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Abstract

Significance: Adaptive optics optical coherence tomography (AO-OCT) technology enables
non-invasive, high-resolution three-dimensional (3D) imaging of the retina and promises earlier
detection of ocular disease. However, AO-OCT data are corrupted by eye-movement artifacts
that must be removed in post-processing, a process rendered time-consuming by the immense
quantity of data.

Aim: To efficiently remove eye-movement artifacts at the level of individual A-lines, including
those present in any individual reference volume.

Approach:We developed a registration method that cascades (1) a 3D B-scan registration algo-
rithm with (2) a global A-line registration algorithm for correcting torsional eye movements and
image scaling and generating global motion-free coordinates. The first algorithm corrects 3D
translational eye movements to a single reference volume, accelerated using parallel computing.
The second algorithm combines outputs of multiple runs of the first algorithm using different
reference volumes followed by an affine transformation, permitting registration of all images to
a global coordinate system at the level of individual A-lines.

Results: The 3D B-scan algorithm estimates and corrects 3D translational motions with high
registration accuracy and robustness, even for volumes containing microsaccades. Averaging
registered volumes improves our image quality metrics up to 22 dB. Implementation in CUDA™
on a graphics processing unit registers a 512 × 512 × 512 volume in only 10.6 s, 150 times faster
than MATLAB™ on a central processing unit. The global A-line algorithm minimizes image
distortion, improves regularity of the cone photoreceptor mosaic, and supports enhanced visu-
alization of low-contrast retinal cellular features. Averaging registered volumes improves our
image quality up to 9.4 dB. It also permits extending the imaging field of view (∼2.1×) and
depth of focus (∼5.6×) beyond what is attainable with single-reference registration.

Conclusions: We can efficiently correct eye motion in all 3D at the level of individual A-lines
using a global coordinate system.
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1 Introduction

Adaptive optics-optical coherence tomography (AO-OCT) is a non-invasive, high-resolution
method for obtaining three-dimensional (3D) volumetric images of the retina.1–4 These qualities
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may support earlier detection and improved monitoring of prevalent blinding retinal diseases,
such as glaucoma, diabetic retinopathy, and age-related macular degeneration.1–4 However,
analysis of AO-OCT data is impeded by two factors: First, the time to acquire a single volume
is sufficient for it to be distorted by eye motions such as tremors, drifts, and microsaccades,5

creating artifacts that are many times larger than the cells being imaged.6 These motion artifacts
must be measured and compensated for to permit proper analysis of the retinal tissue images.
We address this problem by proposing a cascade of two registration algorithms that we call 3D
B-scan registration7 and global A-line registration. Second, high-resolution AO-OCT systems
generate terabytes of image data from a single imaging session, resulting in immense data sets
and making motion artifact removal a lengthy process. We decrease processing time by imple-
menting the 3D B-scan registration algorithm with parallel processing on a general-purpose
graphics processing unit (GPGPU).7 Together, the two registration algorithms allow us to
compensate efficiently and accurately for both lateral and axial eye motions. The algorithms
correct for XYZ translational eye movements, torsional eye movements, and variations in image
magnification, and generate global motion-free coordinates.

Numerous algorithms have been developed for registering images from adaptive optics
scanning laser ophthalmoscopes (AO-SLO)8–11 and AO-OCT.12–14 These are based universally
on strip-wise registration of two-dimensional (2D) en face images. Strip-wise registration spe-
cifically corrects motion artifacts that appear in the en face image, which is the most common
view of the retina obtained with AO ophthalmoscopes. This approach typically requires that
images are decomposed into strips that are sufficiently narrow and acquired sufficiently quickly
that they are individually free of motion artifacts (aside from an occasional microsaccade).
Motion artifacts are therefore assumed to consist of rigid displacements of these strips that can
vary in magnitude and direction. These displacements can be measured and corrected in a target
volume by cross-correlating each strip from the en face image of that volume to multiple strips
from the en face image of a reference volume.

When applied to volumes, strip-wise approaches are computationally inherently efficient in
that the entire volume is registered by processing only a small fraction of the volume data, i.e., a
2D en face projection, typically through the photoreceptor layer. This layer has been historically
used for registration as it contains the brightest reflections and hence the strongest signals.
However, computational efficiency comes at the expense of discarding most of the information
in the volume, which could be used for improving the registration. For our 3D B-scan registration
algorithm, we take advantage of this additional information by extending the cross-correlation
regions into the third dimension (depth), correlating B-scans instead of en face strips. Making
use of the additional information outside the photoreceptor layer confers two important advan-
tages. First, it permits us to trade an increased extension in-depth for a decrease in width.
Specifically, instead of single-pixel-deep strips we use fast B-scans as single-pixel wide slices
extending the full depth of the volume. This allows us to better detect and correct rapidly varying
motion artifacts. Second, the depth of focus of AO ophthalmoscopes is typically a small fraction
of the retinal thickness. When we image cells outside the photoreceptor layer, we focus the
system on those cells, decreasing the sharpness of en face images of the photoreceptors.
Cross correlation of B-scans is inherently less sensitive to changes in focus as all cells contribute
to the registration and those cells in focus have increased signal and sharpness.

Effective strip-wise and B-scan registration require the reference volume to contain minimal
motion artifacts and maximal overlap with the image set to be registered. Considering that no
volume is ever completely free of motion artifacts, it follows that volumes registered by this
method are still distorted. While several approaches have been proposed to mitigate such residual
distortion, e.g., incorporating an eye-tracking system6,15–17 and modifying the scan pattern,18,19

these may require additional hardware and add complexity and cost. Stevenson and Roorda8 and
others9,10,14 presented a clever method for constructing a synthetic global reference from the
complete set of motion traces for each strip within a set of registered images. This permits regis-
tration of all images to a global reference and can be done entirely in post-processing. This
method is successful, though is most effective within the plane containing the 2D registration
strips (e.g., photoreceptor layer) and does not compensate for both scaling and torsional errors
even within that plane. The method is also limited to a single reference.
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We develop a more rigorous approach to addressing this global registration problem. We use
our 3D B-scan registration algorithm to register target volumes to a reference volume. We test
this algorithm by examining its effect on a number of image quality metrics. We then repeat the
3D B-scan registration by selecting multiple reference volumes to increase the number of regis-
terable volumes. We use these registration results to derive a single global coordinate system that
all individual B-scans from all volumes are mapped into. Finally, we correct for scaling and
torsional errors to estimate 3D global coordinates for individual A-lines. We name this approach
our global A-line registration algorithm. We test the global A-line algorithm by applying a
slightly different set of image quality metrics to averaged volumes registered to the global coor-
dinate system; this second set of metrics are intended to also measure enhancements in the regu-
larity of the resulting images. Figure 1 shows a detailed flowchart of our registration method with
steps referenced by section number in the paper.

Understanding our method and contrasting it against registration methods already in the
literature requires an understanding of AO-OCT image acquisition and the impact eye motion
has on it. These topics are introduced in Sec. 2. Section 3 presents our 3D B-scan registration
algorithm and CUDA™ GPGPU implementation, which allows it to run ∼150 times faster than
it would in MATLAB™ on a central processing unit (CPU). We experimentally evaluate our
implementation by running it against a dataset of more than 300 volume images and measuring
registration accuracy and run time both quantitatively and qualitatively. Section 4 presents our
global A-line registration algorithm, which uses the output of the 3D B-scan registration algo-
rithm. We derive the method from theory and experimentally evaluate it by running it against a
dataset of more than 900 volume images and measuring the registration accuracy qualitatively
and quantitatively. We use the combined registration method (3D B-scan registration plus global
A-line registration) to obtain pristine images of retinal cellular structure, to increase the field of

Fig. 1 Flowchart of our registration method that cascades (a) a 3D B-scan registration algorithm
with (b) a global A-line registration algorithm. The 3D B-scan registration algorithm registers multi-
ple target volumes T ¼ ð1; 2; : : : Þ to a single reference volume R. A coarse-to-fine registration
approach improves processing speed and accuracy (Sec. 3.1.2.3), accelerated by parallel com-
puting (Sec. A in Supplementary Material). Global A-line registration registers individual A-lines in
all volumes to a global coordinate system. The approach consists of three steps: (1) multiple-refer-
ence registration to separately register all target volumes to each of multiple reference volumes
(Sec. 4.1.1), (2) global registration of individual B-scans (Sec. 4.1.2) to derive a single mapping of
individual B-scans to the multiple-reference global coordinate system, and (3) global registration of
individual A-lines (Sec. 4.1.3) to correct en face affine transformations among volumes and esti-
mate 3D global coordinates for individual A-lines. Abbreviations: POC, phase-only correlation;
NCC, normalized cross-correlation.
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view (∼2×) over that of a single acquired AO-OCT volume, and to create through-focus
AO-OCT volume images with preserved image sharpness over the full retinal thickness. The
latter is made possible by increasing the effective depth of focus (∼5×) over that of a single
acquired AO-OCT volume. In Sec. 5, we summarize the performance of our registration method,
compare it to registration methods in the literature, and discuss its limitations.

Finally, this study focuses on the development rather than the use of a new registration
method. Because of this, we found it most efficient to illustrate and validate our method using
just two large datasets acquired on two subjects who had typical fixational ability. We have
numerous other datasets that could have been used, and in fact, we now routinely use this method
in all our imaging studies. To date, we have successfully registered images acquired on more than
40 subjects of different age, gender, and eye size, with different retinal diseases, and at numerous
retinal eccentricities and time points. Some of these results can be found elsewhere.4,20–25 Also,
while we limit the method to AO-OCT images, the method should be applicable to other types of
3D images, most obviously to OCT images (without AO), which are universally used in eye care
practice.

