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Abstract

Significance: Photoacoustic imaging (PAI) can be used to infer molecular information about
myocardial health non-invasively in vivo using optical excitation at ultrasonic spatial resolution.
For clinical and preclinical linear array imaging systems, conventional delay-and-sum (DAS)
beamforming is typically used. However, DAS cardiac PA images are prone to artifacts such
as diffuse quasi-static clutter with temporally varying noise-reducing myocardial signal speci-
ficity. Typically, multiple frame averaging schemes are utilized to improve the quality of cardiac
PAI, which affects the spatial and temporal resolution and reduces sensitivity to subtle PA signal
variation. Furthermore, frame averaging might corrupt myocardial oxygen saturation quantifi-
cation due to the presence of natural cardiac wall motion. In this paper, a spatiotemporal singular
value decomposition (SVD) processing algorithm is proposed to reduce DAS PAI artifacts and
subsequent enhancement of myocardial signal specificity.

Aim: Demonstrate enhancement of PA signals from myocardial tissue compared to surrounding
tissues and blood inside the left-ventricular (LV) chamber using spatiotemporal SVD processing
with electrocardiogram (ECG) and respiratory signal (ECG-R) gated in vivomurine cardiac PAI.

Approach: In vivomurine cardiac PAI was performed by collecting single wavelength (850 nm)
photoacoustic channel data on eight healthy mice. A three-dimensional (3D) volume of complex
PAI data over a cardiac cycle was reconstructed using a custom ECG-R gating algorithm and
DAS beamforming. Spatiotemporal SVD was applied on a two-dimensional Casorati matrix
generated using the 3D volume of PAI data. The singular value spectrum (SVS) was then filtered
to remove contributions from diffuse quasi-static clutter and random noise. Finally, SVD proc-
essed beamformed images were derived using filtered SVS and inverse SVD computations.

Results: Qualitative comparison with DAS and minimum variance (MV) beamforming shows
that SVD processed images had better myocardial signal specificity, contrast, and target detect-
ability. DAS, MV, and SVD images were quantitatively evaluated by calculating contrast ratio
(CR), generalized contrast-to-noise ratio (gCNR), and signal-to-noise ratio (SNR). Quantitative
evaluations were done at three cardiac time points (during systole, at end-systole (ES), and dur-
ing diastole) identified from co-registered ultrasound M-Mode image. Mean CR, gCNR, and
SNR values of SVD images at ES were 245, 115.15, and 258.17 times higher than DAS images
with statistical significance evaluated with one-way analysis of variance.

Conclusions: Our results suggest that significantly better-quality images can be realized using
spatiotemporal SVD processing for in vivo murine cardiac PAI.
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1 Introduction

Photoacoustic imaging (PAI) is a non-invasive medical imaging modality that couples optical
absorption induced molecular contrast with the anatomical contrast of ultrasound (US) imaging
at ultrasonic spatial resolution.1 Application of PAI has been demonstrated in both clinical (e.g.,
carotid atherosclerosis,2 breast mass differentiation,3 melanoma detection,4 and cardiac catheter
intervention5) and pre-clinical settings (e.g., oncology research,6 surgical guidance,7–9 and prostate
brachytherapy10). PAI can also be utilized non-invasively to evaluate blood oxygenation in myo-
cardial tissue,11,12 which can potentially complement existing preclinical (e.g., murine models of
ischemia-reperfusion13) cardiac imaging methods such US echocardiography, speckle tracking
echocardiography,14 and cardiac elastography15 by providing unique molecular information.

