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Abstract. The current study reports the photoacoustic spectroscopy-based assessment of breast tumor pro-
gression in a nude mice xenograft model. The tumor was induced through subcutaneous injection of MCF-7
cells in female nude mice and was monitored for 20 days until the tumor volume reached 1000 mm3. The
tumor tissues were extracted at three different time points (days 10, 15, and 20) after tumor inoculation and
subjected to photoacoustic spectral recordings in time domain ex vivo at 281 nm pulsed laser excitations.
The spectra were converted into the frequency domain using the fast Fourier transformed tools of MATLAB®

algorithms and further utilized to extract seven statistical features (mean, median, area under the curve, variance
and standard deviation, skewness and kurtosis) from each time point sample to assess the tumor growth with
wavelet principal component analysis based logistic regression analysis performed on the data. The prediction
accuracies of the analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found
to be 92.31, 87.5, and 95.2%, respectively. Also, receiver operator characteristics area under the curve analysis
for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 0.95, 0.85, and 0.93,
respectively. The ability of photoacoustic measurements in the objective assessment of tumor progression has
been clearly demonstrated, indicating its clinical potential. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:

10.1117/1.JBO.20.10.105002]
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1 Introduction
Cancer is a disease of uncontrolled cell growth, beginning with
one cell or a small group of cells, spreading over to different
organs, and ultimately causing death if not controlled.
According to GLOBOCAN fact sheet 2012, cancer-related mor-
tality accounts for 8.2 million worldwide, out of which breast
cancer alone accounts for 0.52 million.1 Breast cancer begins
as a premalignant disease and reaches to its advanced and/or
metastatic stage through various phases of tumor progression.
The nonmodifiable factors responsible for breast cancer are
the female gender itself, age, BRCA1 and BRCA2 genes,
and personal factors such as a long menstrual history, use of
oral contraceptives, and having first child after age 30 or nul-
liparous.2 Among the modifiable factors, the major risks are
being overweight, lifestyle, taking hormone replacement
therapy, taking birth control pills, drinking alcohol, having
tobacco, etc. Once a breast tumor is developed, its growth and
progression are always supported by the surrounding tumor
microenvironment. It is supposed to be composed of a variety
of cell types including endothelial cells, pericytes, smooth-muscle
cells, fibroblasts of various phenotypes, myofibroblasts, immune
cells, natural killer lymphocytes, and antigen-presenting cells,

such as macrophages and also dendritic cells. They are often
characterized by conditions like hypoxia, nutrient deprivation,
acidosis, abnormal tumor angiogenesis, aberrant stroma,
etc.3,4 There are several proteins secreted during the progression
of the disease. These proteins play a key role in the biological
pathway leading to the development and prognosis of the dis-
ease. The identification and characterization of these proteins
(biomarkers) may lead to a better understanding of the disease
patterns. However, the heterogeneous nature of breast cancer
makes biomarker identification a challenging task and alterna-
tive strategies are needed to address this problem by detecting
the cancer early.

The current available techniques for breast cancer detection
are clinical breast exam, mammography, ultrasounds, molecular
breast imaging, and magnetic resonance imaging (MRI),
especially for women with a high risk of breast cancer.5

Mammography and ultrasonography are considered to be the
most effective screening techniques for the premenopausal
and postmenopausal women, respectively.6 Besides their appli-
cability, these techniques have some disadvantages as well.2,5

For example, mammograms, the low dose x-ray images of the
breast, are effective in detecting breast cancer, but despite
their effectiveness, sometimes produce false-negative results,
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especially in the case of young subjects.5 The mammographic
detection sometimes shows poor prognosis and repeated exposure
may lead to other side effects as well.5,6 Many women find having
a mammography uncomfortable or painful. The MRI technique is
costly and may provide false-negative results. It requires addi-
tional follow-ups and biopsies and is usually not recommended
for patients with <15% life time risk for breast cancer.5 It may
cause claustrophobia, may not show all calcifications, and can
induce alterations in the ECG of the patient for a short period
of time. The best option could be developing a new tool to detect
breast cancer early when the disease has just started, providing
enough scope for treatment planning and cure by avoiding the
complications. When a cancer is detected early, it increases
the survival rate by several folds as opposed to late detection
where the mortality rate always prevails over survival.5,6 The
decrease in mortality rates signifies progress in both the early
detection methodology and an improved treatment strategy.
The main objective of the present study is developing a suitable
tool for early detection and/or stratification of breast cancer.

