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Abstract

Significance: Diffuse reflectance spectroscopy (DRS) is frequently used to assess oxygen sat-
uration and hemoglobin concentration in living tissue. Methods solving the inverse problem may
include time-consuming nonlinear optimization or artificial neural networks (ANN) determining
the absorption coefficient one wavelength at a time.

Aim: To present an ANN-based method that directly outputs the oxygen saturation and the
hemoglobin concentration using the shape of the measured spectra as input.

Approach: A probe-based DRS setup with dual source-detector separations in the visible wave-
length range was used. ANNs were trained on spectra generated from a three-layer tissue model
with oxygen saturation and hemoglobin concentration as target.

Results: Modeled evaluation data with realistic measurement noise showed an absolute root-
mean-square (RMS) deviation of 5.1% units for oxygen saturation estimation. The relative
RMS deviation for hemoglobin concentration was 13%. This accuracy is at least twice as good
as our previous nonlinear optimization method. On blood-intralipid phantoms, the RMS
deviation from the oxygen saturation derived from partial oxygen pressure measurements was
5.3% and 1.6% in two separate measurement series. Results during brachial occlusion showed
expected patterns.

Conclusions: The presented method, directly assessing oxygen saturation and hemoglobin con-
centration, is fast, accurate, and robust to noise.
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1 Introduction

In optical fiber-based diffuse reflectance spectroscopy (DRS), white light is illuminating tissue,
and backscattered light is detected at single or multiple source–detector (s-d) separations. The s-d
separations are chosen to allow for contrasting scattering (μ 0

s), absorption (μa), and tissue geo-
metrical effects. Tissue absorption of light in the visible wavelength range is due to major chro-
mophores, such as hemoglobin, mainly oxyhemoglobin and deoxyhemoglobin. Assessment of
microcirculatory hemoglobin oxygen saturation and concentration of blood provides important
information of local metabolism and its regulation in health and disease. In skin, epidermal mela-
nin and carotenoids are present affecting foremost short wavelengths,1 whereas for higher wave-
lengths water and lipid absorption is significant.2 The calculation of tissue chromophores, which
is most often the aim for DRS methods, is commonly done using inverse modeling based on
diffusion theory3–5 or Monte Carlo techniques,6,7 where modeled DRS data are fitted to measured
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DRS data in a nonlinear inverse optimization routine. The most general models are based on
Monte Carlo simulations which can be applied to realistic multilayer geometries.7 However, the
inverse nonlinear search algorithms are time-consuming and may lead to local minima solutions.

Machine learning methods eliminate the need for computationally demanding inverse algo-
rithms. Farrell et al.3 demonstrated that an artificial neural network (ANN) can be trained to
estimate optical properties (OP), μa and μ 0

s , from spatially resolved diffuse reflectance
(SRDR) at eight s-d separations. The ANN was trained and evaluated using relative intensities
generated with diffusion theory and with added noise, since absolute intensities are more difficult
to measure. The evaluation showed that ANN performed twice as good as an inverse algorithm
based on nonlinear least-square fitting.

Pfefer et al.8 used a fiber-optic probe with six detecting fibers with s-d separations 0.23 to
2.46 mm and a single-layer tissue model with Monte Carlo simulations of SRDR. ANN was
applied to estimate μa and μ 0

s in a wide wavelength range (UVA-VIS) for endoscopy applications.
They extended the range of OP and added noise in the evaluation data in Ref. 9. Later, they used
a similar SRDR probe to estimate μa and μ 0

s in a two-layer model with known top layer
thickness.10 The estimation was done using an ANN trained on scaled Monte Carlo simulations.
They estimated OP for each wavelength and then fitted μa for chromophores and μ 0

s as a standard
exponentially decaying function. They comprehensively evaluated their method both theoreti-
cally and using physical two-layer phantoms. Despite knowing the top layer thickness, accuracy
was moderate.

Chen and Tseng11 systematically evaluated any two combinations of SRDR at s-d separations
of 1, 2, and 3 mm using an ANN for estimating μa and μ 0

s . They trained their ANN with Monte
Carlo simulated data without including noise. They found that only SRDR at s-d separations 1
and 2 mm fulfilled their uniqueness of solution criteria. However, their method demands a noise
level of <0.5% for both SRDRs, which to our experience is far too low for clinical measurements.

Tsui et al.12 proposed using a four-layered tissue model, described by nine parameters that
included geometrical and optical properties, for analyzing DRS measurements. An ANN was
trained with the nine parameters as input and DRS spectra at three s-d separations as output. This
approach, where ANN replaces Monte Carlo in the analysis algorithm, still leaves a time-con-
suming inverse problem to be solved. In the inverse problem, harmonic generation microscopy
determined the thickness parameters, while the other parameters were iteratively determined by
fitting modeled DRS data to measurements. Validation simulations, containing 3% random
noise, gave chromophore estimation errors below 4%. However, in vivo data showed a poor
spectral fitting in the 500- to 600-nm wavelength region, likely resulting in erroneous oxygen
saturation estimations.

