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Abstract. As a high-resolution imaging mode of biological tissues and materials, optical coherence tomography
(OCT) is widely used in medical diagnosis and analysis. However, OCT images are often degraded by annoying
speckle noise inherent in its imaging process. Employing the bilateral sparse representation an adaptive singular
value shrinking method is proposed for its highly sparse approximation of image data. Adopting the generalized
likelihood ratio as similarity criterion for block matching and an adaptive feature-oriented backward projection
strategy, the proposed algorithm can restore better underlying layered structures and details of the OCT image
with effective speckle attenuation. The experimental results demonstrate that the proposed algorithm achieves a
state-of-the-art despeckling performance in terms of both quantitative measurement and visual interpretation. ©
2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.3.036014]
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1 Introduction
Optical coherence tomography (OCT) is an emerging optical
imaging technology that performs high-resolution, cross-sec-
tional tomographic imaging of internal structures in biological
systems and materials.1 It is a noninvasive imaging modality and
plays an important role in medical clinical diagnosis and mon-
itoring of diseases of human retina.2 However, it takes advantage
of low-coherence interferometry, which inevitably introduces
speckle noise.3 Speckle noise can mask image features,
which severely degrades the OCT imaging quality for clinical
diagnosis and analysis. Mathematically, to attenuate speckle
noise can be formulated as an estimate problem, i.e., finding an
approximation of an original image x from its observed one y2–4

EQ-TARGET;temp:intralink-;e001;63;290y ¼ x · n; (1)

where n denotes the multiplicative speckle noise.
There are many approaches to solve this problem. Methods

to reduce speckle noise of OCT images are mainly divided into
two categories. The first type of method uses physical tech-
niques, such as the frequency compounding,5 strain com-
pounding,6 angular compounding,7 and spatial averaging,8 to
address the noise problem before final image formation. How-
ever, this method is not easily adapted to standard commercial
OCT systems, because it requires significant modifications of
the hardware of existing imaging systems. The second type of
method relies on postprocessing of images, such as methods
based on total variation and diffusion equation,2,3,9 wavelet
decomposition,4 local statistical,10 self-similarity, and sparsity-
based methods.11–17 A second-order total generalized variation
model was introduced for image decomposition to remove

speckle noise from OCT images.2 Gong et al. gave an algorithm
with total variation regularization in OCT;3 it realized sufficient
speckle noise reduction with delicate edge preservation. Jian
et al. described an algorithm based on shrinkage in the curvelet
domain to attenuate speckles in OCT images.4 Bernardes
et al. proposed a special method named nonlinear complex dif-
fusion filter (NCDF).9 An algorithm for speckle noise reduction
in OCT was proposed based on log-space general Bayesian
estimation.10 These algorithms can reduce noise to a certain
extent, but they can also lead to the loss of image details and
consequently blur important image features.

In addition to the above-mentioned methods, more advanced
algorithms are also used to remove the noise in OCT images.
Fang et al. proposed the multiscale sparsity-based tomographic
denoising (MSBTD) method.11 They learned a sparse represen-
tation dictionary for each high signal-to-noise (SNR) ratio
images and utilized such dictionaries to denoise the low-
SNR B-scans. Sparsity-based simultaneous denoising and inter-
polation improves MSBTD by utilizing sparse representation
dictionaries constructed from previously collected datasets
instead of high-quality images from the target imaging subject,
which method is known as sparsity based simultaneous denois-
ing and interpolation (SBSDI).17 Yu et al. presented a two-stage
probability-based nonlocal means (PNLM) algorithm to effec-
tively reduce speckle noise.12 Aum et al. proposed a nonlocal
means filter with double anisotropic Gaussian kernels substitut-
ing for the conventional homogeneous kernel to remove speckle
noise from OCT images.13 Thapa et al. proposed a speckle noise
reduction method for OCT images called multiframe weighted
nuclear norm minimization.16 These algorithms search similar
image blocks with the common Euclidean distance, which
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may have a good effect on additive noise, but it was not ideal for
the treatment of multiplicative speckle noise.18 The stable addi-
tive noise is independent of the optical signal, yet the speckle
noise is related to the signal. In addition, for lack of adaptive
filtering of different image features, these algorithms often
lose some important image information and lead to blurred
image details to some extent.