PAI has been used to describe myocardial blood oxygenation information utilizing high per-
sistence (multiple frame averaging) to increase the signal-to-noise ratio (SNR) of myocardial
wall PA signals.11,16 This PAI technique leads to reduced sensitivity and resolution (both spatial
and temporal) in cardiac photoacoustic (PA) images because of the potential for averaging PA
signals frommultiple sources [i.e., myocardial tissue, blood in left-ventricular (LV) chamber, and
surrounding static muscle tissue] due to the presence of natural cardiac deformation, thus cor-
rupting blood oxygenation quantification in the myocardium. Therefore, avoiding frame aver-
aging is desirable to improve spatial and temporal resolution, and sensitivity to small variations
in PA signals from the myocardial wall. However, reconstructed PA images with conventional
delay-and-sum (DAS) beamforming17 without persistence typically have low SNR. In addition,
PA signals from blood inside the LV chamber will also contribute as incoherent clutter signals
within the imaging field of view (FOV).17 These factors contribute to reduced signal specificity
in the myocardial wall rendering cardiac PAI interpretation difficult. Adaptive beamforming
algorithms such as spatial and spatiotemporal coherence weighting,17–20 short-lag spatial coher-
ence weighting,21 delay-multiply and-sum,22 and multiple DAS with Enveloping (multi-DASE)
23 have been employed to suppress incoherent clutter signals. However, these methods may also
undesirably suppress the myocardial wall PA signals during clutter suppression leading to
reduced signal specificity. Recently, machine learning-based PA image formation methods have
also been reported.24,25 However, adaptation of these methods for murine in vivo cardiac PAI
requires appropriate training dataset synthesis incorporating complicated cardiac deformation,
physiology, and US physics.

In this paper, we report on a spatiotemporal singular value decomposition (SVD) processing
method using electrocardiogram and respiratory signal (ECG-R) gating with in vivo cardiac
murine PAI data beamformed with DAS.26 SVD has been previously used for artifact and clutter
reduction in US imaging,27 power Doppler,28,29 and ultrafast functional US imaging,29–31 dem-
onstrating remarkable improvement in sensitivity. Spatiotemporal SVD allows for signal sep-
aration between tissue, blood, and random noise components by decomposing raw data into
spatiotemporal singular vectors, enabling selection of singular vectors with relevant spatiotem-
poral fluctuations.29 SVD to improve image reconstruction performance for photoacoustic com-
puted tomography systems (PACT) has been reported.32,33 For example, Wang et al.33 proposed a
fast spatiotemporal image reconstruction algorithm with SVD for dynamic PACT and reported
accuracy improvement over conventional approaches. In this paper, however, we focus on
improving the quality of PA images collected using linear array US transducers. For linear array
PAI, SVD has been used for identification and reduction of laser-induced noise using the spatial
singular value spectrum (SVS).34 Spatiotemporal clutter filtering with SVD has also been applied
for contrast-enhanced PAI in a phantom study.35 However, the spatiotemporal variation of PA
signals was not investigated previously in the context of improving the quality of DAS beam-
formed label-free murine cardiac PAI data except in our previous conference publication.26
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The novelty of our approach is to utilize the natural deformation of myocardial tissue to achieve
PA image enhancement using spatiotemporal SVD processing. The purpose of this study is to
demonstrate PA signal enhancement in myocardial tissue when compared to surrounding muscle
tissue and blood within the LV chamber.

Briefly, a custom ECG-R gating algorithm along with a DAS and minimum variance (MV)
beamformer is used to reconstruct a cardiac cycle of PAI data. We hypothesize that blood signals
from the LV chamber will have low spatiotemporal coherence when compared to signals from the
myocardial wall and surrounding tissue region appearing as random temporally incoherent clutter
signals. Moreover, as the myocardium contracts and relaxes during a cardiac cycle, myocardial
echo signals will have lower spatiotemporal coherence when compared to quasi-static surrounding
tissue and any diffuse quasi-static clutter. Based on the aforementioned hypotheses, spatiotemporal
SVD processing was applied to enhance the contribution from myocardial tissue.

The paper reports on two main contributions. First, spatiotemporal SVD processing using
ECG and respiratory signal gated in vivo cardiac murine PAI data acquired using linear array-
based PA system is described and implemented. Second, a detailed in vivo feasibility study is
performed using eight healthy mice along with rigorous quantitative evaluation in terms of
contrast ratio (CR), generalized contrast-to-ratio (gCNR), and SNR metrics.

2 Materials and Methods

Figure 1 shows a schematic diagram describing the spatiotemporal SVD algorithm for ECG-R
gated in vivo cardiac PAI, which is described in detail below.