We have previously developed a three-layer skin model for analyzing data acquired using
DRS13 and DRS integrated with LDF,7 using two s-d separations (0.4 and 1.2 mm). An inverse
Monte Carlo algorithm was used to fit simulated spectra to measured ones at 32 wavelengths for
each s-d separation to directly estimate hemoglobin concentration and oxygen saturation. In
contrast to many previous attempts using inverse Monte Carlo or ANN for analyzing DRS data,
our algorithm applied spectral constraints on all included chromophores and scattering com-
pounds directly in the inverse algorithm. Hence, no two-stage analysis, where OPs are first esti-
mated separately for each wavelength and chromophore concentrations estimated in a second
step, is then needed. This approach benefits from only requiring two s-d separations and a min-
imal calibration including a dark-, a white-, and a relative-calibration between the two detecting
fibers; no calibration on known optical phantoms is needed.

Extensive evaluations of our inverse Monte Carlo algorithm have shown that it is capable of
accurately estimating hemoglobin concentration and oxygen saturation,14 and that the modeled
DRS spectra almost perfectly fit measured DRS data.15 However, the inverse Monte Carlo algo-
rithm is computationally demanding which has limited the algorithm to only estimate parameters
at rates up to about 2 Hz. It also suffers from the risk of giving erroneous local minima solutions,
which has previously been avoided using global search strategies with multiple starting points
that further limits the update frequency.

This study aims at investigating if an ANN solution can be used to accurately and robustly
estimate RBC (red blood cell) oxygen saturation and the average tissue fraction of RBCs at a rate
high enough to capture the full dynamics of a heartbeat. We also aim to investigate if the

Fredriksson, Larsson, and Strömberg: Machine learning for direct oxygen saturation. . .

Journal of Biomedical Optics 112905-2 November 2020 • Vol. 25(11)



calibration procedure can be further simplified by leaving out the interchannel intensity calibra-
tion. The ANN will be trained on DRS data, simulated using our previously developed and
validated skin model. The output parameters (oxygen saturation and RBC tissue fraction) will
be estimated directly from the input spectra, without first estimating tissue OP for each wave-
length. To enhance the training, instrumentation noise and color drift, mimicking system char-
acteristics, will be accounted for in the training data. The ANN algorithm will be evaluated using
Monte Carlo simulated DRS data and measurements from a homogenous intralipid-hemoglobin
liquid phantom experiment with varying degree of deoxygenized hemoglobin. Furthermore,
results from three in vivo measurements during an arterial occlusion release experiment are
provided.

2 Material and Methods

The principle of the proposed method is to train ANNs with diffuse reflectance spectra from a
fiber-based system with two different source–detector distances as input, and red blood cell oxy-
gen saturation and tissue fraction as output. The training data are generated using Monte Carlo
simulations of a three-layer skin model with optical and geometrical properties covering a wide
range of skin tissue types. A noise model is presented to account for realistic measurement noise
in the simulated training data. The approach has many similarities with the method that we have
previously presented for multiexposure laser speckle contrast imaging.16 The networks are evalu-
ated using an independent set of simulated data from the same type of tissue models, using
measurements from intralipid-blood phantoms, and using forearm measurements from an occlu-
sion-release provocation. The results are also compared to a previous method utilizing the same
three-layered tissue model and a nonlinear search algorithm for solving the inverse problem.7,13

2.1 Measurement System

The measurement instrument used was a Periflux 6000 EPOS system (Perimed AB, Järfälla,
Stockholm, Sweden; EPOS is an acronym for enhanced perfusion and oxygen saturation).
The system is probe-based and contains both a spectroscopy unit (PF 6060) and a laser Doppler
perfusion monitoring unit (PF 6011). In this study, only the data from the spectroscopy unit was
used. The probe included one emitting optical fiber connected to a white light source (AvaLight-
hal-s-mini, Avantes BV, Apeldoorn, the Netherlands) and two receiving optical fibers placed at
a center–center separation of 0.4 and 1.2 mm, respectively, from the light-emitting fiber on the
face of the probe. Those two receiving fibers were connected to one spectrometer each
(AvaSpec-ULS2048L, Avantes BV). All three fibers were made of fused silica, had a core diam-
eter of 200 μm, and a numerical aperture of 0.37. The system also included a pressure unit
(PF 6050) connected to a blood pressure cuff.

In the preprocessing of the spectra, a dark intensity spectrum was subtracted, and white nor-
malization was performed by division with spectra originating from a calibration measurement
on a white reference target (WS-2, Avantes BV).

2.2 Tissue Model

A three-layer tissue model mimicking skin tissue from an optical and geometrical point of view
was used to generate training and evaluation data for the ANN. The model and an efficient
method to calculate diffuse reflectance spectra from the model, based on Monte Carlo simula-
tions, have been described previously.7,13 In this study, it was extended with additional free
parameters (carotenoids, met-hemoglobin, and different vessel diameters in the two layers).
The top layer represents the epidermis, has a variable thickness, and contains melanin and
carotenoids but no blood. The second layer represents upper dermis, has a fixed thickness
of 0.2 mm, and contains a variable amount of blood of variable oxygen saturation. The third
layer represents deep dermis, has an infinite thickness, and contains a variable amount of blood
of variable oxygen saturation.

