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Abstract. Physiological monitoring is a critical aspect of in vivo experimentation, particularly imaging studies.
Physiological monitoring facilitates gated acquisition of imaging data and more robust experimental interpreta-
tion but has historically required additional instrumentation that may be cumbersome. As frame rates have
increased, imaging methods have been able to capture ever more rapid dynamics, passing the Nyquist sampling
rate of most physiological processes and allowing the capture of motion, such as breathing. With this transition,
image artifacts have also changed their nature; rather than intraframe motion causing blurring and deteriorating
resolution, interframe motion does not affect individual frames and may be recovered as useful information from
an image time series. We demonstrate a method that takes advantage of interframe movement for detection of
gross physiological motion in real-time image sequences. We further demonstrate the ability of the method,
dubbed tomographic breathing detection to quantify the dynamics of respiration, allowing the capture of
respiratory information pertinent to anesthetic depth monitoring. Our example uses multispectral optoacoustic
tomography, but it will be widely relevant to other technologies. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
During in vivo experiments, it is desirable to develop an under-
standing of the subject’s systemic physiology, to control for
experimental aberrations and to better interpret experimental
results. Physiological information may be particularly relevant
to imaging investigations. In magnetic resonance imaging
(MRI), for example, physiological monitoring enables the
acquisition of cardiac- and respiratory-gated images, enabling
better interimage correlations that are not corrupted by motion.
Tomographic imaging is a broad designation given to any
method that provides a cross-sectional slice of the imaged sub-
ject, whether it is material, human, or animal. As the hardware
for tomographic imaging systems has improved, so too has the
time resolution of image acquisition, such that interimage move-
ment is often substantially greater than intraimage movement.1

At the same time, computational resources have improved such
that real-time image reconstruction can be performed even using
model-based methods.2 This capability allows the imaging sys-
tem access to a train of reconstructed images in real time.
In realistic in vivo scenarios, some proportion of these images
will be displaced relative to others as a result of motion caused
by physiological processes, e.g., breathing, as noted in several
previous publications.3–6 Online averaging of images “smooths
out” this displacement7 but compromises resolution in the proc-
ess. This is due to the fact that averaging is ostensibly intended
to improve signal-to-noise ratio, according to the central limit
theorem (CLT). However, one of the central assumptions in

the CLT is that the distribution is stationary, which is clearly
not the case for a dynamic image. If some processing takes
place before averaging, however, we may derive useful informa-
tion regarding physiological motion. This motion information
has a benefit of being presynchronized to the image time series.
We demonstrate the concept in terms of respiratory motion
observed in freely breathing anesthetized mice undergoing
photoacoustic imaging during a gas breathing challenge.

2 Methods

2.1 Algorithm

The ability to correct for physiological motion is contingent
upon identifying it. Identifying differences between image
frames is a well-studied topic in the field of motion estimation
and video compression.8 We have chosen to implement a filter-
based approach (shown in Fig. 1, details in Appendix A) due to
its ease of implementation and low computational overhead.
In brief, the method bandpass filters two sequential images to
remove low-frequency contrast information and noise, giving
images primarily weighted toward edge contrast. We then apply
a box filter to reduce sensitivity to minor motion and calculate
the mean squared error (MSE) of the two images as

EQ-TARGET;temp:intralink-;sec2.1;326;152MSE ¼ 1

N

X

i;j

ðIk − Ik−1Þ2;

where N is the number of pixels in a given image, Ik is the cur-
rent filtered image, and Ik−1 is the previous filtered image. MSE
provides a measure of the degree of movement across the entire
imaging region. A fundamental assumption is that the image
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contrast changes relatively slowly from frame to frame, while
edge motion is guided by more rapid dynamics. This is reason-
able in many scenarios, including contrast agent infusion; as
large areas of contrast change do not affect the MSE due to
the initial high-pass step, any contrast change will be in a rel-
atively localized area and is unlikely to contribute substantially
to the MSE over the entire image plane.

There are many varieties of physiological motion which
degrade image quality and resolution, including respiratory,5

cardiac,6 and subject4 movement. In most in vivo imaging sce-
narios, suppression or compensation of this motion is rather
challenging. By tracking MSE over time, however, we may
take advantage of this motion to derive physiological informa-
tion without any additional instrumentation. In this study, we
use respiratory motion as an example, due to its approximate
periodicity and dominance in contributing to overall body
motion as compared to the relatively minor effects of cardiac
motion.

