
Optical sampling depth in the spatial
frequency domain

Carole K. Hayakawa
Kavon Karrobi
Vivian Pera
Darren Roblyer
Vasan Venugopalan

Carole K. Hayakawa, Kavon Karrobi, Vivian Pera, Darren Roblyer, Vasan Venugopalan, “Optical sampling
depth in the spatial frequency domain,” J. Biomed. Opt. 24(7), 071603 (2019),
doi: 10.1117/1.JBO.24.7.071603.



Optical sampling depth in the spatial frequency
domain

Carole K. Hayakawa,a,b Kavon Karrobi,c Vivian Pera,c Darren Roblyer,c and Vasan Venugopalana,b,*
aUniversity of California at Irvine, Department of Chemical Engineering and Materials Science, Irvine, California, United States
bUniversity of California at Irvine, Beckman Laser Institute, Laser Microbeam and Medical Program, Irvine, California, United States
cBoston University, Department of Biomedical Engineering, Boston, Massachusetts, United States

Abstract. We present a Monte Carlo (MC) method to determine depth-dependent probability distributions of
photon visitation and detection for optical reflectance measurements performed in the spatial frequency domain
(SFD). These distributions are formed using an MC simulation for radiative transport that utilizes a photon packet
weighting procedure consistent with the two-dimensional spatial Fourier transform of the radiative transport
equation. This method enables the development of quantitative metrics for SFD optical sampling depth in layered
tissue and its dependence on both tissue optical properties and spatial frequency. We validate the computed
depth-dependent probability distributions using SFD measurements in a layered phantom system with a highly
scattering top layer of variable thickness supported by a highly absorbing base layer. We utilize our method to
establish the spatial frequency-dependent optical sampling depth for a number of tissue types and also provide a
general tool to determine such depths for tissues of arbitrary optical properties. © The Authors. Published by SPIE under a
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1 Introduction
The use of spatial frequency domain (SFD) methods for diffuse
optical imaging of biological tissues has gained significant trac-
tion in the biophotonics community since its introduction in
1998.1 SFDmethods combine a measurement of spatially modu-
lated reflectance at multiple spatial frequencies with light trans-
port models to determine optical and physiological properties of
the tissue in question. The power of SFD methods is demon-
strated most notably in spatial frequency domain imaging
(SFDI), where such measurements are made for every pixel in
a wide-field image. Such images provide functional mappings of
optical and physiological properties with submillimeter detail2

and temporal resolution limited to the spatial pattern projection
times.3

Diffuse optical methods utilize measurements made under
multiple illumination/detection configurations whether it be
multiple source–detector separations, delay times, and/or spatial/
temporal modulation frequencies. These configurations inher-
ently collect photons that have penetrated different tissue
volumes. Understanding the spatial regions that detected photons
have sampled, and their sensitivity to source–detector configura-
tion, is crucial in many situations, including the assignment of
optical properties to a given tissue volume, accounting for the
effects of tissue heterogeneities, measuring layered tissues, and
the performance of image reconstruction. While this problem has
been extensively studied for spatially/temporally resolved and
temporal frequency domain methods,4–16 extensive quantitative

assessments of the optical sampling depths relevant to SFD
methods are not prevalent in the literature.

Knowledge of tissue depths sampled by SFDI is important
for understanding and contextualizing measurements of lay-
ered and heterogeneous tissue, and is relevant to all clinical
and preclinical applications of SFDI described in the literature
to date. For example, SFDI has been investigated for multiple
applications in human skin, including burns,17 reconstructive
skin flaps,18 and skin malignancies.19 The layered structure
of skin, which includes the largely avascular superficial epider-
mis and deeper vascularized papillary and reticular dermis and
subcutaneous adipose tissue, requires knowledge of which
layers are being probed in order to avoid misleading or irrel-
evant measurements. For example, in applications involving
skin burns, the thickness of affected tissue dictates the treat-
ment protocol, highlighting the importance of understanding
the depth of tissue probed.20 SFDI is also being explored
for deeper tissue applications, including the measurement of
human breast tumors,21 where it is essential to understand
the penetration of collected photons in order to evaluate the
maximum depth of measurable tumor contrast. There has
been a growing interest in subdiffusive SFDI, which makes
use of high spatial frequencies (>0.2 mm−1) and has been
used in applications such as tumor margin detection.22

Again, quantitation of SFD sampling depth at these higher
frequencies will allow users of this technique to determine
the probed tissue thickness of resected specimens, which is
relevant for interpretation of such results relative to the specific
guidelines for clear margins for different tumor types.23

In the preclinical setting, SFDI has been used for small animal
tumor imaging to better understand cancer treatment response
and resistance.24 Photon sampling depth is essential for
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understanding what portion of the collected signal is due to
superficial skin versus subcutaneous tumor. Finally, multimo-
dality imaging, in which SFDI is combined with optical sec-
tioning techniques such as multiphoton microscopy or optical
coherence tomography, would benefit from knowledge of SFD
photon sampling depth to ensure data from each modality is
sampling similar tissue volumes.25

Prior efforts to analyze SFD sampling depth utilized an
approximate solution to the radiative transport equation
(RTE) based on a spherical harmonic expansion26 with errors
dependent upon the order of the expansion. Here, we formu-
late a method to analyze SFD sampling depth by developing
a Monte Carlo (MC) random variable that can be rigorously
derived from the RTE. In this method, the error associated
with the SFD sampling depth estimates is solely dependent
on the number of photon packets launched. We provide
both experimental validation for these results and sampling
depth statistics for a range of optical properties in a manner
that allows for rapid and accurate estimation for any candidate
tissue.