The model is controlled by 15 free parameters. One parameter, tepi, controls the epidermis
thickness. One parameter controls the amount of melanin in the epidermis, i.e., the product of tepi
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and the fraction of melanin fmel. The absorption coefficient of melanin, based on Jacques,17

is calculated as

EQ-TARGET;temp:intralink-;e001;116;711μa;melðλÞ ¼ k

�
λ

λ0

�
−βmel

; (1)

where k ¼ 48.42 mm−1, λ0 ¼ 550 nm, and βmel is a free parameter accounting for the shape of
the melanin absorption, dependent on the relative concentration of eumelanin and pheomelanin.
The model also contains the carotenoids beta-carotene and lycopene as chromophores in the
epidermis, controlled by two parameters, with absorption spectra μa;β-caroðλÞ and μa;lycoðλÞ as
given by Darvin et al.,18 having negligible absorption for wavelengths above 550 nm. Thus,
the absorption spectrum of epidermis is given as

EQ-TARGET;temp:intralink-;e002;116;593μa;epiðλÞ ¼ fmelμa;melðλÞ þ fβ-caroμa;β-caroðλÞ þ flycoμa;lycoðλÞ: (2)

One parameter, fblood, controls the average blood fraction in the two dermis layers, whereas
one parameter, rblood, controls the difference of the fraction of blood between the layers so that

EQ-TARGET;temp:intralink-;e003;116;536fblood;1 ¼ fbloodð1þ rbloodÞ; and fblood;2 ¼ fbloodð1 − rbloodÞ; (3)

where fblood;1 and fblood;2 are the fractions of blood in upper and lower dermis, respectively.
In the model, a hematocrit of 43%, a hemoglobin value of 145 gHb∕L blood, and a mean cell
hemoglobin concentration of cHb;RBC ¼ 345 gHb∕liter RBC were assumed.

The oxygen saturation of the hemoglobin in the blood in the two layers is calculated from the
two variable model parameters sO2

and ΔO2
as

EQ-TARGET;temp:intralink-;e004;116;443sO2;1 ¼ sO2
þ ΔO2

∕2; and sO2;2 ¼ sO2
− ΔO2

∕2: (4)

The absorption of reduced (deoxygenated) blood, μa;redðλÞ, is based on data from Ref. 19 and
for saturated (oxygenated) blood, μa;satðλÞ, is based on data from Ref. 20. Furthermore, the
absorption of methemoglobin is based on Ref. 21. The absorption coefficient of blood is calcu-
lated as

EQ-TARGET;temp:intralink-;e005;116;361μa;blood;nðλÞ ¼ ð1 − fmetÞ½sO2;nμa;satðλÞ þ ð1 − sO2;nÞμa;redðλÞ� þ fmetμa;metðλÞ; (5)

where n is the layer number and fmet is the fraction of met-hemoglobin. The absorption spectra
of the dermis layers are calculated as

EQ-TARGET;temp:intralink-;e006;116;305μa;nðλÞ ¼ fblood;ncvp;nðλÞμa;blood;nðλÞ; (6)

where cvp;n is a vessel packaging compensation factor calculated as22,23

EQ-TARGET;temp:intralink-;e007;116;260cvp;nðλÞ ¼
1 − exp½−Dnμa;blood;nðλÞ�

Dnμa;blood;nðλÞ
; (7)

where Dn is the average vessel diameter for layer n, controlled by two parameters (Davg and rD)

EQ-TARGET;temp:intralink-;e008;116;202D1 ¼ Davgð1 − rDÞ; and D2 ¼ Davgð1þ rDÞ: (8)

Three parameters, α, β, and γ, control the reduced scattering coefficient according to

EQ-TARGET;temp:intralink-;e009;116;157μ 0
sðλÞ ¼ α

�
ð1 − γÞ

�
λ

λ0

�
−β

þ γ

�
λ

λ0

�
−4
�
; (9)

where λ0 ¼ 600 nm. The reduced scattering coefficient is equal for all three layers. A Henyey–
Greenstein phase function with the anisotropy factor set to 0.8 was used.

Monte Carlo simulations were run for various epidermis thicknesses and reduced scattering
coefficients for fiber separations corresponding to the probe geometry (0.4 and 1.2 mm).
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The path-length distributions in each of the three layers were stored for the detected photons.
Diffuse reflectance spectra for 28 wavelengths between 475 and 750 nm were calculated for
the two fiber separations based on the 15 model parameters. Interpolation was used based
on the epidermis thickness and the reduced scattering coefficient for each wavelength, and then
the effect of absorption [μa;epiðλÞ and μa;nðλÞ] was added by applying Beer–Lambert’s law for
each path-length from the interpolated path-length distributions as described in Ref. 13.