Given a time course of the MSE between images, we would
like to recover information about breathing rates and breathing
dynamics. To recover the breathing rate, we must perform some
form of time-frequency analysis, to determine the breathing rate
at each point in time. This might be achieved by determining the
time between individual peaks, but this approach is fundamen-
tally discontinuous and does not reflect our assumption that the
modulation of breathing dynamics is a continuous process. We
have, therefore, chosen to use wavelet analysis to preserve both
time and frequency continuity.9

We first subtract the mean of the pulse train and then apply
a synchrosqueezed wavelet transform (SSWT).10 The SSWT
effectively performs a standard one-dimensional wavelet trans-
form followed by localization in frequency, giving higher
time-frequency resolution than other methods. We may then
apply ridge detection to the resultant transform, recovering

the primary mode of the time series, which should correspond
to the instantaneous breathing rate at each point in time. This
instantaneous breathing rate, in turn, is time-continuous and
may be analyzed further to examine the stability of the breathing
rate, for example, with respect to anesthetic or gas monitoring.11

To accommodate periods of time when there may be lapses in
breathing, we note that the absence of a breathing signal
will correspond to lower total signal energy. If we threshold
based on this energy, then absence of breathing will be detected
whenever the total signal energy drops below the threshold.
We may improve robustness further by tracking the amount
of energy “around” the detected time-frequency ridge, which
will provide some amount of noise rejection. The details of
this approach are given in Appendix B.

A goal is to achieve a stable baseline from which variation
due to experimental interventions may be compared. In experi-
ments performed under anesthesia, it is critical that the
physiological state induced by a certain amount of anesthetic
is sufficiently stable so as to not introduce artifacts in
experiments.12 The monitoring of anesthetic depth is frequently
assessed using a combination of signals ranging from reflex
response13 to high-order statistical analysis of electroencepha-
lography data in the form of the bispectral index,14,15 but
most of these methods require specific instrumentation or con-
tact intervention.

We use an imaging modality known as multispectral opto-
acoustic tomography (MSOT)16,17 as an example of tomographic
imaging. MSOT illuminates an imaging target with wavelength-
selectable near-infrared light in pulses of duration on the order
of nanoseconds. This achieves stress confinement, inducing
local thermal expansion, and causing ultrasound pressure waves
to propagate from the point of absorption. These waves are then
detected by a circular transducer array surrounding the target,
providing data which may then be reconstructed into an
image coded by the selected wavelength of light.

2.2 Experimental Verification

All animal work was approved by the institutional animal care
and use committee at the University of Texas Southwestern in
accordance with United States federal guidelines.

MSOT data were acquired using an InVision 256-TF (iThera
Gmbh, Munich, Germany). The description of detailed technical
specifications is available elsewhere.16 Briefly, the imaged sub-
ject is coated in ultrasound gel, wrapped in a polyethylene film,
and placed in a holder, which allows the subject to rest in a
heated water bath. Wavelength-specific laser pulses then illumi-
nate the subject, causing photoacoustic thermal expansion,
which induces pressure waves that are then detected by circum-
ferentially arranged ultrasound transducers.

Specifically, an anesthetized female nude mouse in a supine
position was imaged cross sectionally at the level of the kidneys
and liver in a water bath at 35°C. This area has both rich struc-
ture and substantial diaphragmatic motion resulting from breath-
ing. Data were collected at wavelengths ranging from 700 to
860 nm, in steps of 20 nm. Four laser shots were acquired
per wavelength, unaveraged at a rate of 10 Hz. This wavelength
set was then acquired repeatedly for the entire imaging session.
Images of a 2.5-cm field of view were reconstructed using
ViewMSOT® v3.6 software (iThera Gmbh, Munich, Germany)
to a resolution of 75 μm. Data were collected from a mouse
breathing isoflurane and medical air or 100% oxygen [Fig. 2(a),
upper]. After a preliminary imaging session of ∼20 min to

(b)(a)

Fig. 1 Cartoon overview of the method: (a) an image series (e.g.,
Video 1, MP4, 129 kB [URL: http://dx.doi.org/10.1117/1.JBO.23.5
.056011.1]) is bandpass filtered and (b) the MSE between each
sequential image is calculated. This error may then be used to
infer the presence of motion between a given pair of frames.
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acclimate the mouse to the water bath temperature and warm up
the device’s laser, the level of anesthetic was varied to induce
changes in breathing rate under several anesthetic conditions
(1.5%, 2%, and 2.5% isoflurane) in one continuous scan over
a period of 35 min. The breathing gas was switched from air
to oxygen at 20 min to observe any substantial variations in
breathing rate due to the pO2 of inspired gas.18 Reconstructed
image data were then processed using methods available from
the Image Processing and Wavelet Toolboxes in MATLAB®

(The MathWorks Inc.).
Objective validation of the quantified breathing rate was per-

formed by manual tagging of breathing events in the image time
series. These manually registered tags were then gridded via
nearest-neighbor interpolation and smoothed by convolution
with a triangular kernel to lessen harmonic interference. The rec-
tified dataset then underwent the same time-frequency analysis
as the MSE data.