We describe four steps toward the use of MC simulations to
estimate SFD sampling depths. First, we provide a method to
determine optical sampling depth statistics for SFD measure-
ments using MC simulations. Second, we validate our simulated
results by performing a series of experimental measurements on
fabricated phantoms. Third, we apply our method to determine
sampling depths for real tissue types. Finally, we provide tabular
data and MATLAB code to generate sampling depth results for
any tissue type. The archived version of the code can be freely
accessed and executed through Code Ocean: https://doi.org/10
.24433/CO.124184d0-8268-4874-b237-7e5e559b543e.

2 Methods
We analyze the sampling depth of SFD measurements using MC
simulations that determine the sampling probability of detected
photon packets for specific depths. For this analysis, we utilize
the modified shortcut method (MSM)27 that directly performs an
MC simulation of the two-dimensional (2-D) spatial Fourier
transform of the RTE. Thus, the MC simulations are performed
directly in the SFD and not subject to inaccuracies that can result
from computation of the discrete Fourier transform of spatially
resolved reflectance simulation data. Our computational model
utilizes a representation that segments the tissue into z-plane
surfaces at uniform depth increments and determines the subset
of detected photon packets that traverse each depth. While
the computational system that we consider is spatially homo-
geneous, the approach that we introduce is general and appli-
cable to any layered tissue geometry.

To validate the computational predictions, we utilize a two-
layer phantom system with a highly scattering layer of water,
nigrosin, and TiO2 particles placed over a highly absorbing
layer of nigrosin-doped agar gel. We provide results of SFD
measurements performed on this two-layer phantom system
with differing thicknesses of the top layer for comparison with
the MC simulation results.

Below, we establish a rigorous metric for depth-dependent
probability of photon visitation and detection PV∩DðzÞ and
the use of an MC simulation for its computation. This depth-
dependent probability distribution is then related directly to the
measured SFD reflectance and used to define various metrics for
SFD optical sampling depth. We then discuss the details of our
SFD validation measurements.

2.1 Monte Carlo Probability of Visitation and
Detection PV∩D

We wish to characterize the spatial distribution of only those
photons that are launched by a specified source and sub-
sequently captured by a detector of interest. We accomplish
this by computing a “contributon” response function that was
first developed in the nuclear engineering community for the
solution of deep-penetration nuclear transmission problems
using MC methods.28–34 In the transmission problems, a surface
between the source and detector is first specified. A forward
simulation for photon transport from the source is then matched
with an adjoint simulation of photon transport from the detector
over the midway surface using the contributon response func-
tion. In a reflectance geometry, we use this idea to determine
the probability that detected photon packets have visited a
depth d within the tissue by defining the surface at the selected
depth as our midway surface. We determine the probability that
photon packets from the source “visit” d, PðVÞ, and then deter-
mine the probability that they will subsequently be detected,
PðDjVÞ. Bayes theorem35 is used to determine the probability
of visitation and detection, PV∩D

EQ-TARGET;temp:intralink-;e001;326;514PV∩D ¼ PðVÞPðDjVÞ: (1)

One method to determine only those photon packets that
originate from the source, travel to the midway surface, and
subsequently arrive at the detector, would be to match the
radiance determined by a forward simulation from the source
with an adjoint simulation from the detector over the midway
surface. This approach works well when the source and detec-
tor are “small” relative to the midway surface.14,36 In the bio-
medical optics community, the use of such coupled forward-
adjoint simulations has been used to address fluorescence
excitation and detection,37 “photon hitting density” maps,6

and tomographic sensitivity analysis for spatially resolved
reflectance.14,36,38

In this work, we produce PV∩D distributions for SFD mea-
surements using a single conventional MC simulation. We take
this approach because MC simulations of SFD methods utilize a
“small” source and “large” detector, i.e., light is injected into the
medium at a single point while detection occurs at all locations
on the tissue surface. In such a scenario, a conventional MC
approach provides better computational efficiency relative to
coupled forward-adjoint methods.38 Note that the SFD situation
is unique relative to other diffuse optical methods where both
“small” sources and “small” detectors are typically used.
Specifically, we create depth-dependent SFD PV∩DðzÞ distribu-
tions by defining parallel x − y planes, placed at regular

Fig. 1 Schematic of an SFD PV∩D MC simulation within a tissue
subdivided into layered surfaces.
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intervals of 0.01 mm below the tissue surface, as our midway
surfaces. We choose this interval size to provide submillimeter
resolution for our probability distributions. We then perform an
MC simulation that tracks those photon packets that both visit
these depths and are subsequently detected. Figure 1 shows
a schematic of the tissue segmented into layers using planes
located at depths z0 ¼ 0; z1; z2; · · · separated by height Δz.
These planes define midway surfaces at depths zi at which
PV∩DðziÞ is determined. We calculate PV∩DðzÞ by tracking
each photon packet from the source to these various midway
surfaces and from those surfaces to the detector. In doing so,
these calculations inherently combine the probability of a pho-
ton packet visiting the midway surface after being launched by
the source with the probability of detection after visiting the
midway surface.