2.1 In Vivo Murine Cardiac PAI Data Acquisition

Eight healthy BALB/CJ mice (median age of 10 weeks, five males, and three females) acquired
from the Jackson Laboratory (Bar Harbor, Maine) were used to perform an in vivo validation
study for the proposed SVD processing framework. All in vivo experiments were approved by
the Institutional Animal Care and Use Committee at the University of Wisconsin–Madison.
A Vevo 2100-LAZR PA-ultrasonic imaging system (FUJIFILM VisualSonics, Inc., Toronto,
Canada) was utilized for collecting PAI data. After removing chest hair with depilatory cream,
Nair (Church & Dwight Co., Ewing, New Jersey), mice were placed in the supine position on
a heated platform under anesthesia (1.5% to 3.5% isoflurane) and continuous flow of oxygen
(1 to 2 l∕min) via a nose cone. ECG and respiratory signals were collected using dedicated
physiological monitoring system with the Vevo 2100-LAZR. Spectra 360 electrode gel
(Parker Labs, Fairfield, New Jersey) was applied on the physiological signal monitoring system

Fig. 1 Schematic diagram illustrating the spatiotemporal SVD processing algorithm for ECG and
respiratory (ECG-R) gated in vivo cardiac PAI.
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electrodes to ensure optimal contact with each paw ensuring high-quality ECG and respiratory
signal acquisition. The supply of isoflurane and oxygen flow rate was titrated to maintain a
consistent heart rate between 310 to 340 beats per minute (bpm) as best as possible during
imaging.

A LZ 250 transducer (256-element linear array) having a pitch of 90 μm, center frequency of
21 MHz, and bandwidth from 13 to 24 MHz was used for data collection.36 LithoClear, (Next
Medical Products, Branchburg, New Jersey) a high viscosity acoustic gel, was applied within the
cup of the transducer along with a liberal amount to the animals’ chest to ensure optimal acoustic
coupling between the transducer and mice while also allowing for a gel offset to reduce rever-
beration artifacts. Acoustic gel was centrifuged prior to imaging to remove air bubbles that
would cause artifacts in PAI. Parasternal long-axis imaging view was used with US B-mode
imaging. B-mode images had a depth of 16 mm and width of 11.04 mm with a depth offset
of 5 mm and focus at 11 mm. The skin surface of the mice was placed at an approximate depth
of 8 mm whenever possible to avoid reverberation artifacts from the skin.11,37 A cine loop of US
B-mode was collected to confirm normal cardiac function for each mouse. Then, 1000 frames of
co-registered beamformed US and pre-beamformed PA channel data were acquired using an
optical wavelength of 850 nm where oxygenated hemoglobin has dominant absorption38 with
simultaneous acquisition of ECG and respiratory signals. With the LZ 250, two sequential laser
pulses are required to cover the chosen US imaging width (11.04 mm) with 64-element parallel
acquisition per pulse resulting in a PAI frame rate of one half the laser repetition rate.39 To per-
form PA imaging at the maximum laser repetition rate of the system dedicated Nd:YAG laser
(20 Hz), PA imaging width was adjusted to be approximately half of the US imaging width
resulting in an acquisition with only 64-elements (green rectangle in Fig. 1).17,40 No frame
or A-line averaging was performed during PA data collection. PA gain (40 dB) and time gain
compensation were kept constant throughout the experiment to allow inter-animal comparison.
Finally, in-phase and quadrature (IQ) sampled PA channel data were exported for offline beam-
forming and SVD processing.