2 AO-OCT Image Acquisition and Impact of Eye and Head Motion

Each AO-OCT image volume contains a unique pattern of lateral ðx; yÞ and axial (z) distortions
and is non-rigidly displaced in all 3D relative to other volumes because of random eye motion
during fixation5 and subtle movements of the head. The nature of these distortions in each
dimension is determined by an interaction between the temporal properties of the component
of eye movement and the component of the OCT scan pattern in that dimension. The pixels
within a single A-line of the volume (typically oriented in retinal depth, z) are captured simulta-
neously. A fast B-scan ðx; zÞ consists of a set of A-lines spaced contiguously along the x axis; in
our system, they are typically collected over a period of 0.3 to 1 ms. A complete volume ðx; y; zÞ
consists of a set of fast B-scans ðx; zÞ displaced along the y axis and collected over 98 to 414 ms.
A slow B-scan ðy; zÞ is constructed from A-lines at the same x position along the y axis, whereas
a C-scan ðx; yÞ or en face image is constructed from rows of fast B-scans at the same depth and
displaced along the y axis.

When we view a 2D slice through a volume, the appearance of eye motion artifacts depends
on which slice is viewed: fast B-scan ðx; zÞ, slow B-scan ðy; zÞ, or C-scan ðx; yÞ. For example, the
most commonly seen artifacts in fast B-scan images ðx; zÞ is a tilt induced by a linear variation in
the time-of-flight difference of the retinal reflections across the B-scan, as shown in the fast
B-scan of Fig. 2 (top left). The time-of-flight variation is caused by displacement of the eye’s
optical axis in its pupil plane relative to the imaging beam axis. However, in a slow B-scan
image ðy; zÞ, head movement along the z axis is the dominant effect, causing slow (mean wave
period ∼1 s) shifts or ripples of the image along the z axis, as shown by the slow B-scan and slow
B-scan projection of Fig. 2 (top). Microsaccades are more evident in the en face image ðx; yÞ and
cause the largest and most abrupt shifts; they can traverse between several dozens and hundreds
of photoreceptors over ∼25 ms,5 as shown in the en face projection in Fig. 2 (bottom). Tremors
in the x and y dimensions cause small oscillatory shifts (∼2 to 3 μm in amplitude) with a duration
of ∼11 ms,5 resulting in the distorted appearance of cone photoreceptors shown in Fig. 2
(bottom). While it is not evident in Fig. 2, drift movements cause moderate shifts—traversing
roughly a dozen photoreceptors—over longer intervals (∼1 s).5

The process of image registration is also complicated by changes in head position that can
give rise to scaling and rotation (torsion) of images. Measurable torsion across look-ins—
caused by combination of changes in head position and compensatory torsional eye move-
ments—is common,26,27 even in subjects experienced in the use of a bite bar. Also, the torsion
error drifts over time (standard deviation of torsion error is ∼0.15 deg within a 4-s session,
but an order of magnitude larger across sessions).28 Image scaling is primarily due to slight
changes in position of the bite bar mount between imaging sessions; a slight change in position
between two sessions (a year apart) of a longitudinal study25 gave rise to noticeable image
scaling (the change in magnification is 2.2%/mm from a pivot conjugate plane). The effects
of these motions are considerably more subtle and will be discussed in Sec. 3.
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3 3D B-Scan Registration

Section 3.1 describes our 3D B-scan registration algorithm that uses a coarse-to-fine registration
approach with a combination of phase correlation and normalized cross-correlation (NCC) to
improve processing speed and accuracy.7 Section A in Supplementary Material summarizes our
GPU-based acceleration techniques. Section 3.2 describes the experimental procedure used to
evaluate the performance of our approach, and the experimental results.

3.1 Algorithm

We assume that fast B-scans are rigid, i.e., that they were acquired in a short enough time (0.3 to
1 ms) to contain only negligible motion artifacts. Thus, for each fast B-scan in a target volumewe
can determine its offset ðΔx;Δy;ΔzÞ with respect to the best matching fast B-scan in a reference
volume by 3D cross-correlation of individual fast B-scans between reference and target volumes.
Figure 3 shows the concept of this 3D B-scan registration method.

We used a coarse-to-fine B-scan search to accelerate image registration. This strategy uses a
faster but less accurate method to compute a coarse displacement estimate. This coarse estimate
is then used to define a small search space for a subsequent fine estimate using a slower but
more accurate technique. The overall 3D B-scan registration approach consists of five steps
[Fig. 1(a)]:

1. Prepare AO-OCT volumes for 3D registration by filtering out noise, cropping volumes,
and choosing a reference volume (Sec. 3.1.1).

2. Apply high-speed coarse registration with 3D phase-only correlation (POC)29 to obtain
an approximate prediction of target B-scan image displacement relative to the best-
matching B-scan in the reference volume (Sec. 3.1.2).

Fig. 2 Eye motion artifacts in AO-OCT volume. (top left) A volume consists of a set number of fast
B-scans spaced along the y axis with each fast B-scan consisting of a set number of A-lines
spaced along the x axis. (top right) The slow B-scan projection image is the projection of the
volume onto the yz plane by averaging all pixels along the x axis. The wavy looking pattern is
due to axial motion. (bottom) Similarly, the en face projection image is the projection of the volume
onto the xy plane by averaging all pixels along the z axis. The abrupt distortion is due to a micro-
saccade. The irregular spacing is due to tremor motion.
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3. Define the search space for the subsequent step of fine registration by upsampling the
coarsely-predicted B-scan displacements from the preceding step using a linear interpo-
lator (Sec. 3.1.3).

4. Perform fine registration with NCC30 for accurate prediction of individual fast B-scan
locations within the reduced search area (Sec. 3.1.4).

5. Iterate (2)–(4) to register other target volumes to the same reference volume and then filter
the registration results and visualize the registered averaged high-quality AO-OCT volume
(Sec. 3.1.5).

This correlation-based algorithm is well-suited to parallel processing, enabling all compu-
tations to be implemented in CUDA (Sec. A in Supplementary Material).

3.1.1 Data preparation

AO-OCT volumes require six pre-processing operations prior to registration. These are (1) cor-
rection of the uneven spacing of the A-lines caused by the nonlinear scan pattern along the fast
B-scan direction; (2) correction of tilt introduced by imperfect eye alignment; (3) reduction of
noise to avoid spurious correlation peaks; (4) conversion of data to single precision to fit into
GPU memory and minimize processing time; (5) cropping each volume; and (6) choosing a
reference volume. We summarize these pre-processing steps below.

1. Resample A-lines along the fast B-scan direction: due to nonlinearity of the scan pattern,
the spacing of A-lines along the fast (X) axis direction is uneven. To correct, we resampled
A-lines using a scan pattern measured on a model eye, a procedure that is sometimes
referred to as “de-sinusoiding,” though we do not use a sinusoidal waveform.

2. Correct retinal tilt along the fast B-scan direction: varying displacement of the imaging
beam axis relative to the center of the ocular pupil causes the images of retinal layers to
exhibit differences in tilt between volumes (see Sec. 2); this variation affects both POC and

Fig. 3 Example of 3D registering a single fast B-scan of an AO-OCT retinal volume to the best-
matching fast B-scan in a reference volume. This figure shows the slow B-scan projection (top row)
and en face projection (bottom row) images of the target volume (left column), reference volume
(middle column), and registered target volume (right column). The red line in each image indicates
the location in the target image of the fast B-scan to be registered. The green line indicates the
location of the best-matching fast B-scan in the reference volume found by our 3D B-scan regis-
tration algorithm, displaced from the target location by ðΔx;Δy;ΔzÞ. Target B-scans are shifted by
this amount in the right column, registering the B-scans to the reference volume but creating gaps.
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NCC calculations. This tilt is numerically corrected to sub-pixel accuracy using linear
interpolation.

3. Remove noise floor and convert data type: to reduce noise, volumes are normalized, scaled
and converted to single precision using the following equation:

EQ-TARGET;temp:intralink-;e001;116;685V 0 ¼
8<
:

1e5 ðM ≤ VÞ
V−N
M−N × 1e5 ðN ≤ V < MÞ
0 ðV < NÞ

; (1)

where V and V 0 are pixel values before and after normalization, N is the noise offset
estimated from regions containing only non-reflective retinal structures (e.g., the vitreous),
M is a constant determined by dynamic range and is typically set 35 to 40 dB above the
noise offset to capture the strongest retinal reflections, and the scaling factor 1e5 is deter-
mined to avoid floating-point underflow and overflow and is a safeguard for squaring
numbers and other multiplications in subsequent processing steps. We compute the noise
offset N using the 95th percentile of pixel values in the vitreous for each volume.

4. Crop volume: The POC dictates that B-scans in each volume must have the same size.
To maximize processing speed, we crop all volumes to the smallest size possible for a
specific imaging protocol, which must be no larger than the maximum B-scan size
(512 × 512 pixels) that can be processed by our GPGPU implementation.

5. Select reference volume: The reference volume is chosen to be the volumewith the highest
quality from a series of the same retinal area. Criteria for quality are minimal eye motion
artifacts, high image clarity, and high signal-to-noise ratio (S/N). We developed a simple
quantitative metric that encapsulates these criteria based on cross-correlation of the en face
projections of adjacent fast B-scans. For each pair of adjacent lines, we store the peak
correlation value r and the offset Δx at which the peak occurs. A large eye motion results
in a local shearing of the image, leading to systematic variation in Δx and possibly
a decrease in r; the presence of noise in the image will decrease r and increase the
variability in Δx. We, therefore, define an image metric m ¼ r∕σrσΔx, where r is the
mean of the correlation peak heights, σr is the standard deviation of peak heights, and
σΔx is the standard deviation of lateral shifts. The volume with the largest m is selected
as the reference.