The PV∩DðziÞ tallies are computed using an MC simulation
of radiative transport by determining the midway surfaces
visited by each detected photon packet. As mentioned earlier,
we utilize an MC simulation using the MSM27 that tallies the
photon packet weights directly in the SFD. A narrow, collimated
beam normally incident on the tissue surface is used as the
source within the simulation and the photon packets are trans-
ported using conventional MC propagation.39,40 The complex
weights specified by the MSM for the specified spatial fre-
quency provide both the amplitude change and phase shifts
that result in photon packet propagation from source to detector.
When utilizing illumination modulated along the x-axis at
spatial frequency fx, the SFD complex tally is27

EQ-TARGET;temp:intralink-;e002;63;444ξ ¼ W exp½−2πifxðxf − x0Þ�; (2)

where ξ is a random variable that represents the tally or detected
weight for each photon packet, W is the weight of an individual
photon packet as determined by discrete absorption weighting,41

x0 is the location along the x-axis where the photon packet enters
the tissue sample, and xf is the exiting x-axis location immedi-
ately prior to detection. Note that Eq. (2) can be used in layered
tissue systems. The optical property changes in each layer will be
implicitly captured by W and the location of xf .

For each detected photon packet, the SFD complex random
variable [Eq. (2)] is tallied for each midway surface that the pho-
ton packet crossed and notated as ξðziÞ. For example, if the pho-
ton packet reached a maximum depth zmax prior to detection,
the photon packet crossed all midway surfaces residing at
depths less than zmax. For the photon packet trajectory shown
in Fig. 1, the detected photon packet weight is tallied to the
midway surface z3 as well as all midway surfaces residing at
shallower depths because the photon packet also crossed those
surfaces. Once N photon packet trajectories are simulated, the
expected value of ξ for depth zi, E½ξðziÞ� produces the proba-
bility that the trajectory of a detected photon packet crossed
depth zi, PV∩Dðz ¼ ziÞ

EQ-TARGET;temp:intralink-;e003;63;178PV∩Dðz ¼ ziÞ ¼ E½ξðziÞ� ¼ lim
N→∞

1

N

XN
j¼1

ξjðziÞ; (3)

where N is the number of photon packets launched. By deter-
mining ξðziÞ for all the zi depths under consideration, we form
the depth-dependent probability distribution of photon packet
visitation and detection ¼ PV∩DðzÞ.

2.2 Monte Carlo Maximum Depth of
Penetration Pzmax

The PV∩DðzÞ distribution over all depths z does not result in a
directly measurable quantity because photon packets that con-
tribute to the PV∩D tally at a surface zi also contribute to PV∩D
tallies at all locations shallower than zi. However, we can use
PV∩DðzÞ to derive a distribution that isolates the contribution
of each detected photon packet to a single bin corresponding
to the maximum depth visited by that photon packet trajectory.
In doing so, we ensure that each detected photon packet is tallied
to only a single depth bin within the tissue. This distribution
is formed by taking differences of the PV∩DðzÞ tally in succes-
sive bins

EQ-TARGET;temp:intralink-;e004;326;602Pzmax
ðziÞ ¼ PV∩Dðz ¼ ziÞ − PV∩Dðz ¼ ziþ1Þ: (4)

We call Pzmax
ðzÞ the “zmax” distribution which isolates those

detected photon packets that crossed into depth zi but did not
cross into ziþ1. Because each photon packet is tallied only
once at its maximum depth of propagation “zmax,” Pzmax

ðzÞ
has the property that its integral over all depths z recovers
all the weight of all the detected photon packets, which is
equivalent to the total diffuse reflectance, Rd

EQ-TARGET;temp:intralink-;e005;326;494Rd ¼
Z

∞

0

Pzmax
ðzÞdz: (5)

If the upper limit of integration on the right-hand side of the
above equation is taken instead to some finite depth d, the result
would tally only those photon packets that contribute to the
reflectance and whose trajectories were restricted to depths
less than or equal to d. We notate this as Pzmax

ðz ≤ dÞ or

EQ-TARGET;temp:intralink-;e006;326;395Pzmax
ðz ≤ dÞ ¼

Z
d

0

Pzmax
ðzÞdz: (6)

This construct will be used to validate our MC simulation results
with our SFD measurements.

Division of Pzmax
ðz ≤ dÞ by Rd produces a probability distri-

bution function that describes the fraction ðXÞ of the detected
light that visited tissue depths d or less

EQ-TARGET;temp:intralink-;e007;326;297X ¼ Pzmax
ðz ≤ dÞ
Rd

: (7)

By setting the value of X in the above equation to a given value,
say 0.5 (or 50%), we can calculate the maximum tissue depth
d50 from which 50% of the detected reflectance emanates.

2.3 Experimental Validation

We used experimental SFD measurements to validate our com-
putational results. These measurements were taken in a two-
layer phantom designed to determine the optical sampling
depth as a function of spatial frequency. The two-layer phantom
was housed in a container with (L ×W ×H) dimensions of
7.2 cm × 10.8 cm × 6.1 cm. The top layer of the phantom was
a liquid composed of water, nigrosin, and TiO2 particles with
optical properties μ 0

s∕μa ¼ 100 and l� ¼ 1∕ðμa þ μ 0
sÞ ¼ 2 mm

at λ ¼ 731 nm. The bottom layer was a highly absorbing
solid phantom composed of agar, water, and nigrosin, and occu-
pied a total volume of 350 mL in the container. The top layer
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thickness d was varied from ½0�7.5�l�. Figure 2 provides a
schematic of the setup.