The 15 model parameters were randomly chosen to generate two sets of 100,000 models for
training and evaluation of the ANNs. The parameter distributions of the training data set are
shown in Fig. 1. The model parameters for the evaluation set were randomly chosen from the
same probability distributions.

From each model, the RBC tissue fraction (fRBC) and oxygen saturation in respect to the
actual sampling depth were calculated, i.e., the RBC tissue fraction was calculated from the
blood tissue fraction with knowledge on the hematocrit of 43% used in the models. The sampling
volume was accounted for by calculating the fraction of all optical paths of the detected photons
for each of the three layers.

As the hematocrit may vary considerably between individuals and within the circulatory
system of a single individual, the tissue fraction of RBC is used as the output parameter rather
than the tissue fraction of blood. Another alternative is to present the concentration of hemo-
globin, cHb [μM ¼ μmole∕L tissue], where the conversion is done according to

EQ-TARGET;temp:intralink-;e010;116;210cHb ¼ 1 × 106 ×
fRBC
100|ffl{zffl}

½LRBC∕L tissue�

× cHb;RBC|fflfflffl{zfflfflffl}
½gHb∕LRBC�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½gHb∕L tissue�

∕ MHb|ffl{zffl}
½gHb∕mole�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½mole∕L tissue�

¼ fRBC × 53.5 μM; (10)

where cHb;RBC ¼ 345 gHb∕L RBC according to Sec. 2.2 and MHb ¼ 64;500 g∕mole is the
molecular weight of hemoglobin.20 By multiplying with the oxygen saturation, the concentration
of oxygenized and reduced hemoglobin can also be calculated.

Fig. 1 Histograms over the random parameter values for the 15 free model parameters in the
training set.
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2.3 Nonlinear Optimization

The proposed ANN-based method was compared to the previous method based on nonlinear
optimization of the three-layer model to measured spectra at the two s-d separations.7,13 In that
method, the parameters presented in Sec. 2.2 are iteratively updated until the difference between
the measured and modeled spectra is minimized. In each iteration, modeled spectra are calcu-
lated several times for calculating finite differences, which makes the method relatively time
consuming. The relative difference between measured and modeled spectra gives residual spec-
tra, that are used by the optimization routine revealing the quality of the optimization. The non-
linear optimization method used in this study differs from the one presented in Refs. 7 and 13 in
the way that wavelengths above 750 nm are not included (up to 850 nm previously), and that
all 15 free model parameters in Sec. 2.2 are used (11 parameters previously – no carotenoids,
no met-hemoglobin, and same vessel diameter in both dermis layers).

When using the nonlinear optimization model on measurements on skin, a small systematic
residual has been observed, that has not been observed when using the method on modeled
spectra or on measurements from liquid phantoms (such as the one described in Sec. 2.7).
This systematic residual indicates that the model does not account for all aspects of the tissue
that affects the measured spectra. It could, for example, be a geometrical effect not covered by
the three-layered model, a missing chromophore, or autofluorescence. The shape of this system-
atic residual is shown in Fig. 2, based on measurements on the volar side of the forearm on 1557
subjects from a previously published study.15,24 The shape of the residual has no apparent cor-
relation to the level of oxygen saturation or RBC tissue fraction. For the ANN method not to be
biased because of this systematic residual, the training and evaluation data is multiplied with a
residual model. This model constitutes the multiplication of the intensity of each wavelength of
the modeled spectra with a normally distributed random number with mean and standard
deviation from Fig. 2. For example, the intensity of 742 nm for the 0.4-mm s-d separation
is multiplied with a random number with mean 1 − 0.005 ¼ 0.995 and standard deviation 0.007.

2.4 Noise Model

The noise characteristics of the spectrometers in the EPOS system was retrieved by performing
100 repetitive measurements on a white reference target (WS-2, Avantes BV). It was observed
that the intensity variations per wavelength followed a normal distribution. Thus, the noise of
white calibrated spectra can be characterized by a normal distribution with a standard deviation
for each wavelength given by the standard deviation of the 100 repetitive measurements divided
by their average, i.e.,

EQ-TARGET;temp:intralink-;e011;116;107ηðλÞ ¼ σ½wðλÞ�
hwðλÞi ; (11)

(a) (b)

Fig. 2 Mean (solid curve) residual ± one standard deviation (dotted curves) for (a) 0.4 and
(b) 1.2 mm s-d separations. Residuals are calculated as modeled spectrum divided by measured
spectrum minus one.
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where wðλÞ is the measurements on the white reference, subtracted with the average dark inten-
sity spectrum. The noise ηðλÞξwðλÞ, where ξw is a random number from a normal distribution
with zero mean and standard deviation of unity, was added to the modeled spectra to mimic
measurement noise when the raw data was low-pass filtered with a cutoff frequency of ∼4 Hz.

In addition to the sensor noise described above, an uncertainty in color calibration of the
spectrometers was added to the spectra. That was done by multiplying the spectra with a straight
line with unity mean and a slope s that denoted the relative difference between the value of the
line at 475 and 750 nm. The slope ξslope was randomly chosen from a normal distribution with
unity mean and standard deviation of 0.05.

