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Abstract. The image quality of optical coherence tomography can be severely influenced by speckle noise (i.e.,
signal-degrading speckle). Averaging multiple B-scans can effectively suppress speckle noise. Because of sam-
ple motion, images subject to averaging must be aligned exactly. We propose a two-step image registration
scheme that combines global and local registrations for speckle reduction by the averaging of multiple B-
scans. The method begins with a global registration to compensate for overall motion, which is estimated based
on the rigid transformation model involving translation and rotation. Then each A-scan is aligned by cross-cor-
relation using a graph-based algorithm, followed by a pixel subdivision method to improve smoothness in local
registration. The method does not rely on any information about the retinal layer boundaries. We have applied
this method to the registration of macular optical coherence tomography images. The results show the reduction
of speckle noise and the enhanced visualization of layer structures. A signal-to-noise ratio improvement of nearly
the square root of the number of averaged B-scans and a contrast-to-noise ratio improvement of around 11 are
achieved through our method. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.3.036013]
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1 Introduction
Optical coherence tomography (OCT) is a noninvasive high-res-
olution imaging technology that has been widely applied in
probing the microstructure of biological tissue.1–3 Human retinal
imaging is the most successful clinical application of OCT. OCT
has greatly improved the early diagnosis of retinal diseases and
is highly valuable in the diagnosis of macular holes, cystoid
macular edema, diabetic retinopathy, and age-related macular
degeneration. OCT is based on the principle of low-coherence
interferometry, the imaging results are sensitive to speckle noise
(i.e., signal-degrading speckle),4,5 which reduces the quality and
blurs the feature details of obtained images.6,7

Many speckle noise reduction techniques involving hard-
ware-based and software-based methods have been proposed.
Hardware-based methods aim to acquire multiple tomograms
with uncorrelated speckle patterns. Uncorrelated speckle patterns
can be obtained with different angles, positions, and frequencies
or by compressing the sample such as by angular compounding,8

spatial compounding,9 frequency compounding,10 and strain
compounding.11 However, these hardware-based methods require
additional optical components or modification of the sample arm,
and these methods cannot be easily applied to a commercial OCT
system. Software-based methods are postprocessing techniques
used after an image is acquired. These methods use some form
of smoothing filter in an image or by multiple uncorrelated
images averaging to reduce speckle. One problem of these soft-
ware-based methods is that it may reduce resolution of the
image. Given that the software-based methods do not change

the optical configuration and can be directly applied to an
OCT system, many image postprocessing methods, such as
median and wiener filters,12 wavelet transformations,13,14 curve-
let shrinkage,15,16 iterative sparse reconstruction,17 and multiple
uncorrelated B-scans averaging,18 have been proposed.

Under the B-scan averaging method, the signal-to-noise ratio
(SNR) of the resulting image is increased as the square root of
the number of averaged B-scans if the speckle is uncorrelated
between images.4 When OCT retinal imaging is being per-
formed, the human eye will move unconsciously such as
nystagmus and microsaccades. Even during conscious visual
fixation, the “fixational eye movements” are unavoidable.19

Such movements lead to the change of speckle patterns of a
series of successive recorded images and decorrelation of the
speckle noise of the recorded retinal B-scans. The speckle noise
can be reduced by averaging these images. The main challenge
of the multiple uncorrelated B-scans averaging method is the
alignment of recorded multiple B-scans to compensate for sam-
ple motion. Any misalignment reduces the spatial resolution of
the average image and affects the identification of clinical fea-
tures. Image registration accuracy can be improved by combi-
nation with a real-time eye tracking system.20 However, this
additional system can only compensate for lateral displacements
and increases scanning times. Jorgensen and Thomadsen18 pro-
posed an OCT image registration method based on the regular-
ized shortest path algorithm with an axial-to-lateral registration
iterative scheme. However, this method cannot align images
with large lateral displacements21 and cannot correct for rota-
tion. Alonso-Caneiro et al.22 introduced a registration method
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by affine-motion model, which can account for higher degrees
of image transformations. However, it requires a high level of
computational complexity and thus may be unsuitable for
real-time operation. Antony et al.23 presented a registration
method where the surface between the inner and outer segments
of the photoreceptor cells is used with two stage thin-plate
splines to correct for axial artifacts. Chen et al.24 introduced
a method that uses the top and bottom boundaries of the retina
to aid in registration with a deformable axial registration using a
one-dimensional (1-D) radial basis functions. These two regis-
tration methods required a segmentation of the B-scan image to
guide the registration method. This requirement restricts the
registration accuracy because of the accuracy of segmentation
algorithm.