The attempts to search for tools for early diagnosis of cancer
are in progress all over the world in several disciplines of science
and technology. Among them, the optical and related techniques
are being explored exponentially.7–11 The optical spectroscopy
techniques, such as fluorescence, reflectance, Raman scatter-
ings, or a combination of a few or all were tested as potential
early detection tools.7–11 Photoacoustic (PA) spectroscopy, the
hybrid of optics and acoustics, is a simple and sensitive tech-
nique with several advantages over others, such as minimal sam-
ple preparation, nondestructive, and no scattering loss in turbid
media.12–17 The key advantage of the technique is the signal
generation based on differential optical absorption by the
constituents of a specimen like biological tissues and acoustic
detection.15–17 When a pulsed or modulated light of suitable
wavelength is incident on a sample, the absorption of light
energy by the sample’s molecules leads to expansion at the
excitation volume of the sample, followed by compression in
a repetitive sequence of light modulation, generating transient
pressure variations or acoustic signals at the excitation volume,
which propagate away from the source point.12–15 The transient
pressure changes can be detected by fast pressure transducers
like piezoelectric transducers (PZT) or microphones and the
information about the sample can be obtained.15–17 Since the
PA signal solely depends on the absorption of radiation by
the biomolecules in the samples under study, the recorded spec-
tral patterns exhibit various characteristics of the biomolecules
in the sample. Any change or modification in the biochemical
makeup of the sample upon disease initiation is reflected in the
corresponding PA patterns. This provides information on the
status of the sample under study as well as the microstructure
surrounding the change.18 When the absorber is in abundance,
the same can be visualized in the imaging as well by using
appropriate pressure sensors.19 The PA spectral features in im-
aging also demonstrate the optical absorption and the geomet-
rical properties of the absorbing structures in the samples under
study.20 There are reports on characterizing histological micro-
structures of the biological specimens using PA spectral analy-
sis.21,22 The technique has been used in vivo and ex vivo to
discriminate the various cancer types from the normal based on
respective spectral features.20,23–27 The technique has also found
applicability in the detection of circulating tumor cells in flow
cytometry.28 PA imaging is being put to use from detection
and diagnosis of various cancers to nanomedicine for cancer

therapy.29–31 Even though the imaging techniques produce a
wide array of information about the biological variation, the
abundance/size of the sample and the choice of imaging contrast
agents are the major constraints with the technique.19,20,29–32 The
technique is very popular in studying various cancers and other
diseases, but its application in early detection of asymptomatic
tumors needs to be explored, experimented with, and validated.
The main idea in the present study is to correlate the spectral
patterns of the biochemical changes linked to disease associa-
tion for the early detection of cancer using PA spectroscopy.

In the present study, an attempt is made to evaluate breast
tumor progression in a xenograft model, an ex vivo study, to
evaluate the effectiveness of PA spectroscopy in early detection
of breast cancer. The idea of selecting a xenograft model is
based on the growing body of evidence of using such models
for understanding human diseases.33–36 The laboratory mice
models are considered as one of the best model systems avail-
able for investigating cancers in humans mostly because of the
extensive physiological and molecular similarities, small size,
short life span, and availability of its entirely sequenced genome
with a chance of further manipulation if any.34,35 Many studies
have been carried out all over the world using the immune-com-
promised mice for the understanding of cancer progression,
drug delivery pathways, effects of chemicals on the cancer pro-
gression, biomarker discovery, etc.34–39

2 Material and Methods

2.1 Experimental Setup

The block diagram of the experimental setup used in the present
study is shown in Fig. 1. The setup consists of an excitation
source, PA cell, preamplifier, and the signal processing unit.
The excitation source is a combination of an Nd-YAG laser
(LM1278 LPY707G-10, LITRON Lasers, United Kingdom)
and a frequency doubled dye laser (PULSARE Pro, FINE
ADJUSTMENT, Germany). The second harmonic (532 nm)
of the Nd-YAG laser is used to pump the Rhodamin 6G dye
to obtain lasing in the 545 to 580 nm region. The dye laser out-
put is frequency doubled for obtaining 281 nm laser light that is
used in the present study. The PA cell, an arrangement of the
sample holder and the PZT housing, is fabricated in-house.
The PZT (Model PIC 181, length 10 mm, diameter 5 mm, PI
Ceramics, Germany) is connected to the preamplifier using a
Bayonet Neilsl–Concelman (BNC) type cable connector,