In order to solve these problems, we propose a new sparsity-
based approach to restore OCT images: adaptive singular value
shrinking method based on generalized likelihood similarity.
The main contributions of our work include:

1. Block matching by the generalized likelihood similar-
ity. Many repetitive patterns can be found in OCT
images and many blocks are similar to a local one.
Therefore, the nonlocal self-similarity prior is a very
strong and successful one for image denoising. Consi-
dering the intensity and spatial correlation of OCT
data, and the characteristics of speckle noise, we pro-
pose a generalized likelihood ratio criterion to look for
similar blocks. Image blocks are first extracted from a
noisy OCT image by an overlapping way. For each
local block, in a search window, a similar group is
assembled using a block-matching method based on
the generalized likelihood similarity. These similar
image blocks are respectively stretched into column
vectors and then arranged in order, so that a highly
correlated low-rank matrix can be formed. An adaptive
singular value shrinking is carried out on the matrix,
then restored image blocks are aggregated to obtain a
denoised OCT image.

2. Adaptive backward projection of image features. In
order to achieve better denoising performance, an iter-
ative adaptive regularization technique is adopted, which
gives different regularization parameters according to
the structural features of OCT images. Since speckle
noise has different effects on different structures of the
image, we propose a self-adaptive backward projec-
tion function in the backward projection stage. The
adaptive backward projection function can give differ-
ent projection parameters according to different struc-
tural features, so that the image information can be
well preserved.

The remainder of this paper is organized as follows. In
Sec. 2, we introduce the detailed process of the proposed

method. In Sec. 3, we show some experimental results of our
method, and compare it with other methods to validate its effi-
cacy. Finally, we conclude our work in Sec. 4.

2 Proposed Method
Speckle noise is signal dependent and has an impact on various
structures in the OCT data.19 In addition, considering the cor-
relation between the local block data of the OCT, we propose
a bilateral sparse denoising algorithm. The sparse representation
algorithms may be easily adapted by current users of commer-
cial OCT imaging systems.17 As a bilateral sparse representa-
tion,20 singular value decomposition (SVD) provides highly
sparser representation of image data, where bigger singular val-
ues mainly describe image structures, and smaller singular val-
ues are mainly related to speckle noise. Therefore, through
singular value shrinking, we can separate the useful information
of the OCT image from speckle noise. Adopting a new similarity
criterion for block matching and an adaptive backward projec-
tion strategy, the proposed algorithm can restore better under-
lying layered structures and details of the image as shown in
the following experiments. Figure 1 shows a block diagram
of the proposed method, where K represents the final number
of iterations. In the rest of this section, the procedures of our
proposed method will be described in detail.

2.1 Generalized Likelihood Matching

A simpler and more effective grouping of a mutually similar
block can be realized by matching, and the formed group is
a low rank and sparse matrix. Block matching is employed
to find blocks that exhibit high correlation to a given reference
one. That is achieved by pairwise measuring the similarity
between the reference block and candidate block.

The proposed singular value shrinking method first estimates
the denoised image block, then it estimates each image pixel
included in multiple image blocks to restore the whole image
by aggregating denoised image blocks. After overlapping
image blocks are extracted from a noisy OCT image y, for a
noisy image block Yi with size W ×W, block matching is
needed to assemble a block group based on certain similarity
criterion in a square L × L search window centered at Yi.
The reference block Yi and its N-most similar blocks denoted
Yj; ðj ¼ i; 1; 2; : : : ; N − 1Þ are chosen to construct a group
matrix using each similar block as a column of the group matrix,
and its corresponding block group matrix Yi is formed by
Yi ¼ ½Yi; Y1; ···; YN−1�. In the similar matrix, the corresponding
columns from similar image blocks lead to lower rank of the
similar matrix21 and, consequently, a highly sparse representation

Fig. 1 Flowchart of the proposed OCT image denoising algorithm.
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of image blocks by SVD. That is, the singular energy of the
similar matrix concentrates on the first few bigger singular val-
ues, which benefits the separation of speckle noise from the
noisy OCT image.