In this paper, we propose a two-step method for OCT image
registration that combines global and local registrations. In the
first step, we register the images based on the rigid transforma-
tion model. In the second step, a graph-based algorithm is used
to find the optimal shifts along the axial direction of the indi-
vidual A-scans in the image to align both scans. The results of
this method in the imaging of the human retina are discussed in
this paper.

2 Principles
For two given images, where one is a reference image Iðx; yÞ
and the other is a warped image Jðu; vÞ, the main registration
task is to determine an optimal spatial transformation model T
such that the images I and J̃ are as similar as possible. J̃ is
defined as

J̃ðx; yÞ ¼ T · Jðu; vÞ; (1)

where (x; y) and (u; v) are the coordinates of the reference and
warped images, respectively. The transformation model can be
classified into rigid, affine, projective, or nonlinear.25 Each
transformation model T can be defined by a set of real param-
eters t. Only when the number of parameters is few can the
transformation model can be achieved by the optimization of
a similarity measure method such as rigid or affine transforma-
tion model. Because of the complex motion of the human eye,
local displacements usually occur among B-scan images. Large
displacements can be corrected through global registration, but
local displacements caused by nonlinear distortion cannot be
corrected by the rigid or affine transformation model of global
registration only. Our method aims to perform registration via
two steps. The first step corrects the overall large displacements
through global registration, and in the second step we correct for
local displacements and determine the optimal translation for
each A-scan in the image.

2.1 Global Registration

Global registration involves shifting the warped image and at
each shift position determining the similarity between the refer-
ence and warped images and determining the shift position
where the similarity between the reference and warped images
is maximum. The content of the warped image is adapted by a
transformation model. The rigid transformation model is defined
by three parameters t1 − t3:�
u
v

�
¼

�
cos t1 − sin t1
sin t1 cos t1

�
·

�
x
y

�
þ
�
t2
t3

�
; (2)

and the affine transformation model is defined by six parameters
t1 − t6:�
u
v

�
¼

�
t1 t2
t3 t4

�
·

�
x
y

�
þ
�
t5
t6

�
: (3)

t1 − t3 and t1 − t6 are the motion parameters that define the
rigid transformation model and the affine transformation model,
respectively. The problem of image registration is to find the
parameters t (i.e., t1 − t3 or t1 − t6) defining the transformation
model. Registration based on the rigid transformation model
only involves translation and rotation, and registration based on
the affine transformation model includes not only translation
and rotation, but also scaling and shearing. Successive B-scans
do not have image scaling, and shearing can be modified
through local registration in the second step. Furthermore, the
number of parameters based on the affine transformation model
is larger than that based on the rigid transformation model. More
parameters mean more time consumed during registration.
Hence, the rigid transformation model is used during global
registration.

After the transformation model is selected, a suitable cost
function that directly affects the performance of the registration
algorithm is required to determine the similarity between the
reference and warped images. Various cost functions have been
introduced previously.25 Here, the cross-correlation coefficient
SðtÞ is selected as the cost function that determines the similarity
between the reference image Iðx; yÞ and warped image Jðu; vÞ,
because the cross-correlation coefficient has a better perfor-
mance when the images have noises. The cross-correlation coef-
ficient SðtÞ is given by

SðtÞ¼
P

m
x¼1

P
n
y¼1I1ðx;yÞ·J1½uðx;y;tÞ;vðx;y;tÞ�

½Pm
x¼1

P
n
y¼1I

2
1ðx;yÞ

P
m
x¼1

P
n
y¼1J

2
1½uðx;y;tÞ;vðx;y;tÞ��

1
2

;

(4)

where I1ðx; yÞ ¼ Iðx; yÞ − Ī, J1ðu; vÞ ¼ Jðu; vÞ − J̄, t is a set of
parameters of the transformation model,m × n is the image size,
and Ī and J̄ are the grayscale averages of the reference and
warped images, respectively. The cross-correlation coefficient
SðtÞ varies between −1 and 1. A larger coefficient means more
similarity between the reference and warped images. The para-
meter set t0 of the optimal transformation model T0, which
mostly aligns the images, is determined by maximizing the
cross-correlation coefficient. The optimal transformation model
is

T0 ¼ argmax
t

SðtÞ: (5)

Powell’s multidimensional method and the 1-D golden sec-
tion search algorithm are used to seek the maximum value of
SðtÞ.26 The optimal transformation model T0 transforms the
warped image Jðu; vÞ into a new image T0 · Jðu; vÞ, which
results from global registration.