Fig. 1 Experimental block diagram of the photoacoustic spectroscopy
setup.
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which is then coupled to a cathode ray oscilloscope (Tektronix,
TDS 5034B) for signal processing and recording. The laser light
is focussed onto the sample (laser spot size ∼1 mm) kept in the
sample holder of the PA cell by using a 5 cm focusing lens. All
the experiments have been conducted with a 200 μJ laser energy
per pulse. The energy density for the laser excitation used in the
present study is 1.02 mJ∕cm2, which is well within the maxi-
mum permissible exposure of 3 mJ∕cm2 as described in
ANSI guidelines for the wavelength range of 180 to 302 nm
for both ocular and skin exposures.40

2.2 Optimization of Protocol for Breast Xenograft
Model

In order to grow human tumors in mice, the immune-compro-
mised murine models are currently being used to prevent the
immune rejection. Such models eliminate the role of the
immune system in tumor growth/progression in xenograft and
have the advantage of serving as a better and reliable model
for analyzing cancers in a syngeneic background for in vivo
studies.39,41–43 In the present study, BALB/c nude mice, an
immune deficient mouse model, is used for inducing breast
tumor. The workflow for tumor establishment in nude mice
using breast cancer cell lines is shown in Fig. 2(a). Before carry-
ing out this study, animal ethical approval from the Institutional
Animal Ethical Committee was obtained, and the study was con-
ducted as per the stated guidelines. Six- to eight-week-old
female nude mice were used in the study. The animals were kept
under pathogen-free conditions in individually ventilated cages
under standardized environmental conditions (22°C room tem-
perature, 50� 10% relative humidity, 12 h light-dark rhythm)
and received sterilized food, bedding, and drinking water.
The MCF-7 breast cancer cell line was used to subcutaneously
induce tumor in nude mice. It was observed that 5 × 106 MCF-7
cells suspended in 100 μl matrigel were optimal for establishing
the tumor xenograft model. Matrigel (BD Matrigel™ Basement
Membrane Matrix), which is a gelatinous basement membrane
extracted from the Engelbreth-Holm-Swarm mouse sarcoma,
was used in the inoculation procedures as a supporting and
growth medium. For injection, the cells were drawn into a 1 cc
syringe using a 26 gauge needle and injected subcutaneously

into the lower flank region of the mice. The animals were rou-
tinely monitored for the appearance of tumor development, and
the tumor dimensions were measured using a digital Vernier
caliper. The tumor volumes were calculated in mm3 using the
equation: Volume ¼ ½ðWidthÞ2 × Length�∕2.41–44

2.3 Collection of Samples

Once the xenograft model was standardized, a fresh set of ani-
mals were used for tumor development by injecting MCF-7 cells
and monitoring over a period of 20 days until the tumor volume
reached 1000 mm3. Three time points, days 10, 15, and 20
(D10, D15, and D20) following MCF-7 cells injection, were
decided for monitoring the tumor growth, allotting six animals
(n ¼ 6) to each time point. The experiements were performed in
duplicates, making the total number of animals 36 (3 × 6 × 2)
for the study. On the respective day of each time point, the ani-
mals were sacrificed, the tumor volume was measured using the
digital caliper, and the tumor tissues were extracted. The tissue
samples were stored at −80°C by snap freezing in liquid nitro-
gen until further use. The stored samples were thawed to room
temperature for recording of PA spectra at 281 nm excitation.

2.4 Photoacoustic Spectral Recordings and
Preprocessing

The PA spectra of all 36 samples, 12 each from days 10, 15, and
20, were recorded by taking each one of them in a cuvette in the
PA cell. Further, to avoid any sample contamination, the cuvette
was used to hold the samples, washed thoroughly using distilled
water twice followed by alcohol cleaning. The minimum size of
the tumor tissue used for the recording of PA spectra was
3 mmðlengthÞ × 2 mmðwidthÞ × 5 mmðheightÞ. A total of six
spectra per sample were recorded from six different sites of
the samples, generating 216 spectra (3 × 12 × ∼6). The PA spec-
tra were fast Fourier transformed (FFT) using MATLAB®
@R2015a (V8.5) algorithms.