3.1.2 Coarse registration using 3D phase correlation

We register multiple target volumes to a single reference volume using a coarse-to-fine procedure
as shown in Fig. 4. For simplicity, we describe the algorithm to register a single target volume to
a single reference volume. The coarse stage applies a quick 3D POC to a set of target sub-
volumes (stack of contiguous fast B-scans) and finds the best-matching sub-volume in the refer-
ence volume for each target sub-volume (see Secs. 3.1.2.1 and 3.1.2.2).

Coarse registration sampling. To coarsely estimate the non-rigid displacements between
two volumes (mainly due to eye drift), we select several sub-volumes or samples in each target
volume that are evenly spaced by s and have a width of 2d along the y axis [see Fig. 4 (top left)].
Selection of optimal values for these parameters requires managing a number of tradeoffs. smust
be small enough to accurately represent temporal variation in motion, but decreasing it also
increases processing time. Since it is implicitly assumed that no motion occurs within a sample,
increasing d runs a greater risk of violating this assumption; on the other hand, decreasing d
lowers the S/N of the estimated displacement.

Our B-scan acquisition time typically ranges from 0.3 to 1 ms. We set the sampling interval s
to between 5 and 30 fast B-scans, so our sample sub-volumes are temporally spaced <30 ms

apart. This captures the high temporal frequency components of eye motions that are as short as
10 to 60 ms, which we have found through trial and error to be adequate for normal eye move-
ments. Similarly, we set the sample width 2d between 8 and 16 fast B-scans, so each sample sub-
volume takes 2.4 to 15 ms. This sample width is sufficiently short to freeze most eye motion5 yet
sufficiently long for robust POC. In the presence of large, rapid eye movements, on the other
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hand, we can increase the robustness of POC by decreasing the sampling interval s and creating
a partial overlap between sample sub-volumes (at the cost of increased processing time).

3D phase-only correlation. The POC algorithm is commonly used for image registration
because it is simple and is known to be well-suited for GPU implementation.29 We use the POC
algorithm to determine the displacement of each target sub-volume relative to the best-matching
reference sub-volume based on the location of the maximum value of the 3D POC [see
Fig. 4 (top)].

Prior to the POC calculation, the reference volume is first zero-padded along the z and x axes
to the nearest greater power of two and along the y axis to the nearest greater multiple of the
sample width 2d because: (1) the POC considers an image to wrap around at the edges, so zero
padding or a window function should be applied to eliminate boundary effects; (2) the FFT is
faster if the size is a power of two. Then, each target sub-volume (aN , where N is the sample sub-
volume index) is zero-padded to match the size of the entire zero-padded reference volume (b),
because the POC requires that both input volumes be the same size.

We compute the 3D Fourier transform of each padded target (aN) and reference (b) volumes
as shown in Eq. (2), denoted by FðaNÞ and F ðbÞ, respectively. We calculate the cross-power

Fig. 4 Illustration of coarse-to-fine registration. (top) Coarse registration treats each target sub-
volume (stack of 16 contiguous fast B-scans) as a rigid body and finds its estimated displacement
ðΔXN;ΔYN;ΔZNÞ relative to the best-matching reference sub-volume, where N denotes the sam-
ple index ðN ¼ 1;2; : : : Þ. Yellow colored areas indicate 20 sampled sub-volumes. Green colored
area indicates the search space. (right) To define the search space for the subsequence step of
fine registration, we upsample ΔYn using a linear interpolator to predict the displacement of each
target B-scan Δy 0

i , where i denotes the B-scan index. The pre-registration position of i ’th B-scan
is just i , so the predicted position is described as y 0

i ¼ i − Δy 0
i . We then set the search space for a

given B-scan as ðy 0
i � wy Þ, where wy is a search space size, as indicated by green colored area

in the bottom reference image. (bottom) Fine registration finds the accurate estimate of each fast
B-scan’s location ðΔx;Δy;ΔzÞ within the narrower search space obtained from the preceding
step.
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spectrum by element-wise multiplication of FðaNÞ with the complex conjugate of FðbÞ and
normalize the result (the normalization and division are also element-wise):

EQ-TARGET;temp:intralink-;e002;116;711RN ¼ FðaNÞ ∘ F ðbÞ�
jFðaNÞ ∘ F ðbÞ�j ; (2)

We compute the inverse Fourier transform F−1ðRNÞ to obtain a 3D cross-correlation map
for each target sub-volume. The location of the maximum value in this map identifies the
best-matching identically sized sub-volume within the reference volume and yields the 3D
displacement of the target sub-volume ðΔXN;ΔYN;ΔZNÞ relative to that reference sub-volume.

3.1.3 Coarse prediction of individual target B-scan displacements

We use the estimated displacement ðΔXN;ΔYN;ΔZNÞ of each target sub-volume relative to
the matching reference sub-volume found in the preceding coarse registration step to narrow
the search space for the following NCC-based fine registration step, as shown in Fig. 4
(bottom). Reduction of the NCC algorithm search space confers two benefits: (1) it decreases
the total computation time; and (2) it increases registration accuracy by decreasing the prob-
ability of finding an incorrect match that has significant structural similarity to the target
image.

To reduce the search space along the y axis, we first exclude target sub-volumes for which the
displacement ΔYN could not be estimated or deviated significantly from the overall trend
(jΔYN − ΔYN−1j > s or jΔYNþ1 − ΔYN j > s). We then up-sample ΔYN using a linear interpo-
lator to predict the displacement of individual target B-scans Δy 0

i, where i denotes the index of a
B-scan within the entire volume. Displacement of target B-scans at the edges of the volume is
linearly extrapolated from the nearest pair of ΔYNs. The pre-registration position of i’th B-scan
is just i, so its predicted position is now described as y 0

i ¼ i − Δy 0
i. The y axis search space

for a given B-scan is defined as ðy 0
i � wyÞ, where the search space half-width wy is typically set

to 8: we empirically find that the coarse shift estimate is usually within �3 B-scans of the final
estimate, so setting wy to eight ensures that the search space contains the matching reference
B-scan.

It would be possible to also shrink the search space along the x and z axes for a given coarsely
registered target B-scan based on the region of overlap between it and its best-matching reference
B-scan. However, by the nature of the FFT-based NCC computation shrinking the search size
requires a concomitant decrease in the size of the input data; put simply, the NCC simultaneously
computes the correlation for every possible offset along x and z axes allowed by the size of the
input. Shrinking the search space thus has two drawbacks. First, the overlapping region depends
on the estimated displacement for each B-scan, so each FFT-based NCC computation would
require different amount of memory; frequent memory re-allocation slows processing. By reduc-
ing the search space only along the y axis, we keep all B-scans the same size as the original,
allowing memory to be allocated only once. Second, shrinking the search space along x and z
axes would require discarding information. We choose to allow the NCC algorithm to use the full
original amount of B-scan information to correct for any prediction failures from the prior coarse
registration step.

3.1.4 Fine registration with normalized cross-correlation

We next register individual fast B-scans of a target volume to the best-matching B-scans in a
reference volume with pixel-level (not subpixel) precision using NCC30 [see Fig. 4 (bottom)].
Each target B-scan is cross-correlated with all reference B-scans within the reduced search space
ðy 0

i � wyÞ obtained from the preceding step. That target B-scan’s final displacement estimate
ðΔxi;Δyi;ΔziÞ is the location of the maximum NCC coefficient. It is worth noting that the y
component of displacement is simply the difference between B-scan indices in the target (i) and
reference (j) volumes: Δyi ¼ i − j.
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3.1.5 Registered volume construction

After iterating the coarse-to-fine procedure described above to register other target volumes to
the same reference volume, we estimate the individual fast B-scan displacement for each target
volume:

EQ-TARGET;temp:intralink-;e003;116;680ðΔxi;T ;Δyi;T ;Δzi;TÞ; (3)

where T is the target volume index. We then construct registered volumes by displacing each fast
B-scan by this calculated displacement. During this process, we detect and exclude B-scans that
have statistically outlying displacements or low correlation coefficients. Spurious peaks in the
NCC for a single B-scan give rise to abrupt change in displacement compared to its neighbors.
We detect and exclude these outliers by computing the local standard deviation of displacements
σΔ across all B-scans within a ∼20-ms window centered on the B-scan in question and that
B-scan is excluded if σΔ exceeds 3 to 5 pixels or its NCC correlation coefficient is lower than
0.3. These values are determined empirically so as to exclude only outliers under normal conditions
and can be easily adjusted in the case of particularly severe eye movements or other abnormal
conditions in which there is a breaking point (threshold) where many B-scans are thrown out.

It is worth noting that non-linear distortions caused by variation in eye velocity can result in
multiple target B-scans being displaced to the same location, whereas other locations might
receive no target B-scans. If multiple B-scans are displaced to the same location, the last acquired
B-scan is used. If a location receives no target B-scans, a gap may appear in the registered vol-
ume [see Fig. 3 (right column)]. These gaps vary randomly between registered volumes and can
be eliminated by averaging volumes as previously demonstrated;13 in this study, we typically
average more than 100 registered volumes for each location.

3.2 Experimental evaluation

3.2.1 Experimental design

We evaluated the performance of our 3D registration using the Indiana AO-OCT system
(described by Liu et al.31 and Kocaoglu et al.32). The system ran in two-camera mode to achieve
an acquisition speed of 500 K A-lines/s. The light power incident on the subject’s cornea was at
or below 430 μW (λcenter ¼ 790 nm; ΔλFWHM ¼ 42 nm) and within American National
Standards Institute-defined safe limits for our experimental protocol. The same light was used
for both AO-OCT imaging and wavefront sensing. We stabilized the subject’s eye and head
position to the AO-OCT system using a dental impression mounted to a motorized XYZ trans-
lation stage. All procedures adhered to the tenets of the Declaration of Helsinki and were
approved by the Indiana University Institutional Review Board. Written informed consent was
obtained from all subjects prior to the experiment.