We used the OxImager RS SFDI system (Modulated Imaging
Inc., Irvine, California) to measure the two-layer phantom. The
SFDI system utilizes crossed linear polarizers in front of the pro-
jection and detection lenses to minimize the effect of specular
reflection and select for diffuse reflection. The projection field
of view (FOV) was 20 cm × 15 cm and directed to the tissue
surface at an angle of 15 deg relative to the surface normal.
Detection was performed perpendicular to the surface of the
phantom with an FOV of 8 cm × 6 cm (effective NA =
0.253). A vertical translation stage was used to support and
adjust the height of the container with the two-layer phantom.
After taking the first measurement of the highly absorbing solid
phantom (i.e., d ¼ 0 mm), incremental amounts of the liquid
phantom were added successively with a predetermined volume
such that the top liquid layer thickness d above the solid phan-
tom increased by 0.5 mm between each measurement following
the d ¼ 0 mm measurement. The micrometer on the translation
stage was used to lower the two-layer phantom system by
0.5 mm following each measurement such that the top surface
of the two-layer phantom system remained at a constant image
plane for all top layer thicknesses measured. This was done to
avoid the need for height correction during data processing.
All measurements were performed at a wavelength λ ¼ 731 nm
with spatial frequencies fx ¼ 0, 0.0125, 0.025, 0.0375, 0.05,

0.0625, 0.075, 0.0875, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, and
0.3 mm−1. At each spatial frequency (in this case, along one
spatial dimension x), raw reflectance images at three different
phases (0, 2π∕3, and 4π∕3 radians) were sequentially projected
onto the phantom using a digital micromirror device. The result-
ing reflected light was imaged with a camera. The images were
then demodulated to extract the amplitude envelope for each
spatial frequency measurement using an established amplitude
demodulation algorithm.42,43 A separate reference measurement
at the same spatial frequencies was made on a calibration phan-
tom with known optical properties for calibration of the SFDI
source intensity and instrument response. This calibration ena-
bles the measured reflectance to be converted to absolute reflec-
tance. This is achieved by comparing the measured reflectance
from the calibration phantom with its predicted diffuse reflec-
tance from an MC-based forward model using the phantom’s
known optical properties. The region of interest (ROI) chosen
for data analysis was centered in the detection FOV to avoid
edge effects and measured 7.5 cm × 2 cm. The reported exper-
imental data are average values taken over the ROI.

3 Results and Discussion
We first present PV∩DðzÞ results from which we compute
Pzmax

ðzÞ. ThePzmax
ðzÞ results will form the basis for (a) validating

our computational method with experimental measurements
and (b) determining metrics for optical sampling depth. We
then present optical sampling depth results for a variety of tissue
types based on literature reported optical properties.

3.1 Probability of Visitation and Detection PV∩D

We first consider a highly scattering tissue system with refrac-
tive index n ¼ 1.4 with optical properties providing ðμ 0

s∕μaÞ ¼
100 and l� ¼ 1 mm and single-scattering anisotropy g ¼ 0.8.
This corresponds to optical absorption and scattering coeffi-
cients μa ¼ 0.00990099 mm−1 and μs ¼ 4.95049505 mm−1,
respectively. In the MC simulation, we utilize a narrow colli-
mated beam normally incident into the tissue. Using the method
described in Sec. 2.1, we launched N ¼ 108 photon packets to
obtain PV∩DðzÞ with z bins incremented at 0.01 mm and a set of
spatial frequencies spanning 0 and 0.5 mm−1.

Figure 3(a) shows the PV∩DðzÞ distributions obtained for
spatial frequencies fx ¼ 0, 0.025, 0.05, 0.075, 0.1, 0.125,
0.15, 0.175, 0.2, 0.250, 0.3, and 0.5mm−1. The value of the
PV∩D at the first surface z ¼ 0 mm, PV∩Dðz ¼ 0Þ, is equivalent

(a) (b)

Fig. 3 (a) PV∩DðzÞ generated for media with optical properties μ 0
s∕μa ¼ 100, l� ¼ 1 mm using

f x ¼ 0; 0.025; 0.05;0.075;0.1;0.125;0.15; 0.175; 0.2; 0.250; 0.3; 0.5 mm−1 with 1 − σ error bars. Data
were obtained at a Δz ¼ 0.01 mm. Data symbols are shown on this plot at z-intervals of 1 mm.
(b) Pzmax

ðzÞ derived from PV∩DðzÞ distributions shown in (a).

Fig. 2 Experimental setup and schematic of two-layer phantom
with top layer thickness d varying from ½0−7.5�l� where l� ¼ 2 mm.
Theta (θ) is 15 deg. This experimental setup was used to acquire
reflectance as a function of spatial frequency ðf x Þ and layer
thickness d . All measurements were performed at λ ¼ 731 nm.
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to the total diffuse reflectance for each spatial frequency, RdðfxÞ.
This is because every diffusely reflected photon packet will
traverse this surface. The plots are shown with 1 − σ error
bars which indicate that 68% of independent simulations
will produce results, which lie within this interval. The
fx ¼ 0 mm−1 plot has a value of 0.62 at z ¼ 0 mm representing
total diffuse reflectance and decays to 4.7 × 10−4 by depth
z ¼ 20 mm, representing approximately a 3 order of magnitude
reduction. The fx ¼ 0.5 mm−1 plot has a value of 0.03 at z ¼ 0
and decays to 3.6 × 10−7 at z ¼ 20 mm, nearly a 6 order of
magnitude reduction. These data illustrate the low-pass optical
transport characteristics of scattering tissues.