3 Data Analysis
The FFT patterns were preprocessed by performing the back-
ground subtraction and normalization. The normalized FFT
patterns were later wavelet transformed and used for feature
extraction in the spectral region from 14.375 to 80.625 kHz.
In order to accomplish the step mentioned above, the normalized
FFT spectra were subjected to Haar wavelet analysis and the
resultant wavelet coefficients were subsequently subjected to
Morlet wavelet analysis. Following this, the feature extraction
was carried out. Seven features were extracted: mean, median,
area under the curve, variance, standard deviation, skewness,
and kurtosis extracted from each and a feature matrix
(216 patterns × 7 features) was prepared. Principal component
analysis (PCA) was performed on the data for reducing the
variability, followed by logistic regression analysis for discrimi-
nating the data by plotting a decision boundary. All the data
analysis, i.e., extraction of the wavelet coefficients, spectral fea-
tures selection, PCA, and logistic regression analysis, were car-
ried out in MATLAB®@R2015a (V8.5). The significance tests
[Student t test and one-way analysis of variance (ANOVA)]
were carried out using Graph Pad Prism 5 (V 5.01).

3.1 Wavelet Analysis

The wavelet transform analysis is a time-frequency decomposi-
tion tool for data analysis, which finds applications in a

Fig. 2 (a) Protocol for establishing tumor induction in nudemice using
breast cancer MCF-7 cell line. (b) A plot depicting tumor volume
against tumor development on days 10, 15, and 20 post MCF-7
cell line inoculation (n ¼ 12). One-way analysis of variance test pre-
dicted p value as significant, p < 0.0001(***) and Bonferroni’s test for
multiple pairs significant, p < 0.0001.
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multitude of diverse physical phenomena such as analysis of cli-
mate, financial indices, video images, and medical signals.45,46 It
is a mathematical tool utilized for converting a signal or function
into another form that makes certain features of the signal more
amenable, cleaner, and easier to study.47,48 The wavelets are par-
ticularly useful in analyzing the signals that are nonuniform,
noisy in nature, and usually in temporal domains. There are
two types of wavelets; i.e., if the wavelet analysis has been
done throughout the length of the signal, it is called continuous
wavelet transform (CWT), and if the wavelet has been separately
used for the analysis of the segments of the signal, it is called
discrete wavelet transform. It is very crucial to choose the right
type of wavelets for the analysis for optimal outcomes. In this
study, as the signals are continuous, the CWT is found suitable
for the analysis. In CWT analysis, the wavelet coefficients are
extracted by convolving the wavelet with the signal (or scaling
and shifting the wavelet across the length of the signal). The
equation for CWT48 is given by

EQ-TARGET;temp:intralink-;e001;63;536Tða; bÞ ¼ wðaÞ
Z

∞

−∞

�
xðtÞΨ�

�
t − b
a

��
dt; (1)

EQ-TARGET;temp:intralink-;e002;63;493wðaÞ ¼ 1p
a
; (2)

where Tða; bÞ denotes the wavelet coefficients, a is the scaling
parameter, and b is the translational parameter. The scaling
parameter is used to convert the mother wave (obtained when
a ¼ 1 and b ¼ 0) into a more compressed or expanded form
that would better suit the type of spectra being analyzed, and
the translational parameter is used to translate the wavelet
obtained by scaling along the length of the signal. wðaÞ is
the weighing function, which is set to 1∕½pðaÞ� for energy con-
servation as the wavelet at every scale should have the same
energy. The function xðtÞ represents the signal that is being ana-
lyzed. The complex conjugate (denoted by *) of the wavelet is
used to compute the wavelet coefficients. The signal and the
wavelet are the functions of variable t.

The wavelet, a finite nonuniform signal, is used to extract the
local features from the signals under study. This is done by
transforming the given signal into another representation that
is more useful. The dilating and the translation properties
allow the wavelet to be equipped with flexible and variable
time. The frequency windows that narrow down at high frequen-
cies and broaden at low frequencies make the wavelet available
to localize on any detail of the signal to be analyzed. These prop-
erties make the wavelet transform suitable for analyzing the ser-
pentine signals. This way, the wavelets obtained are localized
in time and in frequency, having the unique scaling properties
and the wavelet coefficients. As a result, the multiresolution
analysis of the wavelet is advantageous in both the time and
the frequency domains. In the present study, we have used
Haar and Morlet wavelet methods46–49 to analyze the PA spectra
and attempted to evaluate the subtle differences between them.

