmetric peaks), such as 1118 to 1134 and
1440 cm−1. While some features in the imaging case [see
Fig. 6(a)] cannot be definitely identified as peaks due to
noise levels, it is interesting to note that they correspond to
peaks in the hybrid scanning case, such as several features in
the 1200 to 1350 cm−1 region. Both vectors also possess a
strong asymmetric feature at 996 to 1014 cm−1, which can
be attributed to phenylalanine (1005 cm−1, aromatic ring
breathing).36

By comparison, fixed-point decomposition leads to vectors
that are far less characteristic, where PCs of lower order are
selected for separation. Furthermore, there are far fewer visible
spectral features in the fingerprint region, apart from the contri-
bution at 800 cm−1 in PC5, which can be attributed to the quartz
substrate and should not, in principle, significantly contribute to
the separation between the two cell lines. The results indicate
that fixed-point measurement is the weakest of the three scan-
ning approaches in terms of the separation ability between
groups, the richness of spectral information, and the resulting
ease of analysis of the separation vectors.

4 Discussion
The measurement approach proposed in this article is based on
random scanning within a region of the cell body to retrieve a
Raman spectrum accounting for the different molecular species
contained in different locations of the cell. Since all the infor-
mation gathered from the whole cell region is measured as one
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spectrum, the Raman spectra measured with the hybrid imaging
are visibly far more consistent between cells compared to stan-
dard fixed-point measurement (see Fig. 3). However, spectra
measured with the hybrid approach actually possess more lin-
early independent dimensions contributing to the variance of the
data, as shown either by the rank of their covariance matrix [see
Fig. 4(a)] or the amount of information carried by the first load-
ing vectors of the PCA decomposition [see Fig. 4(b)]. This sug-
gests that while fixed-point measurements provide information
on the differences between individual locations in cells, the vari-
ability is such that the spectra can be represented as linear com-
binations of each other, while the hybrid measurements, instead,
emphasize information related to cellular changes instead of
pure local contributions. We should point out that if local
molecular variations are of primary interest, then full Raman
imaging should be considered. If there is not sufficient time
and/or laser power to measure full Raman images, or if sample
damage concerns preclude imaging, then nonimaging mode
Raman measurements are quite capable of discrimination
between samples while providing measurements on a larger
population, and the hybrid scanning mode provides some
unique advantages.

The observed difference in the information content dramati-
cally changes analysis results when considering a large popula-
tion for statistical treatment, for instance, to classify two cell
lines, such as macrophage-like cells J774A.1 and Raw264.7
with multivariate analysis (see Fig. 5). Clear separation is
obtained with hybrid scanning, while the fixed-point approach

does not discriminate the two classes. Interestingly, PCA pro-
vides similar results when hybrid scanning is compared with
imaging data (see Fig. 6), which implies that the information
content of a large cell population measured with hybrid scan-
ning is comparable to a large number of data points (pixels)
of a Raman image. This may be due to the fact that hybrid mea-
surements account in a global way for the local differences that
can be observed in images [see Fig. 1(a)]. Nevertheless, the sep-
aration is less clear in the case of imaging-based spectra, which
can be expected from the local variations.

If, during experiments, it becomes necessary to average
together spectra acquired by Raman imaging to provide suffi-
cient SNR for analysis, it appears more fruitful to average
the data on the detector itself through a hybrid scan technique
to avoid the increase in read-out noise. Furthermore, hybrid scan
measurements are expected to be statistically more relevant due
to their higher throughput providing a larger and more diverse
population (∼100 cells versus 4 to 8 cells in the imaging case),
which also accounts for environmental variability by including
measurements from several different dishes, while imaging data
only contain cells located in a small area of one dish. This sim-
ilarity in separation power indicates that the hybrid imaging
approach, where spectral data are optically averaged and images
of the sample are obtained with another modality, could be
effectively employed as a substitute for full Raman imaging
with much higher throughput.