Figure 3(b) shows the Pzmax
ðzÞ derived from PV∩DðzÞ using

Eq. (4). As described in Sec. 2.2, the benefit of transforming
the PV∩DðzÞ results to the max zi formulation Pzmax

ðz ¼ ziÞ is
that (a) Pzmax

ðz ¼ ziÞ, when integrated over all zi, produces
total diffuse reflectance Rd and (b) it effectively tracks the
maximum depth sampled by each photon packet and provides
group statistics on sampling depth for each spatial frequency.

3.2 Experimental Validation

The experimental setup described in Sec. 2.3 consists of mea-
surements taken from a two-layer phantom with a highly
absorbing bottom layer placed at various depths d that extin-
guishes any photons that propagate to that depth. The resulting
measured reflectance is composed of only photons that never
reach depths z > d, i.e., the photons detected possess trajecto-
ries with a maximum z ≤ d. The analogous computational result
is given by Eq. (6).

Figure 4(a) shows the calibrated experimental measurements
of diffuse reflectance versus top layer thickness d and plots of
Pzmax

ðz ≤ dÞ and (b) their difference. The plot shows a subset of
the measured fx values for clarity. The depths d and the spatial
frequencies have been normalized to l� ¼ 1 mm. For normal-
ized spatial frequency fxl� ¼ 0, the plot rises from 0 and reaches
a value of 0.595 for top layer thickness of 7.5 d∕l�. The plot rises
monotonically as the top layer thickness increases because
increasing numbers of photons fail to be extinguished by the
bottom layer and are able to return to the surface to contribute
to reflectance. As the spatial frequency increases, the measured
diffuse reflectance flattens at a certain depth indicating that spa-
tially modulated light for this frequency does not interrogate the
tissue below that depth. For example, for fxl� ¼ 0.3, the spa-
tially modulated reflectance rises from 0 and rises to 0.05 for
top layer thickness of 1.0 d∕l� without further increases for
larger top layer thicknesses. The absolute difference between

the experimental measurements and the computational predic-
tions ranges between [−0.012; 0.025].

3.3 Metrics for Optical Penetration Depth

We can determine the depth-dependent variation of the detected
photon packets by determining the tissue depth that contains the
complete photon packet trajectories corresponding to a certain
fraction of the total measured diffuse reflectance at a given spatial
frequency. For example, the spatial frequency dependence of
sampling depth that encloses all the photon packet trajectories
corresponding to only 50% of the detected reflectance can be
determined by finding the value d50 that results in a value of X ¼
0.5 using Eq. (7). Similarly, by substituting alternate values for
X ¼ 0.1, 0.25, 0.75, and 0.9 into Eq. (7), we computed depths
d10, d25, d75, and d90 that correspond to the tissue depths that
enclose the photon packet trajectories responsible for 10%,
25%, 75%, and 90% of the detected reflectance, respectively.
These are shown in Fig. 5 with specific numerical values provided
in Table 3. The span of the gray rectangles [25 to 75]% and ver-
tical-capped lines [10 to 90]% provides range of depths sampled
by these portions of the detected reflectance for these optical
properties. In Appendix B, we provide similar plots and tables
for a several μ 0

s∕μa values to show how these spans vary with
optical properties.

These depth metrics are determined from the zmax distribu-
tion and provide a direct correspondence between the maximum
tissue depths sampled by portions of the detected reflectance.
Unlike the photon hitting density,6 these depths do not tally
the pathlengths that the detected photon packet traverses within

(a) (b)

Fig. 4 (a) Experimentally measured and calibrated Rd (solid lines) and Pzmax
ðz ≤ d∕l�Þ from simulation

(dashed lines) and (b) their difference.

Fig. 5 Median sampling depth (d50) with [25 to 75]% (gray rectangle)
and [10 to 90]% (vertical-capped line) intervals versus f x for media
with optical properties μ 0

s∕μa ¼ 100 and l� ¼ 1 mm. Table of plot
values are provided in Table 3.
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the tissue volumes considered and do not map directly to absorp-
tion sensitivity. Rather they provide tissue depths that corre-
spond to portions of the detected reflectance. These allow the
SFD user to determine what fraction of the measured reflectance
is available to interact with the tissue beyond a certain depth. For
example, if a given tissue has a d90 ¼ 5 mm, the user is certain
that 90% of the measured reflectance is restricted to tissue depth
≤5 mm whereas only 10% of the measured reflectance has the
opportunity to sample tissue depth >5 mm.

3.4 Sampling Depth Estimates for Real Tissue
Types

The results provided inFig. 5 can begenerated for any set of optical
properties. We apply our methodology to various tissue types to
determine the depths that correspond to detection of 50%, 75%,
and 90% of the total reflectance at a given spatial frequency.
Table 1 shows the tissue types and wavelengths considered and
the corresponding optical properties.44–47 We performed indepen-
dent MC simulations for each tissue type and wavelength pair to
determine depth estimates for each. Figure 6 shows the predicted
sampling depths versus spatial frequency for the various pairs of
tissue type and wavelength considered.