3.2 Feature Extraction and Principal Component
Analysis

Once the wavelet analysis is done on the FFT patterns and the
Morlet coefficients are obtained, the statistical features repre-
senting the unique characteristics in each group of the samples
under study are extracted. As mentioned above, there are seven

statistical features extracted: mean, median, area under the
curve/sum (measures of central tendency), variance and stan-
dard deviation (measures of dispersion), skewness and kurtosis
(measures of shape).7,16,49

The PCA, a data minimization and dimension reduction tool,
is performed on the feature matrix of three sample types under
study and the first two principal components (PCs) showing
maximum variance within the data are identified. The scores
of the identified PCs in the logarithmic form are used for logistic
regression analysis seeking the data discrimination and decision
boundary visualization.

3.3 Logistic Regression

The logistic regression is a machine learning algorithm used to
classify the datasets that are categorical in nature. The main goal
in logistic regression is to find the best fitting decision boundary
for a set of data that determines the class of the data based on the
dichotomous characteristics.50–53 It allows one to estimate the
probability of an event occurring and provides a linear classifier.
It uses one or more independent variables for determining the
data classification. It classifies various data by creating a deci-
sion boundary based on the internal characteristics of the data.
For making the decision boundary a reference, a sigmoid func-
tion is used for separating the positive and negative classes of
data. The sigmoid function [fðzÞ], also referred as the logistic
regression function,43–46 which ranges from 0 to 1 as the value of
z varies over the horizontal axis from positive to negative infin-
ity, is defined as in Eq. (3).

EQ-TARGET;temp:intralink-;e003;326;418fðzÞ ¼ 1

1þ e−z
; (3)

where z represents the hypothesis equation or the equation of the
decision boundary. The hypothesis equation [Eq. (4)] segregates
the two classes. This equation is governed by the set of features
(x) used and the parameters (θ) that assign a specific weight to
each feature for the probability that y ¼ 0 or 1 in the classifi-
cation of a test sample. The function fðzÞ can be estimated for
the probability that y ¼ 0 or 1 and is usually referred to as the
hypothesis hθðxÞ.
EQ-TARGET;temp:intralink-;e004;326;288z ¼ hθðxÞ ¼ θ0 þ θ1 � x1 þ θ2 � x2 þ : : : (4)

The key requirement of the algorithm, dealing with the above
hypothesis, is that the amount of deviation of each sample
belonging to the positive and negative classes from the decision
boundary should be minimum. Hence, the values of the param-
eters θ have been chosen in such a way that the above require-
ment is completely fulfilled and computed using the cost
function. The cost function gives the amount of deviation
that the decision boundary has from each sample in the dataset.
As the deviation from the sample should be minimum, the val-
ues of θmust be chosen such that the cost function is minimized.
The cost function used for logistic regression is shown in
Eq. (5).
EQ-TARGET;temp:intralink-;e005;326;125

JðθÞ ¼ − log½hθðxÞ�; if y ¼ 0;

JðθÞ ¼ − log½1 − hθðxÞ�; if y ¼ 1: (5)

The values of the parameters (θ) used to plot the decision
boundary are calculated using Eq. (6) as shown below.
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EQ-TARGET;temp:intralink-;e006;63;734θj ¼ θj − α
∂
∂θj

JðθÞ: (6)

In the above equation, α is the learning rate. This equation is
used to compute the optimal values of θ that have been obtained
for the least values that the cost function JðθÞ takes.

The logistic regression analysis not only determines the
boundary between the two classes of the samples but also sig-
nifies the class based on the probability depending on the sep-
aration of the class elements from the boundary. The strength of
the logistic regression has been utilized in the present study to
categorize and discriminate the samples from different phases
of breast tumor growth in a xenograft model. A supervised
mode of logistic regression analysis50–54 was performed using
the log of score values of PC1 and PC2. Initially, we compared
two groups at a time, such as D10 versus D15, D15 versus D20,
and D10 versus D20, as well as taking all groups together (D10
versus D15 versus D20) to understand the distribution, variabil-
ity and scatterness in the data. A calibration set comprising 20
samples (spectra) from each group (D10, D15, and D20) under
study was formed, and by performing logistic regression analy-
sis on the data, a decision boundary of classification with 100%
specificity and sensitivity was created. The decision boundary
was utilized for testing the remaining samples (spectra) from
each group (52 spectra) under study once it was established
for the calibration data.