2.2 Cardiac Cycle Reconstruction using ECG-R Gating and Beamforming

A cardiac cycle of PA channel data was reconstructed by performing respiratory signal gating to
discard frames and avoid motion artifacts, followed by re-ordering of gated frames using ECG
signals and individual frame time stamps. To ensure accurate respiratory signal gating, a publicly
available open-source respiratory signal processing toolbox named BreathMetrics (https://github
.com/zelanolab/breathmetrics) was used.41 Respiratory signal was analyzed to determine all
inhalation peak time points with corresponding inhalation onsets and exhalation pause onsets.
Then, gating was done per inhalation peak with gate start and end time corresponding to the
inhalation onset and exhalation pause onset times, respectively. Any PA and US frames within
the gated region were discarded from subsequent analysis. Finally, the remaining usable
frames were re-ordered by calculating the delay between the image time stamps and nearest
ECG R-waves reconstructing a cardiac cycle of US and PA channel data. Additionally, an
ECG curve for the gated cardiac cycle PA data was reconstructed using the image time stamps
of the re-ordered frames after ECG-R gating and the original ECG timing information. To recon-
struct the gated ECG curve, we sampled the original ECG signal by finding time indices closest
to the image time stamps of the re-ordered usable frames after performing ECG-R gating. The
reconstructed ECG curves are presented in the video files in Sec. 3 (Figs. 5 and 7).

PA complex radio-frequency IQ data were reconstructed from PA channel data using DAS
beamforming with 64-element aperture, uniform aperture weighting, and dynamic apodization
with f-number of 1. Dynamic receive focusing was performed by calculating one-way US signal
propagation delay assuming the speed of sound to be 1540 ms−1. Beamforming process was
accelerated by implementation using CUDA to run on a GPU in MATLAB (Mathworks
Inc., Massachusetts). All beamforming was done on an Intel(R) Xeon(R) CPU E5-2640 v4
at 2.40 GHz and a Tesla K40c GPU (compute capability 3.5). This resulted in a three-
dimensional (3D) complex-valued matrix P used for SVD processing with dimensions
Nx ¼ 64 A-lines, Nz ¼ 296 samples along depth, and Nt ≈ 300 to 400 frames.
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Additionally, time-delayed PA channel data were also beamformed using an MV beamform-
ing algorithm.42 For MV, the optimal aperture apodization function was determined by minimiz-
ing the variance of beamformed data using the following equation:

EQ-TARGET;temp:intralink-;e001;116;699WMVðtÞ ¼
RSAðtÞ−1a

aHRSAðtÞ−1a
; (1)

where WMVðtÞ is the minimum variance aperture weighting vector, a (the steering vector) is a
unit vector in our case due to dynamic receive focusing, RSAðtÞ is the co-variance matrix esti-
mated by dividing the full array into overlapping sub-arrays having a length of Ns ¼ 16, and t is
the time-of-arrival of PA acoustic waves. MV beamforming was accelerated using the Parallel
Computing Toolbox in MATLAB.

2.3 Spatiotemporal Singular Value Decomposition Processing

Theoretical background on spatiotemporal SVD processing is presented in this section. For SVD
processing, a 3D complex-valued matrix P is constructed using stacks of ECG-R gated DAS
beamformed PAI cardiac cycle data. The matrix P has two dimensions in space denoted by
Nx and Nz corresponding to the number of transducer elements and number of samples along
the depth axis respectively and one-dimension (1D) in time (Nt) corresponding to the number of
frames in the ECG-R gated cardiac cycle data. A spatiotemporal reorganization was applied on
the matrix P to construct a two-dimensional (2D) Casorati matrix, S with dimensions of
(Nx × Nz) by Nt.

29 Each column vector of S represents a PA image. Then, SVD is performed
on S, which can be represented as follows:

EQ-TARGET;temp:intralink-;e002;116;449S ¼ UΔV�; (2)

where Δ is a diagonal matrix with dimensions [minðNx × Nz; NtÞ by minðNx × Nz; NtÞ]
containing the singular values in the diagonal and two unitary matrices U with dimensions
[(Nx × Nz) by minðNx × Nz; NtÞ] and V dimensions [Nt by minðNx × Nz; NtÞ] containing the
spatial and temporal singular vectors corresponding to each singular value, respectively.