In order to adapt the proposed algorithm to the multiplicative
speckle noise in Eq. (1), from the viewpoint of statistical infer-
ence,19 we elaborate a similarity criterion based on generalized
likelihood ratio18 for image block matching

EQ-TARGET;temp:intralink-;e002;63;664GðYi; YjÞ ¼
P½PðYi ∘ YjÞ�PnP½ðYi þ YjÞ ∘ ðYi þ YjÞ�

o ; (2)

where GðYi; YjÞ is the similarity measurement between the esti-
mated block Yi and its neighbor block Yj.

P½PðYi ∘ YjÞ� cal-
culates the sum of all elements of the matrix Yi°Yj. Note that
Yi ∘ Yj represents an elementwise product of two matrixes Yi
and Yj.

Through mathematical induction, one can know that no mat-
ter what size of blocks Yi and Yj, when two blocks are the same,
GðY1; Y2Þ has a maximum of 1

4
. The more similar two blocks

are, the closer the value of GðYi; YjÞ is to 1
4
. Therefore, we cal-

culate the similarity between the reference block and the candi-
date block according to Eq. (2). Then, we select N larger
candidate blocks of G as similar blocks of the reference block.

In general, the larger the size of the search window is, the
bigger the number of similar blocks is. However, the bigger
the number of similar blocks is, the worse the correlation
between them is and the longer the running time is. Therefore,
we empirically determine the number of similar blocks. For
example, in this paper, we take the size of the search window
L to be 11, and the number of similar blocks N to be 40.

2.2 Singular Value Shrinking

For the similar matrix Yi from similar matching blocks, an SVD
is used

EQ-TARGET;temp:intralink-;e003;63;351Yi ¼ UiΣiVT
i ; (3)

where Ui and Vi are unitary singular matrixes, Σi is a diagonal
singular value matrix.

Considering bigger singular values mainly describe image
structures while smaller singular values are mainly related to
speckle noise, we denoise the OCT image with speckle noise
by singular value shrinking

EQ-TARGET;temp:intralink-;e004;63;257X̂ i ¼ UiFiðΣiÞVT
i ; (4)

where X̂ i is the estimated image block, and FiðΣiÞ is a shrinking
function on the diagonal matrix Σi.

Properly choosing the shrinking function is a very important
technique for reliably estimating the underlying real image.
Here, observing that bigger singular values characterize image
structures more importantly, we shrink these singular values
with smaller strength in proportion as their importance.22

In the soft-threshold shrinking framework,23 we choose the
shrinking function as

EQ-TARGET;temp:intralink-;e005;63;131FiðΣiÞ ¼ diag
h
max

�
Σij − ωij; 0

�i
; (5)

where diag is a diagonal operator, and the j’th threshold value
ωij is designed to be inversely proportional to the j’th singular
value λij of the similar matrix Yi

EQ-TARGET;temp:intralink-;e006;326;752ωij ¼
c

λij þ ε
; (6)

where c > 0 is a constant, and ε ¼ 10−10 is to avoid dividing
by zero.

2.3 Aggregation

By aggregating all the estimated image blocks, the whole image
can be reconstructed. As a result of taking the neighbors of each
block to construct a similar group, a single block might belong
to several groups, and multiple estimates of this block can be
obtained. Thus, we aggregate different estimates of this block
to obtain a denoised version x̂ of the noisy OCT image by simple
averaging.