In total, three noise models affected the modeled training and evaluation spectra ImodelðλÞ: the
measurement noise ηðλÞξwðλÞ, the residual noise ξresidualðλÞ from Fig. 2, and the color calibration
uncertainty ξslope:

EQ-TARGET;temp:intralink-;e012;116;590ItrainingðλÞ ¼
�
ImodelðλÞ þ ηðλÞξwðλÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Measurement noise

�
ξresidualðλÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Residual noise

λ − 475

750 − 475
ξslope|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Color uncertainty

: (12)

2.5 Artificial Neural Networks

ANNs were trained using the deep learning toolbox in Matlab 2019b. The ANN:s were small,
consisting of a single fully connected hidden layer with 25 nodes and an output layer. The mod-
eled DRS spectra (28 wavelengths at each of the two s-d separations in the general case) were
used as input, with or without added noise. The spectra were normalized to their respective mean
value prior to input, see Fig. 3 for an example of one of the models used as input. One network
was trained with the oxygen saturation in the sampling volume as target, and another with the
RBC tissue fraction in the sampling volume as target. The nodes in the hidden layer used the
hyperbolic tangent function as activation function. The output layer had a linear activation func-
tion for both networks, truncating at 0% and 100% for the oxygen saturation network and at 0%
for the RBC tissue fraction network. In the training, Levenberg–Marquardt backpropagation
with mean-square-error loss function was used.

Using the default settings, 70% of the data (i.e., 70,000 models) was used for training,
whereas 15% was used for validation. When the performance on the validation set decreased
during six successive iterations, the training was aborted according to default behavior in Matlab.
The final 15% was used to retrieve a performance number that is unbiased to the other 85% of the
data. Each network was trained at least 10 times with different initial states, or until the root mean
square (RMS) performance, based on the evaluation set, differed <2.5% between the three best
networks. The best of those at least 10 trained networks was chosen for further evaluation. This
training strategy was tested for various sizes of the hidden layer. No increase in performance
could be noted for more than 25 nodes. Therefore, the size of the hidden layer was set to 25 in
the networks that were further evaluated.

(a) (b)

Fig. 3 Example of the input data from one model, (a) 0.4-mm s-d separation and (b) 1.2-mm sep-
aration. Solid curves represent the model with added noise, dashed without. The target oxygen
saturation and RBC tissue fraction were 35% and 0.10%, respectively, in this example.
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2.6 Data Exclusion

Spectra with a high degree of noise, which is foremost related to a low intensity caused by very
high melanin amount (tepi × fmel) or high tissue fraction of blood, were excluded from the evalu-
ation. The exclusion criterium was based on the 1.2-mm s-d separation. The difference between
two adjacent points in the spectrum (consisting of 28 wavelengths) was calculated in relation to
the highest intensity of the two points. If differences above 50% were found for more than two
pairs of points, the spectrum was considered too noisy and excluded from the evaluation.

In addition, spectra were excluded from the oxygen saturation evaluation if the hemoglobin
signature in the spectra was too weak, generally caused by a very low RBC tissue fraction, as
previously described in Refs. 25 and 14.

2.7 Tissue Phantom

Liquid phantoms were made from 20% Intralipid with phosphate-buffered saline at a pH of 7.4,
as described in Ref. 14. Bovine red blood cells, where plasma was removed by centrifugation,
were added to two phantoms with a fraction of red blood cells of about 1.6% and 0.8%, respec-
tively. The phantom was placed in a heated bath with a temperature close to 37°C and stabilized
and oxygenated by a magnetic stirrer for 20 min before data collection. The oxygen partial pres-
sure, pO2, was measured using a Clark-type electrode. Small batches of dry yeast diluted in
water were added to the solution to gradually decrease hemoglobin oxygenation. The pO2 was
monitored by a voltmeter, calibrated to 160 and 0 mmHg (initial and minimum values, respec-
tively). The expected red blood cell oxygen saturation was calculated from pO2 as described
in Ref. 14.

When analyzing these measurements, ANN:s were trained without adding the residual model
described in Sec. 2.3. Apart from that, the same training data were used.

2.8 In Vivo Measurements

The method was tested during an occlusion-release provocation on three volunteers. The test
subjects were male, aged 24-47 years, and had Fitzpatrick skin types II, III, and V. They were
acclimatized in a room holding a temperature of 23°C to 24°C for at least 15 min before the start
of the measurement. The measurement started with a 5-min baseline, followed by a 5-min bra-
chial occlusion (200 mmHg), and a 5-min reperfusion phase. The inflation of the blood pressure
cuff to 200 mmHg lasted about 10 s, and the deflation to below 50 mmHg lasted about 2 s. The
measurement probe was attached using double-adhesive tape (PF 105-1, Perimed AB, Järfälla-
Stockholm, Sweden) on the volar side of the right forearm, about 10 cm above the wrist, avoiding
any visible vessels. The subjects gave their written informed consent before the start of the meas-
urement, and the protocol was approved by the regional ethical review board in Linköping,
d.no. 2018/282-31.