The tissue type, in which spatially modulated illumination
can probe most deeply at the smaller spatial frequencies, is
human breast at λ ¼ 851 and 731 nm. This is due to the higher
μ 0
s∕μa properties for this tissue, 256 and 145, respectively, along

with moderate transport mean-free path values of l� ¼ 0.89 mm
and 1.04 mm, respectively. The median sampling depth of
the human brain is 20% smaller than for human breast. While
human brain tissue at λ ¼ 731 nm has the equivalent μ 0

s∕μa

value as human breast at λ ¼ 851 nm, the transport mean-
free path in human brain is only l� ¼ 0.76 mm as compared
to l� ¼ 1.04 mm in human breast. While mouse skin has
the lowest μ 0

s∕μa values of the four tissue types considered,
which would suggest more superficial optical sampling depths,
the transport mean-free paths are the largest of the tissues con-
sidered resulting in optical sampling depths that are only slightly
more superficial than human brain tissue at low spatial frequen-
cies. The μ 0

s∕μa values for human skin are not much larger than
mouse skin but with much higher scattering properties resulting
in the smallest l� values of the group and the most superficial
optical sampling depths.

The spatial frequency dependence characteristics of these
optical sampling depths are also of interest. For spatial frequen-
cies larger than fx ¼ 0.1 mm−1, differences in the optical sam-
pling in human breast, human brain, and mouse skin are barely
distinguishable. For human brain, the median depth values for
fx ¼ 0.1 mm−1 are roughly half the median depth values using
fx ¼ 0 mm−1 for both wavelengths. For mouse skin, the median
depths at fx ¼ 0.1 mm−1 are about two-thirds the median depth
values for fx ¼ 0 mm−1 for both wavelengths. The lower μ 0

s∕μa
properties of both human skin and mouse skin are indicative of
a diminished effect of scattering on the light transport and result
in far less spatial frequency variation in the optical sampling
depth. For human skin, the median depth at fx ¼ 0.1 mm−1

is 94% of the median depth value for fx ¼ 0 mm−1 using
λ ¼ 731 nm and this factor is 90% at λ ¼ 851 nm. For
mouse skin, the median depth values at fx ¼ 0.1 mm−1 are
about 82% the median depth values for fx ¼ 0 mm−1 for
both wavelengths. At fx ¼ 0.5 mm−1, the median depth for
all real tissue types is within the range [0.15 to 0.26] mm.

Table 1 Tissue optical properties44–47 used in our sampling depth analysis.

Tissue type λ (nm) μaðmm−1Þ μsðmm−1Þ g l� n μ 0
s∕μa μ 0

sðmm−1Þ
Human breast 731 0.0044 37.51 0.97 0.89 1.4728 255.77 1.13

Human breast 851 0.0066 31.95 0.97 1.04 1.4728 145.24 0.96

Human brain 731 0.0090 16.41 0.92 0.76 1.4026 145.83 1.31

Human brain 851 0.0124 12.84 0.92 0.96 1.4026 82.85 1.03

Mouse skin 731 0.0937 7.73 0.9 1.15 1.4 8.25 0.77

Mouse skin 851 0.1070 6.17 0.9 1.38 1.4 5.77 0.62

Human skin 731 0.2437 16.32 0.8357 0.34 1.4637 11.00 2.68

Human skin 851 0.1563 16.71 0.8707 0.43 1.4637 13.82 2.16

(a) (b) (c)

Fig. 6 (a) d50, (b) d75, (c) d90 sampling depths for human brain, mouse skin, human skin and human
breast tissues at λ ¼ 851 nm (solid lines) and 731 nm (dashed lines).
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3.5 Determination of Optical Sampling Depths for
Other Tissue Types

To enable the determination of optical sampling depths for any
tissue type, we used our methodology to determine the variation
of optical sampling depth with spatial frequency for a range of
μ 0
s∕μa values between 1 and 1000 while keeping l� ¼ 1 mm

fixed and assuming g ¼ 0.8 and n ¼ 1.4. The specific optical
properties considered are listed in Table 2. Figure 7 shows
the median depth of optical sampling as a function of μ 0

s∕μa.
In this figure, both the median sampling depth and the spatial
frequency of illumination are scaled relative to l�. The plots
show that as the μ 0

s∕μa increases, so does the median depth.
Moreover, at larger spatial frequencies, there is less sensitivity
of the sampling depth to variations in μ 0

s∕μa.
Optical sampling depths determined using the general opti-

cal properties can be composed into a lookup table, then
scaled, and interpolated to provide depth statistics for an arbi-
trary tissue. Only knowledge of the tissue absorption and
reduced scattering properties is needed. The details of how
this is performed are given in Appendix B. The advantage
of this lookup table method is that it dispenses with the
need to execute an MC simulation for the specific tissue optical

properties in question and enables rapid estimation of SFD
sampling depths. We performed the lookup table method
using the μa and μ 0

s values of the real tissue optical properties
listed in Table 1. Figure 8 shows the relative differences
between the median depth dtable determined by the lookup
table method and the median depth determined by the indepen-
dent MC simulation at the real tissue optical properties dMC,
ðdtable − dMCÞ∕dMC. The lookup table estimates and the inde-
pendent MC simulation results agree to within 7%, suggesting
that the lookup table provides an accurate and convenient
method for determining depth predictions.

4 Conclusions and Future Work
We have presented a transport-rigorous MC method to deter-
mine optical sampling depth statistics in the SFD. This method
provides depth-dependent probability distributions of photon
visitation and detection [PV∩DðzÞ] for each spatial frequency
within homogeneous or layered tissue. Our sampling depth
predictions were validated experimentally using SFD measure-
ments taken on a custom fabricated two-layer phantom system.
Excellent agreement was obtained between these measurements
and our MC predictions.

We applied our method to provide depth sampling statistics
for a variety of tissue types at commonly used wavelengths. We
nondimensionalized our results to create a 2-D lookup table to
determine sampling depth statistics for any tissue given knowl-
edge of the absorption and reduced scattering properties of the
tissue. We provide this table and associated computer code to
enable its use in the supplemental material.