As stated in the Introduction, we have successfully used our method to register AO-OCT
images acquired from more than 40 subjects. Here, we illustrate the method’s performance
on one of our most challenging AO-OCT datasets with images acquired at many time points
over a 24-h period on a normal subject with typical fixational ability. This extreme session length
introduced a number of challenges to image registration: it required many look-ins by the sub-
ject, resulting in increased eye misalignment; it tired the subject, reducing his ability to fixate
over the course of the session; it necessitated repeated use of Tropicamide that varied the sub-
ject’s refractive state and tear-film state between look-ins; and it included diurnal variation in the
state of the eye. These complications collectively generated a wider range of registration errors
than that encountered in a typical 1 to 2-h imaging session.

We imaged a 1.5° by 1.5° patch of retina 3° temporal to the fovea in a 29-year-old subject (left
eye) who was free of ocular disease and had typical fixational ability. The experiment was
designed to observe cone photoreceptor disc shedding,23 which is a rare event (1/cone/day);
we acquired three to four videos every 30 min throughout the evening of one day from 7:30
to 10:00 PM and throughout the following day from 6:00 AM to 6:00 PM. Each 5-s video con-
tained 12 volumes acquired at 2.4 vol∕s and spaced 0.41 s apart. B-scans were acquired
at 1.1 KHz.
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We initially registered 300 AO-OCT volumes to a reference volume containing minimal
motion artifacts to evaluate registration performance. This set of volumes (34 videos acquired
between 6 AM and 10:30 AM) represents a small subset of the total dataset; these are all the
videos that could be registered with the 3D B-scan registration algorithm. As we will see in
Sec. 4.2, registration to a global coordinate system will permit us to register the entire dataset
(a total of 930 AO-OCT volumes in 110 videos.).

3.2.2 Imaging quality metrics

We quantified the effectiveness of image registration using three metrics: relative power spectral
contrast,33 image sharpness ratio (ISR),34 and mean squared error (MSE)35 computed from
en face projection images of cone photoreceptors.

Relative power spectral contrast is defined as the ratio of the power spectra of two images (in
this case, an average of multiple targets en face projection versus a single reference en face
projection) sampled at the cone spacing period. Larger relative power spectral contrast indicates
better registration because correction of eye motion must, from a practical standpoint, increase
the cone mosaic regularity, thereby creating more power at the fundamental frequency of the
cone mosaic.

ISR is the reduction in image sharpness in the averaged target en face projection image Iavg
relative to the reference en face projection image Iref ; it is defined as

EQ-TARGET;temp:intralink-;e004;116;494ISR ¼
XN
p¼1

k∇Iavgk∕
XN
p¼1

k∇Irefk; (4)

where ∇ denotes the spatial gradient operator (partial derivatives with respect to x and y), k · k is
magnitude, and

P
N
p¼1 : : : denotes summation over pixels common to both images; values range

from 0 to 1, with larger values indicating better registration.
MSE is the mean squared difference in pixel value (intensity) between averaged and refer-

ence en face projection images, defined as

EQ-TARGET;temp:intralink-;e005;116;380MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
p¼1

ðIavg − IrefÞ2
vuut . (5)

Smaller MSE values indicate better registration.
We varied the number of averaged target images and examined the effect of that number on

each of these three metrics. We compared: (1) the average registered-target en face projection
images versus a single reference en face projection image that we judged to be of high image
quality; (2) the average unregistered-target en face projection images versus the same reference
image; and (3) simulated en face images composed of random pixel-correlated white noise
(uniformly distributed both spatially and temporally) versus the reference. A similar comparison
has been reported by Ferguson et al.15

3.2.3 Results

Figure 5 shows en face projection images of: Fig. 5(a) the selected reference volume; Fig. 5(b)
average of 300 unregistered target volumes; and Fig. 5(c) average of 300 registered target vol-
umes. The substantial difference in visibility of the cone mosaic between Figs. 5(b) and 5(c)
show the power of our registration algorithm. This point is demonstrated quantitatively by plot-
ting the circumferential average of the two-dimensional power spectrum of each image in
Figure 5(d); power at the cone mosaic fundamental frequency is ∼100× greater after registration
and approaches that of the single reference image. The residual degradation relative to the refer-
ence is likely caused by residual (sub-pixel) displacement errors; these cannot be removed by our
registration algorithm as it registers images to the nearest whole pixel.

Figure 6 shows our image quality metrics (relative power spectral contrast, ISR, and MSE)
applied to the same dataset, each plotted as a function of the number of volumes averaged.
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As a worst-case baseline, we also plot the same metrics for simulated en face images composed
of random pixel-correlated white noise (gray circles). Registered en face images have much
higher relative contrast and ISR values, and much lower MSE values (better image quality) than
unregistered images. Collectively, our results using relative contrast, ISR, and MSE are consis-
tent with our visual observations and show that our 3D B-scan registration algorithm substan-
tially enhances en face image quality by correcting motion artifacts and permitting averaging of
multiple volumes.

We also evaluated registration speed for one target volume from the same dataset. Our algo-
rithm runs much more quickly when implemented in CUDA on a GPU than in a high-level

Fig. 6 Effectiveness of the 3D B-scan registration algorithm for the same dataset used in Fig. 4.
Image quality metrics, (a) relative power spectral contrast; (b) ISR; and (c) MSE, plotted as a func-
tion of number of volumes averaged.

Fig. 5 Comparison of en face projection images: (a) reference volume; (b) average of 300
unregistered target volumes; and (c) average of 300 registered target volumes. (d) Circumferential
average of two-dimensional power spectrum for the reference image (black curve), average of
300 unregistered target images (blue curve), and average of 300 registered target images
(red curve). Fast B-scans are oriented vertically in the images.
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language on a CPU as we have done previously: an equivalent MATLAB implementation on a
CPU (Intel Xeon CPU E5-1620 v3) registered a 450 × 450 × 300-pixel volume in 900 s, whereas
our CUDA implementation on an NVIDIA GeForce GTX1080 took only 6.1 s, a 150× speed
increase. Our previous 2D strip-wise registration algorithm (a combination of retinal layer seg-
mentation and strip-wise registration) implemented in MATLAB on a CPU also took several
minutes to register the same volume. The lack of a low-level language CPU-based implementation
of course precludes a legitimate comparison between CPU and GPU processing. Nevertheless,
we expect these speed differences to be primarily attributed to differences in the processing units.

4 Global A-Line Registration

Section 4.1 presents our global A-line registration algorithm for correcting torsional eye move-
ments and image scaling and generating global motion-free coordinates. Section 4.2 describes
the experimental procedure used to evaluate the performance of our approach followed by the
experimental results. Sections 4.3 and 4.4 provide two applications of the algorithm to extend
field of view and depth of focus, respectively.

4.1 Algorithm

The 3D B-scan registration algorithm discussed in Sec. 3 is effective but incomplete. As
Fig. 7 shows, registered volumes still contain eye motion and torsion artifacts. First, while the
algorithm removes the effects of differences in motion between target and reference volumes,

Fig. 7 Illustration of global A-line registration. (top) For simplicity, artificial images only contain
letters and are split into eight coarse strips; the actual method splits volumes into individual
B-scans. Each artificial image imitates (top left) a single reference volume, (top, second column)
a target volume registered to a single reference and averaged (our 3D B-scan registration algo-
rithm; see Sec. 3.1), (top, third column) a registered and averaged image after estimating global
coordinates of individual B-scans (see Sec. 4.1.2), and (top right) a registered and averaged image
after estimating global coordinates of individual A-lines using affine transformation correction that
removes scaling and torsional errors (see Sec. 4.1.3). (bottom) illustrates the global registration
procedure to estimate global coordinates of individual B-scans for a given single reference,
described in Sec. 4.1.2. For simplicity, one-dimensional motion traces are plotted in x for each
image; however, the actual traces are 3D. (bottom left) B-scan shifts Δx i;v relative to the best-
matching B-scan image in the reference, (bottom middle) averaging the displacements between
a reference B-scan and the matched B-scans in multiple target volumes ~aj ¼ hΔx j;v iv for all j ,
(bottom right) estimating global coordinate of individual B-scans: x i;v ¼ Δx i;v − ~aj þ c, where
c is an unknown constant.
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it does not consider the effects of eye motion artifacts that occur during the acquisition of the
reference volume itself—no reference volume is entirely free of eye motion artifacts. Second,
changes in torsional eye position and shifts in head position can lead to differences in orientation
and scaling between volumes that our 3D B-scan registration algorithm does not attempt to
correct. Finally, some volumes are not registrable because they are temporally and spatially
decorrelated by intracellular motion-induced speckle decorrelation,20,33 by changes in focal
depth, and by orientation and scaling differences caused by eye and head motion.

We address these issues by extending a global registration method that was originally devel-
oped for 2D strip-wise registration8–10,14 using additional information provided in each A-scan.
In Sec. 3, registration (using our 3D B-scan registration algorithm) consisted of mapping target
volumes into a coordinate system defined by a reference volume. As the name implies, global
A-line registration involves mapping volumes into a global coordinate system with additional
constraints (described below). The approach consists of three steps [Fig. 1(b)]:

1. Separately register all target volumes to each of multiple reference volumes (Sec. 4.1.1).
This yields multiple coordinate mappings for each target volume—more specifically, for
each fast B-scan of each target volume—one for each reference.

2. Derive a single mapping of individual B-scans in all volumes to the multiple-reference
global coordinate system (Sec. 4.1.2).

3. Correct en face affine transformations among volumes to estimate 3D global coordinates
for individual A-lines (Sec. 4.1.3).