2.4 Adaptive Backward Projection

In order to achieve better denoising performance, an iterative
regularization method is proposed by using the backward pro-
jection technique,24 which is an efficient trick using the residual
image to improve the denoised result. The proposed method is
an iterative process, where the aim of the backward projection is
to retrieve lost information from the difference between the
original noisy image and the last denoised image. Thus, in
the current denoising process, a new noisy image is constructed
by adding back some information eliminated in the last step to
the last denoised image

EQ-TARGET;temp:intralink-;e007;326;450yðkþ1Þ ¼ x̂ðkÞ þ δ
h
y − x̂ðkÞ

i
; (7)

where y is the original noisy image, and x̂ðkÞ is the denoised
result produced in the k’th iteration stage. yðkþ1Þ is a new
noisy image, which is used for the ðkþ 1Þ’th iteration.
δ ∈ ð0; 1Þ is a projection coefficient: when δ → 0 a loss of image

Algorithm 1 Adaptive singular value shrinking

1. Input: Noisy image y

2. Initialize x̂ ð0Þ ¼ y; y ð0Þ ¼ y

3. for k ¼ 1∶K do

4. Compute adaptive back projection parameter δ.

5. Backward projection: y ðkÞ ¼ x̂ ðk−1Þ þ δ
h
y − x ðk−1Þ

i

6. for each block Y i in y ðkÞ

7. Find similar image blocks to form similar matrix Y i

8. SVD: ½U;Σ; V � ¼ SVDðY i Þ

9. Estimate threshold value vector ωi

10. Obtain the estimation: X̂ i ¼ UF i ðΣÞVT

11. end for

12. Aggregate X̂ i to form denoised image x̂ ðkÞ

13. end for

14. Output: Estimated image x̂ ðK Þ

Journal of Biomedical Optics 036014-3 March 2018 • Vol. 23(3)

Chen et al.: Speckle attenuation by adaptive singular value shrinking. . .



information tends to appear; when δ → 1 the ðkþ 1Þ’th estima-
tion tends to be the same as the first one.

In order to retrieve lost information dropped by the estimated
result x̂ðkÞ, a key issue is the determination of the projection
coefficient δ. Generally speaking, image features such as
image edges and details are easy to be smoothed out because
image denoising is a low-pass filtering process, removing some
high-frequency components in the image.

Based on the above considerations, to preserve image infor-
mation better we should mainly supplement image edges around
layered structures rather than flat regions during the iteration.
Therefore, the projection coefficient function δ is designed as
follows:

EQ-TARGET;temp:intralink-;e008;63;609δ ¼

8>>>>>><
>>>>>>:

min
h

t
Mði;jÞþt ; s

i
; Mði; jÞ ≥ t and Mði;jÞ−t

Mði;jÞ ≥ s

min
h

Mði;jÞ
Mði;jÞþt ; s

i
; Mði; jÞ ≥ t and Mði;jÞ−t

Mði;jÞ

min
h
Mði;jÞ

t ; ξ
i
; 0 ≤ Mði; jÞ < t

(8)

where the parameter t is the optimal gradient threshold of image
edge obtained by the Otsu algorithm.25 On the OCT image, the
local image gradient Mði; jÞ at each point ði; jÞ is calculated
with the finite difference method in eight directions within a 3 ×
3 local window

EQ-TARGET;temp:intralink-;e009;326;752Mði; jÞ ¼
P

1
p¼−1

P
1
q¼−1 jyði; jÞ − yðiþ p; jþ qÞj

8
: (9)

The mean gradient of image is obtained by averaging all
local gradients Mði; jÞ in the image of size m × n

EQ-TARGET;temp:intralink-;e010;326;695Mimage ¼
P

m
i¼1

P
n
n¼1 Mði; jÞ

m × n
: (10)

Moreover, the edge gradient of imageMedge is the average of
Mði; jÞ satisfying Mði; jÞ ≥ t.

s is a threshold on image edge, which is defined as

EQ-TARGET;temp:intralink-;e011;326;620s ¼ Medge −Mimage

Medge

: (11)

Obviously, 0 < s < 1.
When Mði; jÞ ≥ t, yði; jÞ is regarded as on an edge of the

image. If Mði;jÞ−t
Mði;jÞ ≥ s, then one can derive Mði; jÞ ≥ t

ð1−sÞ: the
gradient Mði; jÞ is much larger than the optimal edge threshold
t, and we think that the pixel ði; jÞ is on a relatively stronger
edge. And δ ¼ min½ t

Mði;jÞþt ; s� is set to keep boundaries of the

image, where δ decreases as the gradient becomes larger.