4 Results and Discussion
In this study, in order to establish the animal xenograft model for
the breast tumor development, attempts have been made with
MCF-7 breast cancer cell lines. It was tested with various num-
bers of cells and optimal growth was found when 5 × 106 cells
were subcutaneously injected into the mice along with 100 μl
matrigel. This study was carried out using three mice. During
the experiment, two animals out of the three were found
weak and died in between, and in the third animal, which
was alive, a palpable tumor bulge was visible on day 7 postin-
jection followed by a gradual increase in the tumor volume in
the subsequent days. It was also noticed that by day 25, the
tumor volume had crossed the mark of 1000 mm3. As per
animal ethical considerations, all of the animals under study
were sacrificed once the tumor volume reached 1000 mm3.
The tumor volume (mean� sem, n ¼ 12) measurements are
shown in Fig. 2(b). One-way ANOVA was carried out on the
mean tumor volumes of three different time point groups and
a significant difference (p ¼ 0.0001) was observed. Further,
Bonferroni’s test for multiple pairs was also conducted showing
the significant difference (p < 0.0001) with each case.
Subsequently, the tumor tissues were excised for the three
groups on the respective days and the corresponding PA spectra
were recorded.

Since PA spectroscopy works based on the absorption of
radiation by the samples under study, the selection of a suitable
wavelength for excitation is very important for optimal signal
generation. Further, the absorption properties of the biological
samples depend on their physiological states as well as their
biochemical natures.55 These samples have many intrinsic
chromophores that exhibit the PA effect at specific wavelength
excitations, such as proteins with 250 to 300 nm, nicotinamide
adenine dinucleotide (NADH) with 300 to 390 nm, collagen and
elastin with 325 to 360 nm, hemoglobin and melanin with 450 to
1000 nm, and lipids with 340 to 450 nm, respectively.55–57 The

absorption coefficient values for these chromophores rely on the
wavelength of excitations and the condition of the sample, dif-
fering in spectral patterns for diseased and normal states. Also,
the advantage of using and targeting the intrinsic chromophores
avoids any chance of cell toxicity and allows evaluation of the
samples on the basis of their physiological and metabolic
states.55–57 It is a well known fact that the proteomic and metab-
olomics profiles of malignant conditions are different from nor-
mal conditions. The type of proteins and their concentrations
vary widely in the two given conditions. Proteins that mostly
absorb at UV range due to amino acid residues such as trypto-
phan (280 nm), tyrosine (274 nm), phenylalanine (250 nm), and
histidine and cysteine residues (260 nm), are the dynamic enti-
ties that host a plethora of information about potential bio-
markers for disease diagnosis.57–59 There are reports in the
literature with cell line studies indicating the presence of an
increased amount of tryptophan in aggressive cancerous
cells.58 Fluorescence spectroscopy studies as well have demon-
strated increased tryptophan concentrations in breast carcinoma
samples in comparison to the normal breast tissues.59 Many
early breast cancer diagnostic attempts using serum samples
by mass spectrometry studies have also indicated that the
blood serum amino acid levels increase with tumor development
in breast cancer patients, and these profiles are organ and site
specific.60,61 The purpose of selecting 281 nm laser light in
the present study is to target tryptophan and tyrosine residues
of the proteins in the tumor tissues under study for PA signal
generation and capturing the corresponding change.

Hence, in the present study targeting proteins containing
tryptophan and tyrosine residues of tumor tissues, 281 nm
pulsed laser light was used for excitation of the samples and
the corresponding PA spectra were recorded. The average PA
spectra in the time domain (left) of tumor tissues for three differ-
ent time points of tumor development (days 10, 15, and 20) and
the corresponding FFT patterns in the frequency domain (right)
are shown in Fig. 3. As the PA cell is a resonant cavity, the
Fourier transforms of the acoustic waves along with the resonant
frequencies of the cell for the different types of samples were
found to be more informative for further analysis. By examining
the signal in the frequency domain, the modal frequencies devel-
oped upon excitation of the samples for different phases/stages
were observed to vary with the pathological states of the
tumor. However, this variation of modal frequencies for the
three groups was not found to change systematically. For further
analysis of the data, finding clear indication of tumor growth and
development, suitable spectral features correlating systematic
changes of tumor progression involving wavelet analysis were
undertaken. There have been considerable efforts already
going on all over the world for making use of the spectral var-
iations associated with the disease states/conditions in providing
diagnostic assistance. The main idea behind these analyses was to
utilize the information associated with the biochemical changes
upon the disease initiation for objective assessment of a disease.
The statistical tools normally assign the spectral samples under
study to one or more predefined categories/groups and perform
analysis on them applying either supervised or nonsupervised
modes of operations. In the present study, we have employed
a supervised mode of analysis to achieve the objective discrimi-
nation among the different groups of samples used for the study.