4.1.1 Multiple-reference registration

Some volumes are not registrable to a single reference volume as they are temporally and spa-
tially decorrelated, as for example due to changes in the cells’ reflectance over time and volumes
acquired of non-overlapping patches of retina, respectively. We can solve this problem by select-
ing a new reference from the successfully registered volumes and registering all volumes (regis-
tered and non-registered) to this new reference using our 3D B-scan registration algorithm. Some
or all of the volumes that could not be registered to the old reference can now be registered to the
new reference; since the new reference has been registered to the original reference, any volumes
registered to one are now registered to both. Thus, the number of non-registrable volumes
decreases as we increase the number of reference volumes.

This multiple-reference procedure involving repeated use of our 3D B-scan registration algo-
rithm is straightforward; the only difficulty involves the choice of reference volumes. It would be
theoretically possible to use every single acquired volume in turn as a reference for all the rest,
but this is rendered impractical (despite the speed of our GPU implementation) by the monotonic
increase in computation time with the number of references. We instead select several reference
volumes using the criteria described in Sec. 3.1.1 (step 5), with the additional requirement of
a reference volume from each video. Volumes are more highly temporally correlated within
videos, so choosing one reference volume from the same video as each target ensures at least
one optimal-quality registration for that target. The number of reference volumes required
depends strongly on the temporal and spatial correlation between volumes, so for each dataset
we typically begin with five references and gradually increase the number until at least 80% of
volumes can be registered.

4.1.2 Global registration of individual B-scans

As mentioned previously, target volumes registered to a single reference still contain the dis-
tortions present in that reference. Stevenson and Roorda8 and others9,10,14 demonstrated that such
distortions can be removed by constructing a synthetic global reference from the complete set of
motion traces for each strip within a set of registered images, based on the assumption that the
actual average displacement due to the eye motion is close to zero for a fixating eye (by def-
inition, the goal of fixation is after all to maintain constant position). This permits registration of
all images to a global coordinate system. We extend this global registration method to estimate
the 3D global coordinates of individual B-scans using their estimated displacements relative to
each reference from the preceding multiple-reference registration step.
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Our registration method introduces two constraints: (1) In our scanning experimental pro-
tocol, the scanning beam moves at constant speed along the y axis. Our 3D B-scan registration
algorithm implicitly incorporates the constraint that the fast B-scans are evenly spaced along the
y axis, because target volumes are registered to a reference that is assumed to have this property.
Since we are about to register all volumes to an empty space with a synthetic global coordinate
system, we must now incorporate this constant-spacing constraint explicitly. (2) Within this
global coordinate system, the ensemble of eye motions is required to have zero mean offset
from the origin in all 3D. Namely, global coordinates of fast B-scans are referenced to the ensem-
ble average of eye motions. Thus, the addition of this constraint yields maximum overlap of the
B-scans at the approximate center of the averaged registered volume.

We represent the global coordinates of an individual B-scan in a target volume as
~τi;T ¼ ðxi;T; yi;T; zi;TÞ, where i is the target B-scan index, and T is the target volume index.
Global coordinates of individual B-scans in a reference volume can similarly be described as
~γj;R ¼ ðxj;R; yj;R; zj;RÞ, with j and R the reference B-scan and volume indices, respectively.
The 3D B-scan registration algorithm described in Sec. 3.1 estimates the target B-scan

displacements relative to the best-matching B-scans in a given reference volume Δ~di;T;R ¼
ðΔxi;T;R;Δyi;T;R;Δzi;T;RÞ [this is the same as Eq. (3) with an additional subscript added to each
term to indicate the dependence on the reference volume].We require that this relationship between
target and reference B-scan positions also holds in the global coordinate system, namely:

EQ-TARGET;temp:intralink-;e006;116;502~τi;T − ~γj;R ¼ Δ~di;T;R: (6)

To estimate the motion of each reference B-scan, we begin by averaging the displacements
between it and the matched B-scans in multiple target volumes:

EQ-TARGET;temp:intralink-;e007;116;444~aj;R ¼ hΔ~dj;T;RiT; (7)

where h iT denotes averaging across target volumes (typically > 50, which has the effect of
decreasing uncertainty ð ffiffiffiffiffi

50
p ¼Þ 7.1-fold relative to that of mean across a single target volume,

assuming noise is uncorrelated.) and Δ~di;T;R is replaced with Δ~dj;T;R using the relationship,
mentioned in Sec. 3.1.4, that j ¼ i − Δyi;T;R. We can split the averaged displacements ~aj;R into

two terms, a zero-mean term ~bj;R (i.e. h~bj;Rij ¼ 0) and a constant residual ~cR:

EQ-TARGET;temp:intralink-;e008;116;339~aj;R ¼ ~bj;R þ ~cR: (8)

The first term ~bj;R remains dependent on the reference B-scan index j due to the motions
within the reference volume. The second term ~cR depends on the selection of reference volume
for two reasons: (1) a different subset of target B-scans is registered to each reference, and (2) eye
motion is a non-stationary process, i.e., its mean and variance change over time. We will revisit
this issue later.

We can derive a relationship between ~bj;R and the global coordinates for individual reference
B-scans ~γj;R. First, we must deal with the issue of linear scanner motion. Equation (6) demon-
strates the point made earlier that we must explicitly model the y axis motion of the scanner; that
motion is present in both target and reference volumes and thus vanishes from the difference. We,
therefore, introduce a variable ~si;T ¼ ð0; i − hii; 0Þ representing scanner positions evenly spaced
along the y axis and centered on the origin. To describe the relationship between ~bj;R [which as
demonstrated by Eqs. (6) and (8) cannot contain the scanner motion] and ~γj;R (which must con-
tain the scanner motion), we first subtract ~si;T from ~γj;R; we again use the relationship between i

and j from Sec. 3.1.4. Second, because ~bj;R by definition has zero mean, we subtract the mean of

this result. Third, ~bj;R has the opposite sign to ~γj;R, [this follows from its definition and Eq. (6)],
so we negate it, yielding:

EQ-TARGET;temp:intralink-;e009;116;89

~bj;R ¼ −½~γj;R − ~si;T − h~γj;R − ~si;Tij�: (9)
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In other words, ~bj;R yields the global reference B-scan position ~γj;R minus the (known) scan-
ner motion ~si;T and an unknown constant h~γj;R − ~si;Tij.

The global target coordinates ~τi;T are related to the global reference coordinates ~γj;R by
Eq. (6). To solve for ~τi;T we introduce:

EQ-TARGET;temp:intralink-;e010;116;679~pi;T;R ¼ Δ~di;T;R − ~aj;R þ ~si;T : (10)

Substituting Eqs. (6)–(9) into Eq. (10) and solving for ~τi;T yields:

EQ-TARGET;temp:intralink-;e011;116;630~τi;T ¼ ~pi;T;R þ h~γj;R − ~si;Tij þ ~cR: (11)

We have two constant terms, one known (~cR) and the other unknown (h~γj;R − ~si;Tij).
We combine them into a single unknown ~c 0

R ¼ ~cR þ h~γj;R − ~si;Tij, yielding:

EQ-TARGET;temp:intralink-;e012;116;563~τi;T ¼ ~pi;T;R þ ~c 0
R: (12)

This provides the target B-scan global coordinates ~τi;T . It is worth noting that this also
provides the reference B-scan global coordinates ~γj;R, by simply replacing ði; TÞ with ðj; RÞ,
and so we use ~τi;T to represent both target and reference B-scan global coordinates below.

However, both terms on the right-hand side in Eq. (12) depend on the reference volume R;

essentially we have as many unknowns ~c 0
R as we have equations, preventing a straightforward

closed-form solution. Instead, we derive an iterative numerical solution as follows: first, we split

the unknown constant ~c 0
R into two terms, one of which (~εR) depends on R and the other (~ϵ) does

not. Then, Eq. (12) can be rewritten as

EQ-TARGET;temp:intralink-;e013;116;425~τi;T ¼ ~pi;T;R þ ~εR þ ~ϵ: (13)

We impose an initial condition on ~εR: ~εR0
¼ ð0;0; 0Þ, i.e., we select a reference volume

R0 ¼ 1 for which we force ~εR ¼ ð0;0; 0Þ. This constraint can be equivalently stated as
~εR ¼ ~pi;T;R0

− ~pi;T;R, or more usefully as ~pi;T;R þ ~εR ¼ ~pi;T;R0
, i.e., it is constant with respect

to R. We use this property to implement an iterative algorithm that minimizes differences in
~pi;T;R þ ~εR across reference volumes R. First, we find a set of B-scans i ∈ WR;R 0 that are regis-
tered to two arbitrary reference volumes R and R 0ðR ≠ R 0Þ. Second, we replace ~εR with a min-
imization variable ~϶R and compute the sum of squared differences between ~pi;T;R þ ~϶R and
~pi;T;R 0 þ ~϶R 0 , first across B-scans within the set i ∈ WR;R 0 and then across all possible combi-
nations of references R and R 0.

The magnitude of this sum of sums is the cost function fðR;R 0Þ:

EQ-TARGET;temp:intralink-;e014;116;265fðR;R 0Þ ¼
����
XN
R 0¼1

XN
R¼1

X
i∈WR;R 0

ð~pi;T;R − ~pi;T;R 0 þ ~϶R − ~϶R 0 Þ2
����: (14)

Our iterative minimization algorithm finds ~̂εR ¼ argmin

϶R!
fðR;R 0Þ that minimizes the cost

function fðR;R 0Þ and yields a unique solution. However, we are left with a residual error ~ei;T;R ¼
~̂εR − ~εR that we minimize by averaging across reference volumes. Substituting our estimators
into Eq. (13), we have

EQ-TARGET;temp:intralink-;e015;116;144~τi;T ¼ h~pi;T;R þ ~̂εR − ~ei;T;RiR þ ~ϵ ¼ ~oi;T þ ~ϵ; (15)

where ~oi;T ¼ h~pi;T;R þ ~̂εR − ~ei;T;RiR. At this point, we apply our constraint that the B-scan
global coordinates should have zero mean (i.e., h~τi;Tii;T ¼ 0) and replace ~ϵ by−h~oi;Tii;T, yielding

EQ-TARGET;temp:intralink-;e016;116;83~τi;T ¼ ~oi;T − h~oi;Tii;T : (16)
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This equation expresses in deceptively simple form the dependence of B-scan global target coor-
dinates on the estimated target-reference displacements, subjected several times to a zero-mean
constraint and explicitly incorporating scanner motion. In Sec. 4.1.3, we extend this estimate to
global coordinates of individual A-lines and in Sec. 5.1 use this theory to compare our method to
others.