Collectively, this work provides a rigorous methodology and
convenient means to determine optical sampling depth in the
SFD. Moving forward, we wish to analyze the effect of spa-
tial-frequency-dependent variations in optical sampling depth
on the extraction of optical properties when using SFD measure-
ments at two or more spatial frequencies.43 The use of SFD mea-
surements at multiple spatial frequencies results in differential
penetration depths leading to a partial volume effect for mea-
surements taken in heterogeneous media. This effect is poten-
tially reduced by choosing spatial frequencies proximal to each
other, but this can compromise the ability to accurately extract
optical properties.48 Future work will aim to evaluate the trade-
offs between partial volume effects and optical property extrac-
tion errors when choosing spatial frequencies for specific
applications.

Table 2 General optical properties with l� ¼ 1 mm used for our sam-
pling depth lookup table.

μ 0
s∕μa μaðmm−1Þ μ 0

sðmm−1Þ μ 0
s∕μa μaðmm−1Þ μ 0

sðmm−1Þ
1 0.5 0.5 20 0.04761904 0.95238095

1.6 0.38461539 0.61538462 30 0.03225807 0.96774194

2 0.33333333 0.66666666 50 0.01960784 0.98039216

3 0.25 0.75 80 0.01234568 0.98765432

4 0.2 0.8 100 0.00990099 0.99009901

5 0.16666667 0.83333333 160 0.00621118 0.99378882

8 0.11111111 0.88888889 250 0.00398406 0.99601593

10 0.09090909 0.90909091 300 0.00332226 0.99667774

16 0.05882353 0.94117647 1000 0.00099900 0.99900000

Fig. 7 Median sampling depth d50 normalized by the transport mean-
free path l� as a function of μ 0

s∕μa at spatial frequencies f x l� ¼ 0, 0.05,
0.1, 0.2, and 0.3. For clarity, results for only a subset of f x values are
plotted here. Results for additional f x values are provided in the sup-
plemental data.

Fig. 8 Relative difference between the median depth determined by
the lookup table of general optical properties and the median depth
determined by running an MC simulation using the real tissue optical
properties.
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Appendix A: Real Tissue Data Details
In Figs. 9–16, we provide detailed sampling depth metrics for the specific tissue types and wavelengths as listed in Table 1 with partial
results shown in Fig. 6.

Fig. 9 Median sampling depth (d50) with [25 to 75]% (gray rectangle) and [10 to 90]% (vertical-capped
line) intervals versus f x and table of plot values for human breast at 731 nm.

Fig. 10 Median sampling depth (d50) with [25 to 75]% (gray rectangle) and [10 to 90]% (vertical-capped
line) intervals versus f x and table of plot values for human breast at 851 nm.

Fig. 11 Median sampling depth (d50) with [25 to 75]% (gray rectangle) and [10 to 90]% (vertical-capped
line) intervals versus f x and table of plot values for human brain at 731 nm.
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Fig. 12 Median sampling depth (d50) with [25 to 75]% (gray rectangle) and [10 to 90]% (vertical-capped
line) intervals versus f x and table of plot values for human brain at 851 nm.

Fig. 13 Median sampling depth (d50) with [25 to 75]% (gray rectangle) and [10 to 90]% (vertical-capped
line) intervals versus f x and table of plot values for human skin at 731 nm.

Fig. 14 Median sampling depth (d50) with [25 to 75]% (gray rectangle) and [10 to 90]% (vertical-capped
line) intervals versus f x and table of plot values for human skin at 851 nm.
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Appendix B: General Tissue Data
Supplemental Tables and Code
We generated a table of data for general tissue optical properties
that can be used to estimate sampling depths for any arbitrary
tissue i given knowledge of the μa;i and μ 0

s;i of the candidate
tissue. The data consist of 2-D lookup tables for the 10%,
25%, 50%, 75%, and 90% sampling depths (Table 3). Each
table has μ 0

s∕μa along one axis and fxl� along the other. The
μ 0
s∕μa values are those listed in Table 2. The fxl� values are:

0, 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06, 0.07, 0.075, 0.08,
0.09, 0.1, 0.12, 0.125, 0.14, 0.15, 0.16, 0.175, 0.18, 0.2,
0.25, 0.3, 0.5, and 0.7.

To determine the sampling depth for a candidate tissue with
optical properties μa and μ 0

s , each table entries and axes are
scaled appropriately and then a 2-D linear interpolation method,
interp2 (MATLAB 2016b), is used to determine the sampling
depth at the spatial frequency of interest. Specifically, to
scale the table appropriately, the entries are multiplied by l�

of the candidate tissue, and the fxl� axis is divided by l� of
the candidate tissue. Then the μ 0

s∕μa of the candidate tissue
and the spatial frequencies fx of interest are used to interpolate
into each table to produce sampling depth estimates.

The tabular data and code to interpolate the data are given in
the supplemental material.

Fig. 15 Median sampling depth (d50) with [25 to 5]% (gray rectangle) and [10 to 90]% (vertical-capped
line) intervals versus f x and table of plot values for mouse skin at 731 nm.