For cardiac PAI, we are interested in enhancing signals from myocardial tissue depicting
natural contraction and relaxation over a cardiac cycle. The key assumption here is that myo-
cardial tissue should have lower spatiotemporal coherence compared to PA signals from diffuse
quasi-static clutter and surrounding muscle regions and higher spatiotemporal coherence com-
pared to fast-moving blood volumes inside the LV chamber. The assumed spatiotemporal PA
signal fluctuation will be characterized by matrix V containing the temporal singular vectors.
Therefore, to enhance myocardial PA signals, singular values and vectors associated with myo-
cardial tissue displacements were preserved by filtering both lower and higher-order singular
values of the SVS. The low-order cutoff used to separate myocardial PA signal from quasi-static
clutter and surrounding muscle was manually selected and denoted as rst here and in the rest of
the paper. After application of ECG-R gating, we observed that high amplitude PA signals from
the surrounding muscle regions were depicted as quasi-static clutter while myocardial PA signals
had deformation characteristics associated with natural contraction and relaxation of the heart
over a cardiac cycle. Spatiotemporal SVD decomposed the raw PA data into spatiotemporal
singular vectors. The singular vectors from quasi-static clutter and surrounding muscle had the
lowest spatiotemporal fluctuations thereby contributing to lower-order singular values. On the
other hand, myocardial tissue had higher spatiotemporal fluctuations, therefore, utilizing a
lower-order cutoff enhanced the myocardial PA signals over quasi-static clutter and surrounding
muscle. The high-order cutoff used to suppress random PA noise was calculated using the gra-
dient of SVS and selected at the singular value order where gradient becomes <20 and denoted
by rrt. The filtered SVS can be presented using a truncated diagonal matrix ΔST as follows:

EQ-TARGET;temp:intralink-;e003;116;117ΔST ¼ Δ × IST (3)

where IST is a diagonal matrix to filter Δ. For IST, diagonal elements between rst and rrt were set
to one and rest were set to zeros. A typical SVS derived from our cardiac PAI data with chosen
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low- and high-order cutoff is shown in Fig. 2. A filtered Casorati matrix, SST through inverse
SVD calculation was derived using the following equation.

EQ-TARGET;temp:intralink-;e004;116;497SST ¼ UΔSTV�: (4)

Finally, a 3D matrix of SVD processed cardiac PAI data, PST was reconstructed by applying
a spatiotemporal reorganization on SST .

2.4 Quantitative Analysis

To perform quantitative analysis, three cardiac time points (during systole, at end-systole and
during diastole) were identified using USM-Mode image derived from the reconstructed ECG-R
gated cardiac cycle of the co-registered US B-mode cine-loop [Fig. 3(a)]. We define systole as
the cardiac phase when the LV chamber begins to contract until just before it reaches it smallest
dimension, end-systole as the cardiac time point at which LV chamber is at the smallest dimen-
sion, and diastole as the cardiac phase when the LV chamber begins to expand until it reaches it
largest dimension. It is worth noting that imaging FOV was set to focus on the interventricular
septum while maintaining enough offset between skin and transducer face to avoid reverberation
artifact during PAI. Then, corresponding B-mode images were used to manually draw target and

Fig. 2 SVS derived from SVD of in vivo cardiac PAI murine data. Green and red dots show the low
and high-order cutoff respectively for SVD filtering.

Fig. 3 US guided statistical analysis of in vivo PAI. (a) US M-mode image derived using the recon-
structed cardiac cycle after ECG-R gating. Chosen cardiac phases are shown with blue dashed
line on the M-mode image. (b) Representative target (blue polygon) and background (red polygon)
ROIs overlayed on PAI co-registered US image.
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background region of interest (ROI) as shown with blue and red polygons in Fig. 3(b), respec-
tively. Both target and background ROI had equal area. Finally, corresponding DAS, MV, and
SVD processed PA images were evaluated by calculating CR,17,40 gCNR,43,44 and SNR45 using
the following equations:

EQ-TARGET;temp:intralink-;e005;116;687CR ¼ 20 × log10

�
μt
μb

�
; (5)

EQ-TARGET;temp:intralink-;e006;116;632gCNR ¼ 1 −
XN−1

l¼0

minfktðxlÞ; kbðxlÞg; (6)

EQ-TARGET;temp:intralink-;e007;116;592SNR ¼ 20 × log10

�
μt
σb

�
; (7)

where μt and μb denote the average envelope detected PA signal amplitudes for target and back-
ground ROI, respectively. In Eq. (3), kt and kb represent the target and background histograms,
respectively, calculated by dividing the entire range of PAI values into 100 bins (N) with bin
centers denoted by l.