Otherwise, if Mði;jÞ−t
Mði;jÞ < s, then one can derive Mði; jÞ < t

ð1−sÞ, so
we think the gradient Mði; jÞ and the optimal edge threshold t
are relatively close, and the pixels are on relatively weak edge,

Fig. 2 Despeckling a noisy OCT image: (a) noisy image, (b) averaged image, results by (c) NCDF,
(d) SBSDI, (e) PNLM, and (f) proposed methods, respectively.
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and δ ¼ min½ Mði;jÞ
Mði;jÞþt ; s� is set, where δ increases as the gradient

becomes larger, but it is always smaller than s. When

0 ≤ Mði; jÞ < t, yði; jÞ is regarded as in a flat region, and δ ¼
min½Mði;jÞ

t ; ζ� is set to maintain image details, where ζ is an
empirical parameter.

To summarize, the complete procedure of our proposed
method is described in Algorithm 1.

3 Experimental Results
To evaluate the effectiveness of our proposed method, we com-
pare its performance with some advanced denoising approaches:
NCDF,9 SBSDI,17 and PNLM.12 In our experiments, the param-
eters for NCDF, SBSDI, PNLM, and the proposed method for
despeckling OCT images are selected for best quantitative met-
rics of filtered results. All methods are implemented using the

MATLAB® programming on a desktop computer with 2.83 GHz
CPU and 4 GB Memory.

Raw OCT images in the dataset from volunteers at the Duke
Eye Center17 are employed to show despeckling effects of
related methods. In the dataset, multiple repeated B-scan images
are used to produce averaged images as referred noise-free
images for image filtering comparison. In the experimental sec-
tion, we selected the parameters empirically and kept them
fixed. Note that, the optimal choices for such parameters should
depend on the specific application. At the end of this section, we
show the effect of the size and number of similar blocks on the
experimental results.

We randomly select six OCT images from the dataset for fol-
lowing experiments of speckle noise removal. Due to limited
space, we do not show them one by one, but only give a com-
parison of the denoising effect of one of the images. Among
these, in Fig. 2, a noisy OCT image is despeckled by related

Fig. 3 Comparison of local layered structure in denoised OCT image: (a) noisy image, (b) averaged
image, results by (c) NCDF, (d) SBSDI, (e) PNLM, and (f) proposed methods, respectively.
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filtering methods, where we adopt c ¼ 10, K ¼ 4, ζ ¼ 0.36,
L ¼ 11, W ¼ 15, and N ¼ 40 in our method. For the sake of
clarity, the local layered structure of the despeckled OCT
image is furthermore shown in Figs. 3 and 4.

One can see that, for the observed OCT image, the layered
structures and details are blurred heavily due to bigger speckle
noise. By averaging multiple repeated images, speckle noise in
the averaged image is effectively reduced though a little noise
still remains all over the whole image, and the layered structures
and details become relatively clearer than those of the noisy one.
The NCDF method cannot remove noise effectively with most
noise remained, and the layered structures and details are still
blurry. Both SBSDI and PNLM methods reduce noise effec-
tively, which make the layered structures clearer for one to
observe. But these two methods produce nonsmooth layered
structures bad for further image measurement and analysis in
next clinic medical practice. Only the proposed method fully
removes speckle noise preserving smooth layered structures
and details. Sufficient speckle noise suppression makes layered
structures observed clearly, which is helpful for next reliable
edge detection and thickness measurement of layered structures.