4.1.3 Global registration of individual A-lines

Compared to our 3D B-scan registration algorithm outlined in Sec. 3.1, the procedure just
described permits registration of more volumes and minimizes local translation errors of indi-
vidual B-scans. However, the resulting registered and averaged volumes are still distorted due to
eye movements around, e.g., the line of sight (torsion), and in depth (which cause scaling errors).
Figure 7 (top right) shows the effect of these errors. To correct them, we first make the
assumption that we can ignore torsion and scaling errors between volumes within a single video
(∼5 s).10,28 We generate registered en face projection images based on the estimated global coor-
dinates for individual B-scans using Eq. (16) and average subsets of these images taken from the
same video and selected to fill in any gaps between B-scans. These averaged image subsets are
used to estimate affine transformations between videos. We estimate and remove these errors by
iteratively optimizing image similarity using Mattes’ metric,36 specifically using the MATLAB
(The MathWorks, Natick, 2017) function imregtform, which estimates the geometric transfor-
mation that best aligns two 2-D or 3-D images. The image subset containing the volume with the
lowest variance in ~τi;T [the B-scan global coordinates, Eq. (16)] is selected as the reference for
this stage. Each of the other en face image subsets is passed to imregtform along with this refer-
ence image subset; the function yields a 3 × 3 homogeneous-coordinates ðx; y; wÞ37,38 affine
transformation matrix AT for each volume, representing translation, rotation, and scaling in the
xy plane relative to the reference. This approach is reliable when image features are high-contrast
and temporally stable, as in the case of the cone mosaic; however, it tends to fail if these con-
ditions do not hold, e.g., while imaging other retinal layers or a damaged retina. For these cases,
we estimate the affine transformation by iterating over different image subsets and applying
other image similarity metrics such as the masked cross-correlation coefficient;30 this is an
ongoing research topic. After we estimate the transformation matrix AT for each volume, we
augment each AT with a fourth row and column to represent transformations in the third spatial
dimension (z; depth) using homogeneous 3-D coordinates ðx; y; z; wÞ.37,38 Multiplying each of
these matrices by its corresponding target volume’s B-scan coordinates applies a different
displacement to each A-line, permitting us to assign a global coordinate vector to each individual
A-line in every acquired volume.

We represent the global coordinates of an individual A-line in a volume as
~χα;i;T ¼ ðxα;i;T; yα;i;T; zα;i;TÞ, where α is the new A-line index and i and T are the B-scan and
target volume indices as before. We can now derive ~χa;i;v from ~τi;T [the B-scan global coordi-
nates, Eq. (16)]. We introduce a new variable ~ςα ¼ ðα − hαi; 0;0Þ to represent linear scanner
motion along the fast-scan x axis (as we did previously for the slow-scan y axis, see
Sec. 4.1.2). ~ςα represents scanner positions evenly spaced along the x axis and centered on the
plane x ¼ 0; we add it to ~τi;T and convert the sum to homogeneous coordinates as mentioned
above. Finally, we multiply each such vector by the appropriate affine transformation matrix AT ,
yielding the global coordinates of individual A-lines in homogenous coordinates:

EQ-TARGET;temp:intralink-;e017;116;193~χα;i;T ¼ AT · ð~τi;T þ ~ςαÞ; (17)

where · denotes matrix multiplication.

4.2 Experimental Evaluation

4.2.1 Experimental design

We used the dataset from Sec. 3.2 to demonstrate and evaluate the performance of the global
A-line registration algorithm. As we mentioned in that section, we could only register a subset
of videos using the 3D B-scan registration algorithm. With the addition of global registration,
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we are able to register all 110 videos collected in this experiment, for a total of 930 volumes.
The duration of the experiment, and hence the maximum time elapsed between videos, was
22 h and 30 min. We selected 25 reference volumes and used them to register all volumes
to global coordinates with the global A-line registration algorithm (described in Sec. 4.1).

4.2.2 Results

Figure 8 shows en face projection images at various stages in the registration process. Portions of
the image enclosed in colored rectangles are displayed with magnification at the bottom of Fig. 8
to better display the differences among them.

Figure 8(a) shows a single reference image. Even though we selected a reference volumewith
minimal eye motion, distortions presumably due to tremor motion are visible as irregularity of
the cone mosaic and of the shapes of the individual cones.

Fig. 8 Comparison of en face projection images of: (a) a reference volume; (b) average of 676
volumes registered to a single reference; (c) average of 930 volumes registered to 25 references;
and (d) average of 880 volumes registered to 25 references and corrected for torsion and scaling.
(e)–(h) Magnified view (2×) of corresponding en face projection images. Fast B-scans are oriented
vertically in the images. The 1.5° by 1.5° patch of retina is located 3° temporal to the fovea. Video 1
(MPEG, 22 MB [URL: https://doi.org/10.1117/1.JBO.26.1.016001.1]) highlights the effect of aver-
aging on en face projection images that are registered to (b) a single reference; (c) 25 references;
and (d) a global coordinate, by increasing the number of averaged frames.
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Figure 8(b) shows the average of the all of the targets after registration to a single reference
using the 3D B-scan registration algorithm (described in Sec. 3.1). The cone mosaic appears
slightly less irregular than in Fig. 8(a), but uncorrected torsional eye movements cause a blurry
strip along the bottom edge of the image. More generally, the top and bottom edges are prone to
torsional blur at this stage whereas the left and right edges are not due to the vertical orientation
of the fast B-scans [see an example in Fig. 7 (top, second column)]. At left and right sides,
torsion creates roughly uniform motion parallel to the fast B-scans that are removed by the
3D B-scan registration algorithm. At top and bottom, on the other hand, torsion creates motion
perpendicular to the B-scans and in opposite directions that cannot be removed by the algorithm.
In the image shown in Fig. 8, the reference’s torsional axis is displaced toward the top of the
image, which causes the bottom edge to be more visibly blurred. It is worth noting that the blur is
more significant in Fig. 8(b) than in Fig. 5(c) as we registered more videos (676 volumes com-
pared to 300 volumes), many of which could not be accurately registered with the 3D B-scan
registration algorithm because of increased torsion present.

Figure 8(c) shows what happens when we average after registering all 930 target volumes to
global coordinates using 25 reference volumes but without correcting for the effects of torsional
and scaling eye movements. This uses the portion of the global A-line registration algorithm
described in Secs. 4.1.1 and 4.1.2 [see an example in Fig. 7 (top, third column)]. Registering
to multiple reference volumes that differ in torsion relative to one another cancels out the false
vertical displacements introduced at left and right edges by the 3D B-scan registration algorithm
in response to torsion, creating radially symmetric torsional blur.

Figure 8(d) shows the effect of applying the affine transformation described in Sec. 3.1.3, the
final stage of the global A-line registration algorithm [see an example in Fig. 7 (top, fourth
column)]. This yields a more regular, uniform cone mosaic made up of rounder cones. At this
point, each A-line of every volume (corresponding to pixels in these projected images) has been
individually transformed into global coordinates.

Table 1 summarizes our image quality metrics (defined in Sec. 3.2.2) applied to each aver-
aged image. The relative power spectral contrast—the ratio of power evaluated at the cone spac-
ing period—improved by 1.37 dB (37% increase) by the global A-line registration algorithm.
This suggests that the cone mosaic in the image is more regularly spaced after global registration
than in any single reference image. The global A-line registration algorithm also improved the
ISR value—the reduction in image sharpness due to averaging—by 0.64 dB (16% increase).
However, neither metric captures the notable improvement in the cone mosaic regularity (uni-
form spacing) and clarity of individual cones (roundness of spots) as evident by visual inspection
of the images in Figs. 8(b) and 8(d). These differences (in sampling regularity and cone clarity)
are better captured by S/N [ratio of spectral power at the cone spacing period to the noise floor
(high-frequency tail of the spectrum)33] that shows a 9.4 dB (771%) improvement between the
two images (rightmost column of Table 2). Comparison of the signal and noise computed sep-
arately along the fast and slow B-scan axes reveal similar power at the cone spacing period using
both 3D B-scan registration and global A-line registration (always around −24.5þ ∕ − 0.5 dB).
Comparison of the noise level between registration methods and scan axes is far more interest-
ing, as it carries information about sampling regularity. We assume that sampling is already
regular during fast B-scans because they are too short to be distorted by eye and head movement,
so there should be no effect of registration algorithm on the noise floor in the fast B-scan

Table 1 Image quality metrics for the global A-line registration algorithm.

Relative power spectral
contrast (dB) ISR SNR (dB)

Registered and averaged
to single reference

−1.044 0.781 27.98

Registered and averaged
to global coordinate

0.330 0.906 37.38

Improvement 1.3 (37%) 0.64 dB (16%) 9.4 (771%)
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direction. By contrast, if our global A-line registration reduces sampling irregularity of the cone
mosaic, it should decrease the noise floor along the slow B-scan axis relative to 3D B-scan
registration. Both predictions are correct: we find a noise floor of ∼ − 52 dB for both 3D
B-scan and global A-line registration in the fast B-scan direction; along the slow B-scan axis,
on the other hand, we have noise levels of −39.4 and −48.9 dB for 3D B-scan and global A-line
registration, respectively. This indicates that global A-line registration significantly improves
sampling regularity along the slow B-scan axis.