For statistical analysis, one-way analysis of variance (ANOVA) with the Bonferroni multiple
comparison test was used to compare among DAS, MVand SVD-4. It is worth noting that SVD-
4 denotes spatiotemporal SVD processed image with rst ¼ 4. Statistical analysis and graphing
were done with Origin, Version 2020 (OriginLab Corporation, Northampton, Massachusetts).

3 Results

Figures 4(a)–4(c) show representative examples of DAS, MV, and SVD processed images during
systole, at end systole (ES), and during diastole of a cardiac cycle, respectively. US B-mode and
PA images reconstructed with DAS, MV, SVD-0, and SVD-4 are presented from left to right
chronologically for each sub-figure. PA signal strength from the myocardium in DAS and MV
results were low making myocardial signal localization difficult. With SVD-0, no significant
qualitative difference was observed in the myocardial wall region. However, significant myo-
cardial PA signal enhancement was achieved with SVD-4. Specifically, we observe ES radial
wall thickening in the SVD-4 image, which was not clear in DAS, MV, and SVD-0 results
[Fig. 4(b)]. The radial wall thickening was confirmed with the corresponding US B-mode image
[Fig. 4(b) leftmost image].

Figure 5 shows the SVD processed cardiac cine-loop comparison with DAS and MV beam-
formed cardiac cine-loop. SVD-0 does not improve myocardial signal specificity when com-
pared to DAS and MV however, note the reduced temporal variation of the noise background.
On the other hand, SVD-4 demonstrates significant improvement in both myocardial signal
specificity with reduced temporal variation of noise background and show that SVD processing
preserves underlying cardiac motion.

Figures 6(a)–6(c) show another set of representative examples of DAS, MV, and SVD proc-
essed images during systole, at ES and during diastole of a cardiac cycle, respectively. US
B-mode and PA images reconstructed with DAS, MV, SVD-0, and SVD-4 are presented from
left to right chronologically for each sub-figure. In DAS and MV results, spurious high ampli-
tude PA clutter (diffuse quasi-static) signals are observed in the surrounding muscle and back-
ground regions (indicated using black arrows in Fig. 6 DAS images). Though some level of
clutter reduction was observed with SVD-0, high amplitude PA signals persist in the regions
indicated with arrows in DAS results. Finally, with SVD-4 significant PAI diffuse quasi-static
clutter reduction was achieved compared to DAS, MV, and SVD-0 thus enhancing signal speci-
ficity and detectability of myocardial PA signals.

Figure 7 shows the SVD processed cardiac cine-loop comparison with DAS and MV beam-
formed cardiac cine-loop for Fig. 6. Note that with SVD-0 we see reduced temporal variation in
the noise background but diffuse quasi-static clutter signals persist. However, SVD-4 demon-
strate marked reduction in the diffuse quasi-static clutter signals along with reduced temporal
variation of noise background and preserved underlying cardiac motion.
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Findings from a parametric study to investigate the performance of the proposed algorithm
as a function of lower-order singular value cutoff (rst) are summarized in Figs. 8 and 9.
Representative end-systole spatiotemporal SVD processed images for different rst values are
presented in Fig. 8. Results with rst ¼ 0, 1, 2, 4, and 6 are presented from left to right chrono-
logically. The impact of the rst cutoff is evident in these results in terms of myocardial signal
enhancement and background signal suppression, with the best quality image obtained at
rst ¼ 4. However, choosing too high rst may suppress signals from myocardial tissue as seen
in Fig. 8 for rst ¼ 6. Figures 9(a)–9(c) show the variation of CR, gCNR, and SNR as a function of
rst for systolic, end-systolic, and diastolic phase SVD processed PA images, respectively. We
observe peak CR, gCNR, and SNR were achieved with rst ¼ 4 after which the curves plateau.
Therefore, SVD processed image with rst ¼ 4 was used in the quantitative comparative study
against DAS and MV beamforming.

Quantitative comparison results using CR, gCNR, and SNR are summarized in Figs. 10–12,
respectively. Results are presented using box-whisker plots with raw data plotted on the right
side. Mean of each distribution is illustrated by the black diamond symbol.