The provocation was chosen to obtain measurement data from large parts of the training
space, e.g., both low and high oxygen saturations. Test subjects representing three different skin
types were recruited for the same reason.

3 Results

3.1 Model Evaluation

The accuracy of the estimated oxygen saturation from the trained ANN:s is expressed as the
absolute RMS deviation and coefficient of determination (R2) for oxygen saturation, and in addi-
tion as the relative RMS for RBC tissue fraction (excluding the lowest 5% since they affect the
result considerably). A summary of the results is found in Tables 1 and 2. The column N shows
how many of the 100,000 evaluation data models that remained after exclusion as described in
Sec. 2.6. Training without noise and including noise in the evaluation data increased the RMS
deviations considerably, as compared to no noise in the evaluation data. This shows the impor-
tance of including noise in the training data. The fifth row, with noise in both training and
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evaluation data, is the most relevant result when mimicking a realistic measurement system.
Those results are also shown in Fig. 4 where the data are sorted based on the true oxygen sat-
uration or RBC tissue fraction and then grouped in batches of 500 data points. For each group,
the average and standard deviation of the estimated oxygen saturation or RBC tissue fraction
were calculated. In the figures, the black curve shows the average, and the shaded area represents
one standard deviation. The dotted diagonal line represents the ideal case.

Table 1 Absolute RMS-deviation and coefficient of determination for estimated oxygen
saturation.

Method Training data Evaluation data N Abs RMS R2

ANN No noise No noise 88,009 3.0 0.990

ANN Noise No noise 88,009 3.9 0.984

Nonlin. opt. N/A No noise 88,009 6.2 0.956

ANN No noise Noise 85,726 7.4 0.936

ANN Noise Noise 85,726 5.1 0.969

Nonlin. opt. N/A Noise 85,726 12 0.844

Table 2 Absolute and relative RMS-deviation and coefficient of determination for estimated RBC
tissue fraction.

Method Training data Evaluation data N Abs RMS Rel RMS R2

ANN No noise No noise 99,828 0.056 12 0.984

ANN Noise No noise 99,828 0.064 13 0.978

Nonlin. opt. N/A No noise 99,828 0.099 27 0.950

ANN No noise Noise 97,967 0.12 20 0.922

ANN Noise Noise 97,967 0.064 13 0.975

Nonlin. opt. N/A Noise 97,967 0.12 26 0.920

(a) (b)

Fig. 4 (a) Relation between true and estimated oxygen saturation and (b) RBC tissue fraction for
the ANNs trained and evaluated with added noise. The black curves correspond to the average
estimated value in each bin, and the shaded areas indicate the standard deviation in each bin.
Each bin corresponds to 500 data points from (a) the 85,726 or (b) 97,967 included evaluation
models.
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The third and sixth rows in Tables 1 and 2 show comparisons to the nonlinear optimization
method presented in Sec. 2.3, without and with noise, respectively. The nonlinear optimization
method showed approximately twice as high RMS deviations than the respective ANN methods.

In addition to the results shown above, several variants of training data were considered.
For example, when only utilizing spectra from one of the s-d separations, there was a negative
impact on both oxygen saturation and RBC tissue fraction, largest for the latter. The effect of
including the absolute intensity instead of intensity normalized with mean was tested, without
any considerable positive effect on accuracy. When adding wavelengths up to 850 nm to the
training data, the accuracy increased marginally. These ANNs were trained and evaluated with
the same type of noise as described before. The results for these variants are summarized in
Table 3.

3.2 Tissue Phantom

The proposed ANN method estimated RBC tissue fraction for the liquid phantoms to be 1.4%
(1.6% by dilution) and 0.76% (0.8% by dilution), respectively. The estimated oxygen saturation
as a function of time is shown in Fig. 5. A comparison to calculated oxygen saturation based on
measured pO2, as well as to the previous nonlinear optimization method,14 is also shown. The
absolute RMS deviation between oxygen saturation estimated with the ANN method and calcu-
lated from pO2 was 5.3 and 1.6 percentage units, respectively, for the two measurements.

Table 3 RMS deviations and coefficients of determination for other variants of training data.

Variant Abs RMS Rel RMS R2

Oxygen saturation Table 1, row 5 5.1 — 0.969

Only long separation 6.2 — 0.954

Absolute calibration 4.9 — 0.971

475 to 850 nm 5.0 — 0.971

RBC tissue fraction Table 2, row 5 0.064 13 0.975

Only long separation 0.11 19 0.927

Absolute calibration 0.062 13 0.977

475 to 850 nm 0.057 12 0.982

(a) (b)

Fig. 5 Comparison between the expected oxygen saturation calculated based on measured pO2,
using the previous nonlinear optimization method, and the new ANN method. Phantom with
approximate RBC tissue fraction of 1.6% is shown in (a), and of 0.8% in (b). The inlay in (a) shows
the time frame 20 to 40 min with higher resolution.
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3.3 In Vivo Measurements

The resulting oxygen saturation and RBC tissue fraction from the three in vivomeasurements are
shown in Fig. 6. Test person (TP) 1 had Fitzpatrick skin type II, TP2 had type V, and TP3 type III.
RBC tissue fraction and oxygen saturation can be converted to hemoglobin concentration
according to Eq. (10). This conversion has been done for TP1 and shown in Fig. 7. A comparison

(a) (b)

Fig. 6 (a) Oxygen saturation and (b) RBC tissue fraction during the occlusion-release test on the
three test subjects.