Using the global A-line registration algorithm, we were able to resolve detailed structure of
the outer retina with minimum distortion as shown in Fig. 9. En face projection images were
computed for each of the following cellular structures: the medium- and long-wavelength (M and
L) cone inner segment/outer segment junction (IS/OS), short-wavelength (S) cone IS/OS, cone
outer segment tips (COST), rod outer segment tips (ROST), and retinal pigment epithelium
(RPE). The associated video (Video 2) highlights that fine details are more evident and regularly
spaced compared to the single-reference approach (3D B-scan registration algorithm), leading to
more accurate morphometric analysis. In addition, the power of multiple references to increase
volume averaging is clearer in the ROST and RPE. Speckle noise was significantly reduced, and
the images have better contrast despite the weaker reflections of these tissues.

The global A-line registration algorithm also improved visualization of the underlying
choroid but in an unexpected way as shown in Fig. 9(f). The apparent mosaic pattern in the
choroid is actually a shadow pattern created by the AO-OCT beam penetrating more readily
through the darkened centers as opposed to brighter surrounds of the overlying mosaic of
RPE cells. This surreal polka-dot-like pattern matches exactly the RPE cell pattern [compare
Figs. 9(e) and 9(f)] and is more evident when multiple references are used to increase volume
averaging (Video 2).

Fig. 9 En face projection images of retinal layers at (a) IS/OS of M and L cone photoreceptors;
(b) IS/OS of S cone photoreceptors; (c) COST; (d) ROST; (e) RPE; and (f) choroid layers. It is
worth noting that S cones possess a longer IS than M and L cones39 resulting in a slightly deeper
IS/OS reflection.40 Furu Zhang confirmed the deeper S-cone reflection using his cone classifica-
tion dataset in Zhang et al.21 (personal communication, April 2019). All volumes were registered
with the global A-line registration algorithm to the same global coordinates and averaged. The 1.5°
by 1.5° patch of retina is located 3° temporal to the fovea, which is to the left of the image. Superior
retina is up. Fast B-scans are oriented horizontally in the images. Video 2 (MPEG, 16 MB [URL:
https://doi.org/10.1117/1.JBO.26.1.016001.2]) is a fly-through movie of the outer retina that com-
pares three different reconstructions from the same dataset: reference, registered, and averaged
to a single reference, and registered and averaged to global coordinate.
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4.3 Application 1: Extending Field of View

4.3.1 Experimental design

Without the global A-line registration algorithm, field of view is limited to the area of overlap of
the target volumes with the single reference. We can use the fact that the global coordinate sys-
tem of the global A-line registration algorithm combines registration results for several reference
volumes to extend the field of view beyond the original volume size by selecting reference vol-
umes that are displaced from one another. We used a dataset acquired at 5° temporal to the fovea
(right eye of the same subject used in Sec. 3.2) during the experiment described in Sec. 3.2 to
demonstrate and evaluate this capability. We selected 30 reference volumes that were displaced
from one another and using the metric described in Sec. 3.1.1 (step 5), combined all registration
results using the method described in Sec. 4.1, and finally generated a single average registered
volume from 630 target volumes taken from 81 videos.

4.3.2 Results

Figure 10 shows extended field of view en face images extracted from the single average regis-
tered volume, showing the (a) COST, (b) ROST, and (c) RPE layers. The effective field of view
(0.41 mm2) was 2.1× larger than that of the original volumes (0.19 mm2). Despite subject
fixation there was significant translation between videos and smaller but still significant drift
within videos. The number of pixels found in multiple registered images (i.e., overlapped pixels)
was greatest at the center near fixation and decreased toward the edge, as shown in Fig. 10(d)
leading to greater eye-movement estimation accuracy and image quality around the center
[Figs. 10(a)–10(c)]. However, cone photoreceptor and RPE cell mosaics are clearly visible
across the extended field of view [Figs. 10(a)–10(c)].

Fig. 10 Extended field of view en face images at (a) COST; (b) ROST; and (c) RPE layer, which
were extracted from the single average volume. Color image (d) depicts the spatial distribution of
the number of overlapped pixels present in multiple registered volumes. Images were acquired at
5° temporal to the fovea.
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4.4 Application 2: Extending Depth of Focus

4.4.1 Experimental design

The shallow depth of focus of AO-OCT (∼50 μm) has limited our ability to simultaneously
image retinal layers at different depths with high lateral resolution; we can collect separate vol-
ume images of the same retinal region that are focused on different retinal layers, but we could
not previously register them to one another. For example, it was previously extremely difficult to
register a volume focused on the photoreceptors to one focused on the ganglion cells. Optical
solutions such as axicon lens or addition of high-order spherical aberrations have been proposed
to extend the depth of focus,41–43 but these necessarily come at the expense of decreased signal
strength and resolution. However, we can use the global coordinate system of the global A-line
registration algorithm to align volumes focused at different depths by selecting a set of reference
volumes that span the range of depths (a.k.a, focus stacking).

To demonstrate and evaluate this ability to enhance depth of focus, we acquired AO-OCT
volumes at 3° temporal to the fovea in the right eye of a 26-year-old subject, who is different
from the subject in Sec. 3, was free of ocular disease and had a typical fixational ability. Focus
depth was varied relative to the photoreceptors from −23 to 208 μm (posterior to anterior) in
23-μm steps and 10 or more AO-OCT volume videos were acquired for each depth. We selected
25 reference volumes spanning the depth range, combined all registration results using the global
A-line registration algorithm described in Sec. 4.1, and averaged 1394 registered volumes to
obtain a single volume with preserved focus across that entire range. We repeated the experiment
on a second subject and obtained similar results (not shown). This subject was 31 years old, free
of ocular disease, and had a typical fixational ability.

4.4.2 Results

The effect of shifting the narrow focus peak in depth is clearly shown in Fig. 11(a); different
retinal layers have increased visibility and sharpness in different vertical strips representing dif-
ferent focus depths. The benefit of using our global A-line registration algorithm to combine
registered volumes focused on different retinal layers is clearly shown in Fig. 11(b); all retinal
layers are in sharp focus across the composite volume. The effective depth of focus of the com-
bined volume is estimated as ∼280 μm (¼ 23-μm focal shift × 10 steps + 50 μm depth of focus),
which is 5.6× larger than that of each single volume (∼50-μm depth of focus).

5 Discussion

We present a new registration method that cascades a 3D B-scan registration algorithm with
a global A-line registration for correcting motion artifacts in AO-OCT volume images. Our
low-level GPU implementation of the first algorithm speeds up processing time by 150× over
a CPU-based MATLAB implementation, permitting us to average hundreds of images of a single
location for improved S/N without sacrificing sharpness or contrast (Sec. 3.2.3). We quantify this
improvement using three image quality metrics (Secs. 3.2.2 and 3.2.3). In addition, we dem-
onstrate that the second algorithm minimizes distortion and improves the regularity of the cone
photoreceptor mosaic in the averaged image and supports enhanced visualization of low-contrast
cellular retinal features by registering and averaging several hundreds of volume images down to
the level of individual A-lines (Sec. 4.2.2). The use of multiple-reference global coordinates
followed by an affine transformation permits (1) extending the field of view by 2.1×
(Sec. 4.3.2) and (2) extending depth of focus by 5.6× (Sec. 4.4.2).

We show several key examples that illustrate the performance of our registration algorithm.
We have found that it is robust enough to provide reliable registration for most subjects, includ-
ing patients with diseased retinas exhibiting, e.g., ganglion cell layer thinning, drusen, edema,
and photoreceptor loss and degeneration. We routinely use the method in our laboratory’s
imaging studies, now applied to more than 40 subjects across many retinal eccentricities and
time points (data not shown in this paper but some can be found elsewhere4,20–25).
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5.1 Comparison to Other Registration Methods

Stevenson and Roorda8 first developed a 2D strip-wise registration algorithm to register images
from AO-SLO to a synthetic global reference. As we will discuss, we have previosuly adapted
this algorithm to AO-OCT volumes because their en face projections are distorted similarly to
AO-SLO images. However, the slower volume image acquisition rate of AO-OCT (<10 Hz,
compared to >30 Hz for AO-SLO) results in more severe distortions. AO-OCT volume images
are also subject to z axis distortion due to axial eye motions that Stevenson and Roorda’s
strip-wise registration does not correct. These factors make AO-OCT volume registration more
challenging.

Our 3D B-scan registration algorithm uses a coarse-to-fine registration approach with a com-
bination of phase correlation and NCC to increase the processing speed and 3D registration
accuracy (see Sec. 3). Do7 (2016, master’s thesis, Section 9) found that our method is more
robust to fast microsaccadic eye movements than previous 2D strip-wise approaches.12,13

Our method is also simpler than some previous approaches in that it does not require identi-
fication of specific features (e.g., blood vessels for feature-based registration47–49) or segmenta-
tion of particular retinal layers to estimate eye motion, making it readily applicable to raster-
scanned OCT images. This consideration should also make our approach more robust to retinal
deformation caused by, e.g., edemas or drusen that make both layer segmentation and feature
identification more difficult.