To demonstrate the superiority of our algorithm, we analyze
several quantitative metrics in addition to previous visual effect
evaluations. The peak signal-to-noise-ratio (PSNR),18 feature
similarity metric (SSIM),16 equivalent number of looks (ENL),3

and cross correlation (XCOR)4 are calculated to evaluate des-
peckling results of different algorithms quantitatively. Apart
from the whole image, some regions of interest marked in the
green box in the noisy image in Fig. 2(a), which is also selected
to demonstrate the performance of related algorithms for des-
peckling local layered structures. The averaged metrics from
six test images are listed in Table 1. In addition, the averaged
metrics from five RIOs on Fig. 2(a) are shown in Table 2.

In Table 1, one can observe that our algorithm harvests the
best PSNR, SSIM, and XCOR results, and the SBSDI algorithm
provides the best ENL result. The reason for the smaller ENL of
our algorithm may result from the denoising process, which may
treat some speckle noise as the edge, but this situation has little
effect on the overall effect of the algorithm. Therefore, for the
whole OCT image, the proposed algorithm preserves more details
and better suppresses speckle noise. In Table 2, our algorithm has
the highest PSNR, SSIM, and XCOR results. Therefore, com-
pared with other algorithms, our algorithm is the best in respect
of the local layered structures denoising effect. The quantitative
comparison further demonstrates the better recovery of both noisy
RIOs and the whole OCT image by the proposed method due to
its feature preserving suppression of speckle noise.

In addition to the previous metrics, we are looking at the
complexity of the algorithm. The running time of all the meth-
ods is list in Table 3. It is worth noting that PNLM algorithm is
written in C or Cþþ language, but our algorithm is written in
the pure MATLAB® language. We believe that the running time

Fig. 4 Comparison of edge area in denoised OCT image: (a) noisy image, (b) averaged image, results by
(c) NCDF, (d) SBSDI, (e) PNLM, and (f) proposed methods, respectively.

Table 1 Averaged metrics of different denoising methods for six test
images.

PSNR SSIM XCOR ENL

NCDF 26.5202 0.5017 0.9914 7.4843

SBSDI 30.3458 0.7067 0.9966 8.8788

PNLM 29.6919 0.7085 0.9964 8.4714

Proposed 30.5445 0.7141 0.9967 8.6624

Note: The best results are marked in bold
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of our algorithm can be greatly reduced when implemented with
C or Cþþ. Moreover, the time of SBSDI does not include the
running time of training the completed dictionary, which has
higher computational complexity. Therefore, our algorithm
will promote the application of OCT imaging in diagnosis
and analysis of medical diseases.

Finally, through Tables 4 and 5, we give the influence of
these empirical parameters on the experimental results of the
proposed algorithm, where we only adjust one of the parameters
keeping other parameters unchanged.

In Table 4, one can see that, as the block size increases, the
PSNR and SSIM performance of the proposed method are
expected to slightly improve. However, this improvement in per-
formance comes with the decrease in the ENL. In addition, when
the block size is 15 × 15, its denoising effect is relatively better
and the shortest time is used. In Table 5, as the number of similar
blocks increases the running time also gradually increases.
Moreover, when the number of similar blocks is 40 the best
denoising effect is achieved, and the structure of the image is
well protected. Therefore, based on Tables 4 and 5, as well
as experimental tests on other OCT data (not listed here), a com-
promise strategy is used to select the empirical parameters. For
example, 15 × 15 is adopted as the block size and the number of
similar blocks is 40 in our method.

4 Conclusion
An adaptive singular value shrinking based on the generalized
likelihood ratio matching is studied in this paper. The proposed
algorithm benefits from the highly sparse approximation of
image data by the bilateral singular value shrinking, the proper
similarity criterion for block matching, and the adaptive feature-
oriented backward projection strategy. Thus, in comparison with
some advanced algorithms, the proposed algorithm obtains sat-
isfactory visual effects and best image quality metrics. Finally,
the proposed method can be expected of more successful appli-
cations of OCT imaging in medical diagnosis and analysis.
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