Fig. 16 Median sampling depth (d50) with [25 to 75]% (gray rectangle) and [10 to 90]% (vertical-capped
line) intervals versus f x and table of plot values for mouse skin at 851 nm.
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Fig. 17 Median sampling depth (d50) with [25 to 75]% (gray rectangle) and [10 to 90]% (vertical-capped
line) intervals versus f x for general tissue properties. Values of μ 0

s∕μa plotted are a subset of those in
the supplemental material.
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Table 3 Depth statistics for general tissue properties. Data for μ 0
s∕μa

values presented are a subset of those in the supplemental material.

μ 0
s∕μa ¼ 300 Sampling depth (mm)

f x ðmm−1Þ d10 d25 d50 d75 d90

0.000 0.49 1.02 2.18 4.52 8.10

0.025 0.43 0.86 1.73 3.32 5.59

0.050 0.34 0.67 1.29 2.30 3.65

0.075 0.28 0.55 1.02 1.74 2.69

0.100 0.23 0.46 0.84 1.41 2.14

0.125 0.20 0.39 0.71 1.19 1.78

0.150 0.17 0.34 0.62 1.03 1.52

0.175 0.15 0.30 0.55 0.91 1.34

0.200 0.13 0.27 0.49 0.81 1.19

0.250 0.11 0.22 0.41 0.67 0.98

0.300 0.09 0.19 0.35 0.58 0.84

0.500 0.06 0.13 0.24 0.40 0.58

μ 0
s∕μa ¼ 160 Sampling depth (mm)

f x ðmm−1Þ d10 d25 d50 d75 d90

0.000 0.47 0.95 1.97 3.94 6.86

0.025 0.41 0.83 1.65 3.11 5.17

0.050 0.34 0.66 1.26 2.24 3.54

0.075 0.28 0.54 1.00 1.72 2.65

0.100 0.23 0.45 0.83 1.40 2.12

0.125 0.20 0.39 0.71 1.18 1.77

0.150 0.17 0.34 0.62 1.02 1.52

0.175 0.15 0.30 0.55 0.90 1.33

0.200 0.13 0.27 0.49 0.81 1.19

0.250 0.11 0.22 0.41 0.67 0.98

0.300 0.09 0.19 0.35 0.58 0.84

0.500 0.06 0.13 0.24 0.40 0.58

μ 0
s∕μa ¼ 100 Sampling depth (mm)

f x ðmm−1Þ d10 d25 d50 d75 d90

0.000 0.44 0.89 1.80 3.48 5.91

0.025 0.40 0.79 1.56 2.90 4.77

0.050 0.33 0.65 1.23 2.17 3.42

0.075 0.27 0.53 0.99 1.70 2.61

0.100 0.23 0.45 0.83 1.39 2.10

0.125 0.20 0.39 0.71 1.17 1.76

0.150 0.17 0.34 0.62 1.02 1.51

0.175 0.15 0.30 0.55 0.90 1.33

0.200 0.13 0.27 0.49 0.81 1.19

0.250 0.11 0.22 0.41 0.67 0.98

0.300 0.09 0.19 0.35 0.58 0.84

0.500 0.06 0.13 0.24 0.40 0.58

μ 0
s∕μa ¼ 50 Sampling depth (mm)

f x ðmm−1Þ d10 d25 d50 d75 d90

0.000 0.39 0.78 1.54 2.84 4.66

0.025 0.37 0.72 1.40 2.53 4.07

0.050 0.31 0.62 1.16 2.02 3.17

0.075 0.26 0.52 0.96 1.63 2.50

0.100 0.22 0.44 0.81 1.36 2.04

0.125 0.19 0.38 0.70 1.16 1.73

0.150 0.17 0.33 0.61 1.01 1.49

0.175 0.15 0.30 0.54 0.89 1.32

0.200 0.13 0.27 0.49 0.80 1.18

0.250 0.11 0.22 0.41 0.67 0.98

0.300 0.09 0.19 0.35 0.58 0.84

0.500 0.06 0.13 0.24 0.40 0.58

μ 0
s∕μa ¼ 20 Sampling depth (mm)

f x ðmm−1Þ d10 d25 d50 d75 d90

0.000 0.33 0.64 1.22 2.13 3.34

0.025 0.31 0.61 1.15 2.01 3.13

0.050 0.28 0.55 1.02 1.75 2.69

0.075 0.24 0.48 0.88 1.49 2.26

0.100 0.21 0.42 0.76 1.28 1.91

0.125 0.18 0.36 0.67 1.11 1.65

0.150 0.16 0.32 0.59 0.98 1.45

0.175 0.14 0.29 0.53 0.87 1.29

0.200 0.13 0.26 0.48 0.79 1.16

0.250 0.10 0.22 0.40 0.66 0.97

0.300 0.09 0.19 0.35 0.58 0.84

0.500 0.06 0.12 0.24 0.40 0.58

μ 0
s∕μa ¼ 10 Sampling depth (mm)

f x ðmm−1Þ d10 d25 d50 d75 d90

0.000 0.27 0.54 1.00 1.71 2.61

0.025 0.27 0.52 0.97 1.65 2.51

0.050 0.24 0.48 0.90 1.51 2.28

0.075 0.22 0.44 0.80 1.34 2.01

0.100 0.19 0.39 0.71 1.19 1.77

0.125 0.17 0.34 0.64 1.05 1.56

0.150 0.15 0.31 0.57 0.94 1.39

0.175 0.14 0.28 0.51 0.85 1.25

0.200 0.12 0.25 0.47 0.77 1.13

0.250 0.10 0.21 0.40 0.66 0.96

0.300 0.09 0.18 0.35 0.57 0.83

0.500 0.06 0.12 0.24 0.40 0.58

Table 3 (Continued )
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