Fig. 7 Hemoglobin concentration for reduced, oxygenized and total hemoglobin from TP1.

(a) (b)

Fig. 8 Example DRS spectra at t ¼ 16 s in the measurements for TP2 (Fitzpatrick V) and TP3
(Fitzpatrick III). There, they have approximately the same oxygen saturation 38% and RBC tissue
fraction (0.30% and 0.26%, respectively). (a) Short (0.4 mm) s-d separation and (b) long (1.2 mm)
s-d separation.
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of DRS spectra between TP2 and TP3, at a time point where assessed oxygen saturation and
RBC tissue fraction was approximately the same (t ¼ 16 s), is shown in Fig. 8.

4 Discussion and Conclusion

We have presented a method for estimating oxygen saturation and RBC tissue fraction from
recorded DRS spectra, using machine learning with ANNs. The method has higher accuracy
and is more stable than the nonlinear search algorithm previously used. It is fast enough to allow
for real-time analysis of signals at tens of Hz even on simple embedded CPU’s. The principal
difference between the presented method and previous methods where machine learning has
been used to solve the inverse problem within DRS8–12 is that the mentioned output parameters
are estimated directly from the measured spectra. Previously, this was achieved by first estimat-
ing the absorption coefficient wavelength-by-wavelength and then calculating chromophore con-
tent (oxygen saturation and RBC tissue fraction) from the absorption spectra. Our direct
approach turns out to solve the inverse problem of calculating model parameters from DRS
spectra in an effective and stable manner, needing only two s-d separations and a minimal set
of calibration measurements. Another key feature that enables our method to fully capitalize on
the shape of the DRS spectra is that our training data accurately mimics both the response from a
wide range of skin tissue types and system noise.

When dealing with ANNs in any form, the quality of the training data is of utmost impor-
tance. First, the training data must be representative to the measurement data, or the results will
be inaccurate. In this paper, we propose the generation of training data from a 15-parameter
tissue model that is representative of virtually any type of skin tissue, given the parameter ranges
in Fig. 1. For other types of tissues, the multilayer model can be adapted, e.g., by excluding the
epidermis layer. Some of the parameter ranges are bound to physically possible ranges, such as
the oxygen saturation (0% to 100%), while others, such as the scattering parameters, have been
chosen so that they widely exceed the ranges that have previously been estimated from thousands
of skin measurements.15

One of the advantages of using modeled training data is the possibility to quickly generate
large amounts of training data covering a wide range of tissue types. It is also the only way to
generate tissue relevant training data were the target, i.e., oxygen saturation or RBC tissue frac-
tion, is known with high accuracy. With tissue relevant, we mean inclusion of for example
layered structures, vessel geometry (the vessel packaging effect), etc., as well as wide ranges
of parameter values as previously discussed. That cannot be obtained using training data from
tissue phantoms.

The effect of adding noise to the training data is apparent when studying the results in
Tables 1 and 2. The best results are found for the situation when no noise has been added
to either the training data or the evaluation data. However, when adding noise to the evaluation
data but not to the training data, the results become much worse. Since noise is inevitable in real
measurement data, it is evident that the ANNs also need to be trained on data with added noise to
retain its performance. In that manner, the networks learn what characterize typical noise and
what is spectral information that can be related to output parameters. It is interesting to see that as
long as the ANNs are trained with noise, their performance is almost identical regardless if the
evaluation data contain noise or not. This “tailored immunity” to noise is visually evident in the
zoomed inlay in Fig. 5, where the ANN oxygen saturation fluctuates considerably less than
the estimation from the nonlinear optimization method.

Three types of noise are presented in Sec. 2.4: measurement noise, residual noise, and color
uncertainty. While the measurement noise and color uncertainty are probably easily grasped, the
concept of the residual noise may be more problematic. In the ideal case, there should be no
systematic residual between measured spectra and nonlinearly fitted spectra. In our case, the
systematic residual is small, generally below 1%, but nevertheless reveals that some detail is
missing in the model, potentially an additional geometrical effect, a missing chromophore,
or autofluorescence. We have tried a multitude of variants of the model to avoid this, for exam-
ple, different scattering spectra in the epidermis and dermis, and searched in the literature for
other included parameters, without success. Therefore, we decided to include this residual noise.
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The effect compared to if it was not included in the training data is foremost a slightly increased
estimated oxygen saturation at low levels (<10%) of oxygen saturation.