2.2 Local Registration

Local displacements are corrected by determining axial shifts at
each corresponding A-scan in B-scan images. In local registra-
tion, we are concerned about axial local shifts because the retinal
images have an inherent horizontal structure, and the lateral local
shifts are not obvious after global registration. A graph-based
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algorithm is applied to find the optimal relative shifts of the indi-
vidual A-scans between the reference and warped images. The
cost image used to construct the graph is based on the cross-cor-
relation between aligning A-scans in both images at different
shifts. Given the presence of speckle noise and other noises,
the relative shifts obtained by searching for the maximum cross-
correlation are not always the optimum registration values.
Considering the spatial continuity of the retinal structure, axial
shifts of the adjacent A-scan must be very continuous and
smooth. So, we take the relative shifts of adjacent A-scans into
account while finding the optimal relative shifts of each A-scan.

The graph Xðn; jÞ is formed by calculating the negative
cross-correlation for possible shifts of each corresponding col-
umn in the reference image I and warped image J. The size of
images I and J is M × N, where M are the rows and N are the
columns of each image. The image X of the j’th column is
defined as

Xðn; jÞ ¼ −
XM−n

i¼1

1

M − n
Iðiþ n; jÞ · Jði; jÞ; n ≥ 0; (6)

Xðn; jÞ ¼ −
XM−n

i¼1

1

M − n
Iði; jÞ · Jði − n; jÞ; n < 0; (7)

where n is the relative shift of the j’th column and the value
range of n is (−M, M). The graph search method finds the cost
path in the cost image for which the total negative cross-corre-
lation value is minimal.

Y ¼
XN
j¼1

Xðn; jÞ: (8)

We do not allow large jumps in the found path, so a penalty
term for roughness is added to the cost path to constrain rough-
ness. The roughness of the cost path is defined as

Ysmooth ¼
XN−1

j¼2

ðnj−1 þ njþ1 − 2njÞ2: (9)

A new definition of the cost path is

Ynew ¼ Y þ λYsmooth

¼
XN
j¼1

Xðn; jÞ þ λ
XN−1

j¼2

ðnj−1 þ njþ1 − 2njÞ2; (10)

where λ is a regularization constant. When Ynew is minimal, the
axial shifts nj of each column are obtained. The penalty term
shown in Eq. (9) is minimized, and the cost path is considered
smooth according to the definition; however, the path is not re-
ally “smooth.” Smoothness is influenced by the discrete spatial
nature of the digital image.

To improve the smoothness of the path, a method based on
pixel subdivision is proposed. Figure 1 shows the effect of pixel
subdivision. Figure 1(a) shows a simplified path composed of a
series of gray boxes. The rows of gray boxes in each column
indicate the axial shifts nj. According to Eq. (9), the roughness
of the path in Fig. 1(a) is 3λ. Pixels in the vertical direction sub-
divided by the subdivision factor m ¼ 2 are shown in Fig. 1(b).

The new path obtained after pixel subdivision is shown in
Fig. 1(c), and the roughness of the new path is zero.

The basic idea of pixel subdivision is the axial division of
each pixel (vertically) into m subpixels, where m is the subdi-
vision factor, followed by the determination of all columns with
different axial shifts compared with the closest column to the left
(jnj − nj−1j ≠ 0). Finally, shifts are allocated to m − 1 pixels at
the left of the column. The new axial shifts n 0

j of each column
are

n 0
j−y ¼ nj−y þ

y
m
ðnj − nj−1Þ; y ¼ 0;1: : : m: (11)

Because the new axial shifts of each column are not always
integers, we must calculate the new gray value of each pixel
using the interpolation method.

3 Experiments and Results
The algorithm was tested on an independent dataset of retinal
OCT images centered on the macula taken from 8 healthy sub-
jects and 13 patients, in which each subject had 70 successive B-
scans. The OPKO Spectral OCT/SLO instrument was used to
record the OCT data. The center wavelength of the light source
is 830 nm with a bandwidth of 20 nm. The proposed image
registration method was used to align 70 successive B-scans.
Figure 2 shows an example of three consecutive B-scan images
of the human retina. Displacements in retinal structure among
the images are highly apparent. Large displacements are more
likely to occur if the patient has problems in fixating on a spot.
The average of two B-scan images after global registration is
shown in Fig. 4(a). The arrow shows the local displacements of
two B-scans. Large displacements between B-scan images are
corrected via global registration.

Figure 3(a) shows a B-scan image obtained through the
graph-based algorithm during local registration. The smooth-
ness of the path is influenced by the discrete spatial nature of

Fig. 1 (a) Simplified path; (b) with pixel subdivision; and (c) new path
after pixel subdivision.
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the digital image. This is embodied by “break” phenomena
occurring at the two adjacent columns, where the relative axial
shifts differ jnj − nj−1j ≠ 0. “Break” phenomena are shown by
arrows in Fig. 3(a). These phenomena cause discontinuities in
the layered retinal structure and influence estimations of the reti-
nal thickness of each layer in the average image. The layered
retinal structure becomes smoother after pixel subdivision, as
shown in Fig. 3(b). Figure 4(b) shows the average image of the
two B-scans after local registration. Figures 4(c) and 4(d),
respectively, show the magnified images of the rectangular
boxes in Figs. 4(a) and 4(b). The layered retinal structure is
blurred in Figs. 4(c) and 4(d). Local displacements are compen-
sated and the images are aligned after local registration.