We should note that PCA is not an optimal technique for
class discrimination applications, as it is a purely unsupervised
decomposition. Several other methods, such as linear discrimi-
nant analysis or partial least square discrimination analysis, are
usually more efficient at separating groups based on multivariate
analysis, due to the incorporation of the a priori knowledge of
measured classes into the decomposition. These approaches
have been employed in several works classifying different
cell types based on spectroscopic measurements.4,6,14

These limitations of PCA, however, serve to demonstrate the
robustness of the separation comparisons. PCA is more suitable
for assessing the intrinsic discriminating power of data since it is
unsupervised. The point here is not to optimize the classification
observed (for example, in Fig. 5) but to quantatively compare
the amount of information available in each scan method
from the variance characteristics of the data. An optimized sep-
aration algorithm could readily outperform PCA if classification
alone was the goal.

In addition to the similarity in the type of separation, PCA
loading vectors from imaging and hybrid data are very similar
[see Figs. 5(c) and 6(a)], with the second separating PC (respec-
tively, PC4 and PC3) possessing identical spectral features,
which can be assigned to specific molecular species, as dis-
cussed in Sec. 3.4. It is interesting that both measurement
approaches lead to such similarities considering that they are
based on very different principles (spatially resolved spectra
at each pixel versus optically averaged signals), and yield differ-
ent signals and SNR [see Figs. 1(b) and 3(b)].

This implies that the variance behavior is similar between
imaging data on a small amount of cells and hybrid imaging
on a relatively large population. It is likely that the high number
of pixels in the imaging case then compensates for the lower
SNR when statistical analysis is performed during multivariate
analysis. These results show that the approach based on hybrid
imaging accounts well for the spectral information contained in
a cellular body in a global sense, while enabling a higher
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measurement throughput, which makes it possible to perform
the analysis on populations that are statistically more relevant.
Furthermore, it also provides a higher SNR, so that spectral fea-
tures can be identified far more easily, as can be seen when com-
paring the PCs where some peaks are clearly identified in Fig. 5
(c), while their presence in the imaging data [see Fig. 6(a)] is
ambiguous.

5 Conclusion
The two main approaches that are usually employed in the case
of Raman measurements, namely point acquisition at one loca-
tion of the sample and imaging of a whole region of the sample
to obtain spatial contrast, provide very different types of infor-
mation and both have their own drawbacks. Imaging provides a
very large amount of information where each pixel in the image
contains spectral information, but it requires long acquisition
times to ensure the collection of enough signal at each location,
and is often sample damage limited. On the other hand, point
measurements can be acquired fairly rapidly and provide a
high SNR, thanks to the concentration of the excitation power
at one location for measurement while the total laser exposure is
still relatively low. However, the spectra measured in this fash-
ion are very sensitive to the local content, so that repeated mea-
surements on several cells are more sensitive to the changes in
local content than to finer spectral changes originating from cell
conditions. This can be problematic in cases where fine spectral
changes are used to discriminate groups of cells, such as cancer
versus noncancer.

The proposed hybrid approach, which consists of rapidly
scanning the excitation beam across a region of the sample
while descanning and then detecting the signal as a point spec-
trum, provides an alternative to obtain more reliable measure-
ments for statistical analysis while keeping the high
throughput through point excitation. Furthermore, as this
approach requires an additional imaging modality to position
the scanning pattern within the region of interest, spatial infor-
mation is still recorded to relate the spectral information to a
known location. The comparison of the information content
between the standard fixed-point and the hybrid approach
showed that the latter provides more information despite the ap-
parent stronger similarity of the measured spectra. This result is
supported by the ability of hybrid scanning to effectively dis-
criminate different cell lines, where it provides a far more reli-
able classification than the standard point approach. Extracted
spectral features are also far easier to interpret and identify
the molecular differences between the two cell lines, which
is often of primary interest. Interestingly, even with very differ-
ent types of data, the statistical treatment of a high number of
low-SNR spectra from several cells (in imaging) and a low num-
ber of high-SNR spectra (hybrid) from a large number of cells
lead to somewhat similar results, with the hybrid mode having
additional advantages in classification power and clarity of dis-
criminating spectra.

The proposed hybrid imaging approach is, therefore, a viable
alternative for noninvasive analysis of biological samples com-
pared to more classical approaches (fixed-point or imaging mea-
surements) by enabling the acquisition of signals which
represent overall cellular molecular content, and maintaining
a high throughput capability to measure representative popula-
tions. It could be employed not only for live cells as presented
here as a proof of concept but also for other types of samples,
such as histological sections or tissues.
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