Comparisons are done to the nonlinear optimization method based on the same tissue model,
as outlined in Sec. 2.3. The results clearly show that the ANN method is more accurate. It is also
several orders of magnitudes faster. The downside is that the ANN method does not reveal how
accurate it is for a single measurement, which, however, the nonlinear method does by studying
the residual spectra. The ANN method would thus benefit from a technique that could judge if
the measured spectra are within the representative range of the spectra in the training data, to
avoid erroneous results.

The results presented in this paper for the nonlinear method are slightly worse than previ-
ously published.7,13 The reason for this is foremost the noise model that is added to the evaluation
data in this study that was not used in the evaluation data in the previous studies. Because the
ANN method is faster than the nonlinear optimization method, measurement data will probably
be less filtered (less averaged) with the ANN method, resulting in spectra with more noise. The
noise level used in this study corresponds to low-pass filtered spectra with a cut-off frequency of
4 Hz, high enough for allowing for studying any changes during a heart cycle, whereas the
nonlinear optimization method has been used on data low-pass filtered with 1 Hz or less in
previous studies.15,24–26

A straightforward calibration procedure is proposed, only incorporating dark and white cal-
ibration of the spectrometers. No absolute intensity calibration on known phantoms or relative
intensity calibration between the two spectroscopy channels are needed, as the recorded spectra
are normalized with their own average intensity. This decision is based on the somewhat sur-
prising result that the performance of the method did not substantially increase when taking into
account the absolute intensity in the training and evaluation data (see Table 3). This can most
likely be explained by how our model can generate training data that fully and accurately cap-
tures all variations found in real DRS data from skin tissue. The shape of the two detected spectra
is enough for contrasting the estimated parameters. This enables the trained ANN algorithm to
fully capitalize on the shape of the measured DRS spectra without needing absolute intensity or
the interchannel intensity difference.

The accuracy of the oxygen saturation in the phantom data is on the same level as for the
modeled evaluation data. As discussed in the previous paper where the same phantom recordings
were used,14 the rather large deviation between oxygen saturation estimated by measuring pO2

and using the ANN method during the most rapid changes in the first experiment with a rather
high concentration of blood, may be due to a decrease in pH or increase in pCO2, which alters
the relationship between oxygen pressure and oxygen saturation. It may also be due to inho-
mogeneous mixing of the phantom. If those circumstances would have been more thoroughly
controlled, the results would probably had been even better. Nevertheless, these phantom experi-
ments constitute a valuable validation of the ANN method.

The in vivo measurements show expected results, with oxygen saturation decreasing to
zero during the occlusion phase, and a hyper perfusion leading to oxygen saturation well above
baseline at release. The values of both oxygen saturation and RBC tissue fraction during baseline
and reperfusion are well in line with previous findings using inverse Monte Carlo.24,25,27,28

Differences between the three examples are explained by known spatial and individual variations.25

Measured spectra resulting in almost the same oxygen saturation and RBC tissue fraction
from TP2 (Fitzpatrick skin type V) and TP3 (type III) are shown in Fig. 8. Notable is the differ-
ence in spectral slope between the two persons, whereas the general shape except from the slope
is very similar, not at least in the 520- to 590-nm wavelength interval where the dynamics and
differences in the hemoglobin absorption spectra is large. The difference in the slope can be
explained by a higher melanin concentration in TP2, as the absorption of melanin decreases
with wavelength [see Eq. (4)]. It should be noted that even if TP2 had skin type V, the forearm
was only moderately pigmented at the time of the measurement as it was performed during the
cold and dark time of the year. Thus, further studies are needed to show the feasibility of the
proposed method on more pigmented skin.

In this study, we chose only to present ANN results on the estimation of RBC oxygen
saturation and tissue fraction, alternatively the hemoglobin concentration which is directly con-
nected to the former two. The presented framework for generating training data is not limited to
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these parameters. However, we believe that these parameters are of highest clinical value for the
end-user. Results from other studies have also shown that ANN methods can demonstrate great
results when validated using noise-free simulated DRS data, but when applied to real measure-
ments the accuracy deteriorates.11,12. Hence, before presenting additional parameters estimated
using ANN, validation measurements on tissue phantoms constructed to target other parameters
are needed.

Once the ANN’s are trained, the calculations are very fast – in the order of microseconds for
each set of DRS-spectra. This can be compared to the previous nonlinear optimization method
that needed about 0.2 s if a proper starting point was known (such as the solution of the previous
time point), and in the order of 1 min if global search had to be used to reduce the risk of local
optimum solutions enough.

In conclusion, the proposed approach based on machine learning for estimating oxygen sat-
uration and RBC tissue fraction directly from DRS spectra is more accurate than the previous
method based on nonlinear optimization, which in turn has been shown to be superior to an
existing state-of-the-art DRS analysis algorithm based on a modified Beer–Lambert’s law
expression.7,29 It is several orders of magnitudes faster than the nonlinear optimization method,
calculating the output parameters from measured spectra in the order of microseconds using an
ordinary CPU. In addition, it is stable in respect to noise and only requires two detecting fibers
and a simple calibration. Therefore, the method has great potential to be used in instruments for
studying the in vivo microvascular status.
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