3 Results
When applied to the breathing video (Video 1), tomographic
breathing detection (TBD) was able to extract respiratory
motion with high reliability [Fig. 2(a), lower]. After SSWT
analysis, the method was able to quantitatively return the breath-
ing rate over a wide range of respiratory behaviors ranging from
highly regular, consistently spaced breathing [Figs. 2(c), 2(e),
and 2(f)] to intermittent, irregular breathing [Fig. 2(d)], and
at a range of breathing rates. Interestingly, the change to oxygen
at 20 min was not seen to dramatically increase respiratory activ-
ity, in contrast with previous observations.18 We attribute this
to the depth of anesthesia at the time of gas change, though
other explanations, such as systemic CO2 accumulation,19 are
possible.

Due to the ridge-finding algorithm’s presumption of continu-
ity, instances when the mouse ceased breathing for extended
periods introduced artifacts of spuriously high or low breathing

Fig. 2 (a, upper) Experimental protocol for isoflurane challenge. A mouse was induced while breathing
1.5% isoflurane in air at 2 L∕min for 20 min and then underwent the isoflurane and oxygen challenge
experiment. The animal breathed air for the first 20 min, at which point the breathing gas was switched to
oxygen. (a, lower) Breathing rate determined from the isoflurane challenge experiment with both the MSE
method and the manually annotated data. (b) Bland–Altman plot showing the variation in detected breath-
ing rate between the MSE and manual breathing traces. The differences between the methods have a
mean of 0.0� 3.3 bpm. (c–f) Time courses of MSE and recovered breathing rate under (c) 2.0%, (d, e)
2.5%, and (f) 1.5% isoflurane exposure, while breathing (c, d) air and (e, f) oxygen. In (d), we see the
capture of a breathing transient in compensation for suspended breathing, whereas (f) shows the
increased breathing rate due to switching back to 1.5% isoflurane. Note the change of scale in (e, f).

Journal of Biomedical Optics 056011-3 May 2018 • Vol. 23(5)

O’Kelly et al.: Tomographic breathing detection: a method to noninvasively assess. . .

http://dx.doi.org/10.1117/1.JBO.23.5.056011.1


rates. In practice, however, these rates would be easily identified
by masking the breathing rate based on the energy thresholding
approach described in Appendix B.

4 Discussion
We have demonstrated a method to recover breathing dynamics
from imaging sequences with high temporal resolution, even in
scenarios with changing illumination and contrast. The periodic
respiratory motion is readily recoverable through a simple algo-
rithm and yields breathing information that strongly recapitu-
lates objectively validated data.

The method, as presented, is quite rudimentary yet captures a
substantial amount of information pertaining to respiratory
physiology. Extensions are manifold, ranging from more sophis-
ticated edge filtering to online SSWT analysis,20 any of which
could substantially improve practicality without necessarily
adding to the difficulty of implementation. We implemented
the method in the image domain, although most imaging
methods acquire their data in some other signal domain.
Nevertheless, similar processing may take place in the signal
domain by comparing variation between datasets. Additional
processing, such as retrospective clustering or dynamic resam-
pling of high-motion frames, could be performed using the MSE
signal as a feature, allowing for lower-complexity clustering
problems. The MSE signal may also be used as a criterion
for motion correction, by removing high-MSE images from
the dataset which is then averaged, as shown in Fig. 3.

TBD is context agnostic and could be applied to MRI, CT,
ultrasound, or any other imaging modality that provides tomo-
graphic images, including other, three-dimensional implementa-
tions of photoacoustic imaging,21 particularly those which
record data at near-real-time rates.22 The application of the
SSWT for the purposes of breathing detection may be applied
to any data that capture the motion of the chest wall, such as
laser range-finding or pressure transducers coupled to the imag-
ing water bath.5 Notably, the process is quite flexible and
requires relatively little parameter tuning; many different image

filters accomplish the task of recovering a suitable MSE signal.
Furthermore, the method preserves locality; many other meth-
ods correlate images across an entire dataset to provide motion
correction,5,6 which is unsuitable for imaging dynamic effects,
though some methods have adopted other sophisticated process-
ing methods to improve spatiotemporal resolution.22