Initially, we looked into the frequency patterns of the samples
belonging to D10, D15, and D20, and a gradual increase in the
strength of certain frequencies 29.37, 29.69, and 30 kHz was
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observed with the progression of the tumor growth as shown in
Fig. 4. The increase of frequency strengths was also found to be
significant between D10 and D20 groups. However, no signifi-
cant difference in the frequency strengths for D10 and D15 as
well as D15 and D20 was observed. Although there were sig-
nificant differences in the strengths of some other frequencies
(33.75, 34.06, and 50 kHz) observed for D10 and D15 as
well as D15 and D20, no specific trend was noticed in the varia-
tion. Hence, we found this region of 14 to 80 kHz had a high
potential for inherent information, which may contribute to
grouping the time points under study.

It is an established fact that the low-frequency components
always travel faster through a medium. It can be correlated with
the tumor growth/development observed in the present study in
the case of low-frequency (0 to 30 kHz) components of the PA
spectra discussed above. Further, there are reports in the liter-
ature62–64 showing desmoplastic reactions in the stroma of
neoplastic tissues in breast cancer conditions, resulting in over-
deposition of dense fibrous tissues (mainly collagen I, III, and
IV) and other extracellular matrix components. This leads to the
formation of the solid lump within the tissue providing it with
tensile strength, stiffness, and tightness. The acoustic waves in
the present study are produced due to the absorption of 281 nm
excitation by the tryptophan moieties of proteins in the tumor,
which subsequently propagate through the tumor mass. Once
the tumor tissue becomes stiffer and the free space gets filled,
it facilitates the movement of the acoustic waves in a faster man-
ner. This may be one of the reasons for the gradual increase
observed in the strengths of the low-frequency (0 to 30 kHz)
peaks in the present study. The irregularities in the peak intensity

behavior above 30 kHz may be attributed to the inhomogeneity
of the acoustic field in the tumor mass.65 Also, in cancer cells, it
has been observed that the cellular and the nuclear morphology
differ from a normal cell. The major noticeable characteristic of
the nuclei of cancer cells is that they are abnormally enlarged
and have a folded shape.66–68 Though a direct relationship is
still not established between the nuclear morphology and the
cancer phenotype, the nuclear changes in the cancer cells
may be tumor type and stage specific.67 Further, it has been

Fig. 3 Average photoacoustic spectra in time domain (left) and the corresponding fast Fourier trans-
formed patterns (right) of tumor tissues derived on days 10, 15, and 20 post MCF-7 cell line inoculation.

Fig. 4 Tumor growth assessment on some selected frequencies of
days 10, 15, and 20 post MCF-7 cell line inoculation (mean� sem
indicated).
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noticed that even though the absorption maxima of DNA is at
260 nm, for proteins at 280 nm, the ratio of absorption coeffi-
cient for DNA to proteins is much less at 280 nm.65–68 Thus, the
low optical contrast between DNA and protein absorption at
281 nm might have contributed to the inhomogeneity of the
acoustic field and affected the signal propagation.

In order to accomplish the discrimination among different
time point groups under study, the corresponding PA FFT pat-
terns were subjected to Haar and Morlet wavelet analysis one
after the other, and the Morlet wavelet coefficients so obtained
were used for extracting features for further analysis. As men-
tioned above, there were seven spectral features (mean, median,
area under the curve, variance, standard deviation, skewness,
and kurtosis) extracted, and using them, a feature matix of
dimensions 216 spectra × 7 features was prepared. This feature
matrix was used for PCA and the first three PCs showing the
maximum variance in the data that were selected. The percent-
age variance of PC1, PC2, and PC3 scores for day 10, day 15,
and day 20 groups were found to be 87.40, 12.58, 0.009; 97.54,
2.44, 0.006; and 99.33, 0.65, 0.001%, respectively. From the
above information, it is clear that the first two PC scores for
all the three groups were sufficient to represent the maximum
variability within the respective group of samples. Further, a
comparison of log PC1 and log PC2 score values for the three
groups by the Kruskal-Wallis test also revealed a significant dif-
ference among them. PC1 captured the maximum variability
among the three groups (p < 0.0001 ***). Dunn’s multiple
comparison test has also shown a significant (p < 0.0001 ***)
difference with PC1 for D10 versus D15, D10 versus D20,
and D15 versus D20, respectively. PC2 was also found to be