Fig. 11 Increased depth of field without compromising resolution. Cross-sectional images show
effect of focusing at different depths, obtained with the global A-line registration algorithm and
multiple references focused at different depths: (a) prior to and (b) after merging by simply aver-
aging. Thin red lines indicate the focus positions in strips A-K. The extended depth of focus
traverses the entire retinal thickness. (c) En face images at GCL; (d) IPL/ INL plexus; and
(e) IS/OS layer are shown, which were extracted from the single average volume in (b). Video 3
(MPEG, 13 MB [URL: https://doi.org/10.1117/1.JBO.26.1.016001.3]) is a fly-through movie of
the same volume, showing globally-registered en face images at all depths. We applied mu-law
compression (MATLAB™ function compand44) and a local Laplacian filter (MATLAB™ function
locallapfilt45,46) to compensate for the high dynamic range of the AO-OCT images (>30 dB).
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The global portion of our registration algorithm differs from all of the earlier approaches that
we will discuss below in that it combines results from multiple reference images to handle eye-
motion-induced distortions present within any single reference image and scaling/torsion errors
created by changes in eye and head position between target volumes (see Sec. 4). Use of multiple
references permits us to extend the strip-wise estimation of 2D global coordinates demonstrated
by Stevenson and Roorda8 and others9,10,14 to estimation of 3D global coordinates for each indi-
vidual A-line.

Stevenson and Roorda8 first introduced a method to correct the motion within a single refer-
ence image based on the reasonable assumption that during fixation the average displacement is
close to zero. They also corrected torsional error by dividing each horizontal image strip in half
and measuring the difference in vertical displacement between the two halves. The results were
validated by comparing with eye-position measurements using a dual-Purkinje tracker. Their
approach was clearly successful, but they omitted most of the details of the calculation, making
a direct comparison difficult. We have attempted to describe our approach as completely as
possible, allowing for accurate evaluation of our assumptions and constraints and facilitating
detailed comparison.

Vogel et al.9 utilized a map-seeking circuit algorithm to register images from AO-SLO. This
is a type of template-matching algorithm that uses the principle of superposition to simultane-
ously and independently solve for different transformational components. Using strips from a
single reference image as templates and computing independent transformations for each strip
permits detection of image warping. Vogel et al. used this method to track eye motion in real
time,50 but with a reduced search space as small as a single strip. They also followed Stevenson
and Roorda’s method to correct the motion within a reference image and then estimate the target
strip global coordinate. To estimate the motion of each strip, they averaged the displacements
between it and strips that were measured at a constant frame rate. Recall that in Eq. (8) we
compute a variable ~aj;R, which for a given reference B-scan is the average displacement across
all target volumes relative to the best-matching B-scan in each target volume. The averaging

process used by Vogel et al. is equivalent to instead computing ~ai;T ¼ hΔ~di;TiT , which is the
average across target volumes for B-scans at the same position in each target volume of the
displacement of the best-matching reference B-scan. They then used this ~ai;T instead of ~aj;R
in Eq. (11) to yield the target strip global coordinate (target B-scan global coordinate in our
case). However, this approach is valid only if the magnitude of y axis displacement between
reference and target strips is smaller than the strip width (the number of lines per strip), in which
case i ¼ j. This is because ~aj;R must depend on the reference strip (or B-scan, in our case) index
j, not on the target strip index i, to be related to the global coordinate for a reference strip. In our
case, we estimate global coordinates for each B-scan, which corresponds to a strip that is only
one pixel wide; any y axis displacement larger than a pixel disobeys the requirement that j ¼ i.
We solved this issue using the relationship j ¼ i − Δyi;T;R (Sec. 3.1.4), permitting us to compute
global coordinates for single B-scans even in the presence of large y axis displacements. We also
explicitly correct rotation and scaling errors to yield global coordinates for individual A-lines.

Bedggood and Metha10 used a strip-wise registration algorithm to register simulated AO-SLO
images from high-speed AO flood illumination (200 Hz). The simulated AO-SLO images were
generated as follows: First, they computed the translational shifts between AO flood illumination
images and upsampled 5× to generate quasi-eye movements (from 200 to 1000 Hz). Second,
they temporally downsampled AO flood illumination images (from 200 to 20 Hz) to generate
quasi AO-SLO images. Finally, they divided each quasi AO-SLO image into 50 strips and trans-
lated the strips based on the quasi-eye movement to simulate the distorted AO-SLO image. The
results were validated by comparing with an actual AO flood illumination image. They estimated
the motion within the single reference image using two different approaches: “simplified” and
“combined.” The simplified approach is equivalent to using ~ai;T instead of ~aj;R to estimate the
motion within the reference image (such as Vogel’s approach). The combined approach is equiv-
alent to using ~aj;R (like our approach). Performance of the combined approach was superior to
that of the simplified approach. As we stated in the preceding paragraph, it is only correct to use
~ai;T to estimate motion in a reference image and target image global coordinates under certain
very restricted conditions. They also used multiple references but only for validation purpose and
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did not combine them to estimate the global coordinate. Like Vogel et al., Bedggood and Metha
do not account for rotation and scaling errors, but their much shorter measurement times
(∼5 s total, compared to several hours in our case) may render this correction unnecessary.28

Azimipour et al.14 used a strip-wise registration algorithm to register AO-SLO and AO-OCT
images and estimate the motion within a reference image. They validated the method using a
simulated cone mosaic and simulated eye movement (see Ref. 11 for details about the model
used), but did not compare the outputs to a ground truth. They used the simplified approach of
Bedggood and Metha (in our terms, averaging target-reference displacements use ~ai;T instead of
~aj;R) to estimate and remove the motion within a reference image; they then repeated the basic
strip-wise procedure using the single motion-corrected reference. Our algorithm does not require
such a second round of registration, because we directly estimate global coordinates of multiple
target images using ~aj;R and the relationship j ¼ i − Δyi;T;R (Sec. 3.1.4). Like the previous
authors, Azimipour et al. did not account for rotation and scaling errors.

It is important to note that the errors due to axial and torsional eye movements are much less
salient when volumes are registered to a single reference volume [see Figs. 8(b) and 8(f)]. We
found, however, that the correction of these errors was critical for improving image quality and
maximizing the number of registrable volumes [see Figs. 8(d) and 8(h)]. We claim that although
single-reference image registration significantly improves image quality, the results are generally
distorted both in terms of feature locations and shapes, potentially leading to errors in estimation
of densitometry and morphology of the retina. In addition, combining registration results from
multiple reference images provides the novel benefits of permitting us to significantly extend
both field of view and depth of focus (Secs. 4.3 and 4.4). Finally, it is also important to note that
global registration is accomplished during post-processing and thus does not require additional
hardware to track eye movements6,15–17 or a change in scan pattern,18,19 either of which would
add complexity and cost.

5.2 Limitations of Our Approach

Our approach assumes that fast B-scans are rigid because fast B-scans are captured in a short
enough time (0.3 to 1 ms) to contain negligible eye- and head-motion artifacts. Based on this
assumption, we correct for uneven A-scan sampling and retinal tilt along the fast B-scan direc-
tion (see Sec. 3.1.1). This removes most scanner distortions and motion artifacts in fast B-scan
images. However, the assumption of constant motion for all A-lines within each B-scan is clearly
violated when registering B-scans that contain large blood vessels because they are highly
dynamic, with flow along the vessel at rates of up to ∼35 mm∕s. Also, eye movement velocity
varies continuously in all directions even during a fast B-scan image acquisition. Drift and
tremor velocities are negligible (<0.3 μm∕B-scan), but microsaccades (traversing several dozens
and hundreds of photoreceptors over a duration of ∼25 ms) are not and so prevent accurate
estimation of motion at these time points. In addition, it remains difficult to reliably register
B-scans in volumes that contain multiple saccades as saccades interfere with the coarse predic-
tion of target B-scan displacements (Sec. 3.1.3).

Our approach requires memory-intensive computing to use an entire reference volume as a
search space. We carefully manage memory allocation to quickly process large datasets and so
reduce the required memory down to 5 GB of GPU RAM for processing a 512 × 512 ×
512 pixel volume. GPUs containing this much RAM remain expensive. In addition, the speed
of our implementation is currently limited by the time required for writing pre-processed vol-
umes to disk and not by the algorithm itself. This suggests that data compression, implemented
downstream of the algorithm, would yield significant speed improvements.

As quantified in Sec. 4.2.2, the combined registration method (3D B-scan registration plus
global A-line registration) minimizes distortion and improves the regularity of cone photorecep-
tor mosaic in the averaged image significantly more than the 3D B-scan registration algorithm
alone; this improvement is particularly evident in the 9.4 dB increase in S/N. However, due to the
inaccessibility of the ground truth—we have no independent source of undistorted high-
resolution retinal images—we are unable to strictly assess the accuracy of the results. Instead,
we thoroughly describe our algorithm, allowing the accurate evaluation of our assumptions and
constraints and facilitating detailed comparison.
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It is also important to note that the global A-line registration algorithm corrects both torsional
eye movements and image scaling; absent of these corrections, the registered and averaged
images are significantly distorted [Fig. 8(c)]. This effect is exaggerated by the long duration
(a day) of the experiment described in Sec. 4.3, but the distortions are evident at the edges of
registered volumes, even in a 15-min experiment that requires multiple look-ins. Therefore, this
final step will likely benefit many of today’s AO-OCT experiments in terms of improved regis-
tration accuracy. It is worth noting, however, that we only correct torsion and scaling errors
relative to their average values. It may under some circumstances be possible to use images
from other imaging modalities as a source of information about absolute orientation and
scale.10

6 Conclusion

We present a new image registration method that cascades a 3D B-scan correlation-based algo-
rithm with a multiple-reference global A-line registration method for correcting eye movement
artifacts in AO-OCT volume images; global A-line registration corrects eye motion artifacts
separately for each individual A-line. Our GPU implementation is 150× faster than our previous
CPU implementation. The combination of algorithms achieves high registration accuracy and
robustness and enhanced image quality as measured by a variety of metrics and permits signifi-
cant expansion of the field of view and depth of focus of the final registered image.
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