The computational cost of the local registration algorithm is
O½ð2pþ 1Þ2 · M · N�, where (−M;M) is the value range of nj.
Given that nearly all the local displacements are less than 10
pixels, we can limit the value range of nj to improve the

Fig. 2 Multiple consecutive B-scan images of the human retina.

Fig. 3 (a) Optical coherence tomography (OCT) image obtained
through the regularized shortest path algorithm during local registra-
tion; the arrows denote “break” phenomena. (b) Image obtained
through pixel subdivision (subdivision factor).

Fig. 4 (a) Average of two images obtained after global registration;
the arrow denotes the local displacement of the two images.
(b) Average of two images obtained after global and local registra-
tions. (c) and (d) show the magnified images of the rectangular
boxes in (a) and (b), respectively.

Fig. 5 OCT B-scan images of the human retina from a healthy sub-
ject: (a) single B-scan and (b) average image obtained after global
and local image registrations. NFL: nerve fiber layer; GCL: ganglion
cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL:
outer plexiform layer; ONL: outer nuclear layer; ELM: external limiting
membrane; IS/OS: inner and outer segment junctions of the photo-
receptor; and RPE: retinal pigmented epithelium.
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algorithm efficiency. Here, we chose −10 < nj < 10 to reduce
computational costs (M is usually much larger than 10).

A single B-scan from a healthy subject is shown in Fig. 5(a),
and the final aligned average of 30 B-scans is shown in Fig. 5(b).
The structure of the retinal layers is shown more clearly in the
averaged image. To assess the performance of the proposed
method, we used signal-to-noise ratio (SNR) and contrast-to-
noise ratio (CNR) to measure the image quality quantitatively.
The SNR is defined as8

SNR ¼ un
σn

; (12)

where un and σn are the respective mean and standard deviation
of the background region in the image. Also, the CNR is defined
as15

CNR ¼ ð1∕RÞ
XR
r¼1

�
ur − unffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2r þ σ2n

p
�
; (13)

where ur and σr are the respective mean and standard deviation
of the regions of interest (ROIs), which are the OCT signals of

the image. We manually selected five small rectangles with 10 ×
10 pixels as ROIs (R ¼ 5) and a large rectangle as the back-
ground region, as shown in Fig. 5(a).

Figure 6 shows the improvements in SNR and CNR as func-
tions of the number of averaged images. The method proposed
in this study performs better than that proposed in Ref. 18 in
terms of both SNR and CNR. SNR improvement in our method
closely resembles the square root of N, which is the number of
averaged images. A factor of around 11 can be obtained during
CNR improvement when the number of averaged B-scan images
is around 15. The CNR does not show obvious improvement
when over 15 images are used, as shown in the figure.

To assess the performance of the loss of spatial resolution
brought by our technique, we compared the profile of the inner
and outer segment junctions (IS/OS) layer taken from a single
A-scan of a single image and an averaged image. Figure 7
presents a region of the IS/OS layer taken from a single A-scan
at the foveal region as the white line shown in Fig. 5(a). We
measured the full-width-at-half-maximum of the profile, and the
profile broadens by about 2 μm in the averaged 30 B-scan
images. It shows that the loss of spatial resolution in the pro-
posed technique is very small compared with the resolution of
the system (i.e., 15 μm). Although there is some slight loss of
spatial resolution in the averaged image, the reduction of noise
makes the structure of the retinal layers clearer [Fig. 5(b)].

4 Conclusions
A method for speckle reduction in OCT by combining global
and local image registrations has been proposed in this paper.
The method does not rely on any information about the retinal
layer boundaries and is able to correct translation, rotation, and
local deformation in the axial direction. The experimental results
showed that the proposed method is an efficient way to align
successive images and provides speckle reduction. An SNR
improvement of nearly

ffiffiffiffi
N

p
and a CNR improvement of around

11 were obtained. The application of this method to align and
average OCT images leads to improvements in image quality,
which could be beneficial for the identification of retinal struc-
tures and clinical diagnosis.
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Fig. 6 Improvements in signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as functions of
the number of averaged images.

Fig. 7 The IS/OS layer taken from a single A-scan at the foveal region
[as the white line shown in Fig. 5(a)] of single image and averaged
image.
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