The method has additional application to anesthetic depth
monitoring. A classification of anesthetic depth was provided
by Thomas et al.,13 Bhargava et al.,14 and Guedel et al.23 and
separates progression of anesthetic effect into four planes. Of
particular note is that plane II is a highly chaotic state providing
a poor baseline, characterized by irregular breathing and a gen-
erally unstable breathing rate, whereas breathing in plane III is
much more stable and regular and, therefore, preferable for
experiments, especially those which probe oxygenation status
as an experimental covariate.12

The effects of varying anesthesia in the isoflurane challenge
as shown in Fig. 2 are notable: the transition from 1.5% to 2.0%
isoflurane is marked by a substantial drop in mean respiratory
rate, as well as an increase in regularity. This likely corresponds
to the animal achieving a deeper plane of anesthesia, transition-
ing from planes II to III. Even within plane III, variations in
breathing rate in response to changes in isoflurane concentration
may be noted, particularly at the 25-min mark. The transition
from planes III to II, i.e., to a more mild state of anesthesia,
is seen at 30 min after switching to 1.5% isoflurane. The ability
to track animal respiration, potentially in real time, opens pos-
sibilities for more standardized experimental protocols, as well
as accounting for varying anesthetic sensitivity between groups
and individuals. Moreover, by forming a quantitative signal of
respiratory rate, a feedback system could be developed, which
varies the level of anesthetic delivered to a subject to achieve
a given respiratory rate.

Appendix A: Details of Image Analysis
Images are first high-pass filtered to remove contrast informa-
tion, as two consecutive images may be taken with different con-
trast parameters/wavelengths without having substantial motion.

These edge images are then filtered with a blurring/low-pass
kernel to perform rudimentary denoising, as well as to smooth
the calculation of the MSE. This filtering is given by the follow-
ing equation:

EQ-TARGET;temp:intralink-;x1;326;274Ifilt ¼ ðI ⊗ hhÞ ⊗ hl;

where hh and hl are the arbitrary high- and low-pass filters,
respectively. These filters may be combined into a bandpass fil-
ter or left separate in cases of nonlinearity (e.g., using a median
filter as the low-pass filter). In this study, we simply used
MATLAB®’s default “unsharp” filter for high pass and the
median filter for low pass, though we found a number of differ-
ent combinations to be effective.

The point-wise difference of the sequential images is taken as

EQ-TARGET;temp:intralink-;x1;326;155Id ¼ Ifilt½k� − Ifilt½k − 1�:

By high-pass filtering the images, we generate a representa-
tion that is insensitive to contrast but retains edge definition.
We then take the difference of consecutive high-passed images,
generating a correspondence image. This correspondence image
should be near-zero if the images are well-registered and,

Fig. 3 Comparison of averaged images (a) without (N ¼ 32) and
(b) with (N ¼ 12) removal of image frames exceeding the first quartile
of the MSE distribution. Improved resolution due to decreased blurring
may clearly be seen, particularly in regions with rich vascular structure
(insets). The images are pooled from the 800-nm channel of the first
300 image frames of Video 1.
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similarly, should have some mismatch across its field of view if
they are not. From there, we may calculate the MSE of the given
image in relation to its predecessor

EQ-TARGET;temp:intralink-;x1;63;719MSE½k� ¼ 1

N

X

i;j

ðId½k�Þ2:

This process may then be repeated over a dataset or as data
arrives from the imaging procedure. Pairs of images with low
MSE will correspond to images that are relatively well-aligned,
while pairs of images with high MSE will correspond to images
where there is some gross motion.

Appendix B: Energy Thresholding
Given an MSE trace for all time indices k, as in Appendix A,
we perform an SSWT to return a time-frequency image with
time index k and frequency bin ν

EQ-TARGET;temp:intralink-;x2;63;537W½k; ν� ¼ SSWTðMSE½k�Þ:
Then applying a ridge-finding algorithm will return the dom-

inant signal trace given as

EQ-TARGET;temp:intralink-;x2;63;484N½k� ¼ RidgeFindðW½ν; k�Þ:
Locally summing the energy around this trace can be accom-

plished by taking the sum of absolute values in the time-
frequency bins around the ridge

EQ-TARGET;temp:intralink-;x2;63;420E½k� ¼
XJ

j¼−J
jW½k;N½k� þ j�j;

where J is an integer number, J ¼ 5 in this study, though the
number of local bins depends on the time-frequency resolution
chosen in the wavelet transform. This summed value then pro-
vides an energy term that may be thresholded to create a mask of
“valid” breathing rates

EQ-TARGET;temp:intralink-;x2;63;314Nvalid½k� ¼ fN½k�jE½k� ≥ τg:
We acknowledge that the precise value of τ is subject to some

degree of tuning and is dependent on the nature of the image and
signal statistics. Automatic determination of this threshold may
be a fruitful direction of future investigation.
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