significant (p ¼ 0.0009, ***), and Dunn’s multiple comparison
test with PC2 for D10 versus D15 and D10 versus D20 was
found to be significant. Hence, the subsequent logistic regres-
sion analysis was conducted using the logs of PC1 and PC2
scores only.

Once the first two PC components were found to contribute
the maximum variance in the data as well as significance in their
classification, the logs of PC1 and PC2 scores for 20 samples of
all three groups under study were randomly chosen to form a
calibration set and were used for making an appropriate decision
boundary in the logistic regression with 100% specificity and
sensitivity, respectively. Subsequently, log PC1 and PC2 scores
of the remaining 52 samples in each group were tested against
the calibration set decision boundary and the corresponding
sensitivity, specificity, and accuracy of the classification was
calculated. The correct prediction accuracy of the classification
as well as the sample membership association with a particular
group for D10 versus D15 was found to be 90.38 and
94.23%, respectively, with an overall accuracy of 92.31% as
shown in Fig. 5(a). In the case of D15 versus D20, the correct
prediction accuracy as well as the sample membership associ-
ation to a particular group was 80.77 and 94.23%, respectively,
along with overall accuracy of 87.5% for the analysis as shown
in Fig. 5(b). The prediction accuracy and the membership asso-
ciation for D10 versus D20 analysis was found to be 92.31 and
98.08%, respectively, along with the overall accuracy of 95.2%
as shown in Fig. 5(c). The prediction accuracy of the multiple
comparision analysis performed with all three calibration sets
taken together, making a decision boundary for each and testing
the remaining samples of each group against the respective

Fig. 5 Discrimination of the photoacoustic spectra of tumor tissues of days 10, 15, and 20 for the spectral
region 14.375 to 80.625 kHz by wavelet principal component analysis based logistic regression analysis:
(a) day 10 versus 15, (b) day 15 versus 20, (c) day 10 versus 20, and (d) day 10 versus 15 versus 20,
respectively.
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decision boundaries was found to be 90.38, 73.08, and 94.23%
for D10 versus D15, D15 versus D20, and D10 versus D20,
respectively [Fig. 5(d)]. The overall accuracy of the multiple
comparison analysis was found to be 85.9% as shown in
Fig. 5(d). The observed misclassifications in D15 versus D20
comparison may be due to the tumor heterogeneity during the
growth period and the physiology of the cancer cells. Further,
there are reports showing morphological changes within the
developing tumors and their microenvironment influencing
the light propagation and hence the acoustic velocity through
them affecting the corresponding spectral characteristics.47,48,65

In order to test the reproducibility of the discrimination mod-
els for D10 versus D15, D15 versus D20, and D10 versus D20
analysis, the receiver operator characteristics (ROC) curves for
the samewere also plotted as shown in Fig. 6. The area under the
curves (AUC) for the ROC plots of D10 versus D15, D15 versus
D20, and D10 versus D20 analysis were found to be 0.95, 0.85,
and 0.93, respectively. These observations clearly demonstrate
that the ROC-AUC values are approaching 1, indicating the
potentiality of the analysis to show the significant discrimination
among the different groups (p < 0.0001) under study, sug-
gesting the clinical implication of the analysis.

5 Conclusion
The PA spectroscopy used to monitor the breast tumor develop-
ment in the present study has clearly demonstrated its ability to
capture the minor biochemical changes upon tumor develop-
ment. The wavelet-PCA based logistic regression analysis,
applied for the assessment of the tumor growth, has distinctly
identified the unique spectral patterns in each group of the sam-
ples under study and accordingly differentiated the tumor pro-
gression. The sensitivity of the technique in capturing the minor
biochemical changes along with the accuracy of identifying the
tumor progression by using wavelet-PCA based logistic regres-
sion analysis has evidently provided its possible clinical impli-
cations. However, for identifying specific biomarkers of tumor
progression and drawing a correlation with the early detection of
the disease, further in-depth PA studies are warranted.
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