Fig. 4 Representative SVD processed images at three different cardiac time points demonstrating
improved PAI signal specificity after processing. Panels (a)–(c) show results at systolic, end-sys-
tolic, and diastolic phase of a cardiac cycle, respectively. US B-mode and PA images for DAS, MV,
SVD-0, and SVD-4 are presented from left to right chronologically for each sub-figure. SVD-0 and
SVD-4 denote spatiotemporal SVD processed images with r st ¼ 0 and 4, respectively.
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Figures 10(a)–10(c) show the CR results during systolic, at end-systolic, and during the
diastolic phase of a cardiac cycle, respectively. SVD-4 had higher CR values compared to
DAS and MV with statistical significance for all cases. No statistically significant differences
were observed between DAS and MV. For example, at ES, mean CR values for DAS, MV, and
SVD-4 were 4.20, 5.28, and 14.49 dB, respectively.

Figures 11(a)–11(c) show the gCNR results during systolic, end-systolic, and during the
diastolic phase of a cardiac cycle, respectively. SVD-4 had higher gCNR values compared
to DAS and MV with statistical significance for all cases. No statistically significant difference
was observed between DAS and MV. Larger differences were observed in the ES phase when
compared to systolic and diastolic phases. For example, at ES, mean gCNR values for SVD-4
were 115.15% higher than DAS, whereas at systolic phase, it was 56.52% higher.

Figures 12(a)–12(c) show the SNR results during systolic, at end-systolic, and during the
diastolic phase of a cardiac cycle, respectively. For all three phases, SVD-4 had statistically
higher SNR than DAS. When compared to MV, SVD-4 had statistically higher SNR at ES and
systole with no statistically significant difference during the diastolic phase. However, highest
mean SNR values were achieved in all three phases using SVD-4. For example, mean SNR of
DAS, MV, and SVD-4 were 8.84, 10.41, and 14.69 dB for the diastolic phase results.

Table 1 summarizes the computation times required to reconstruct a PA cardiac cycle using
DAS, MV, and spatiotemporal SVD processing for two mice. For example, DAS requires 45.81 s
to reconstruct a complete 3D cardiac cycle having a dimension of 296 × 64 × 300 samples while
MV requires significantly more time (446.58 s). It is worth noting that enhanced PAI with spa-
tiotemporal SVD can be achieved with a very low additional computation burden (1.71 s).
Similar performance trends were observed for mouse 2 with computational time scaled by
Nt (461 frames).

Fig. 5 Video of SVD processed cardiac cine-loop demonstrating improved PAI signal specificity after
processing (Video 1, MP4, 12.115 MB [URL: https://doi.org/10.1117/1.JBO.26.4.046001.1]).
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4 Discussion

In this paper, a spatiotemporal SVD algorithm with ECG and respiratory (ECG-R) gating for in
vivo cardiac PAI has been proposed and validated. In vivo feasibility with eight healthy mice
demonstrated significantly improved performance with SVD-4 processing over conventional
DAS and MV beamformed images. The proposed SVD processing is a data-driven approach
where spatiotemporal characteristics of cardiac PAI are utilized to enhance signal contribution
from myocardial tissue under the following assumptions based on literature findings and exper-
imental observations. First, highly absorbing blood inside the coronary artery (murine arterial
oxygen saturation ≈90% to 95%11,16) having low blood flow velocity (diastolic coronary flow
velocity ≈20 cm∕s46) should contribute to the PA signals from myocardial tissue at 850 nm.
Second, highly scattering mice skin and muscle due to the presence of connective tissues and
anisotropic layers of collagen,47 having lower optical absorption coefficients at 850 nm (for
example, male BALB/CJ mice skin optical absorption coefficient at 850 nm ≈ 1 cm−147) com-
pared to oxygenated blood, should result in low amplitude PA signals compared to myocardial
tissue. During data collection, we observed the presence of spurious high amplitude PA clutter

Fig. 6 Representative SVD processed images at three different cardiac time points demonstrating
PAI diffuse and quasi-static clutter reduction after processing. Panels (a)–(c) show results at systolic,
end-systolic, and diastolic phase of a cardiac cycle, respectively. US B-mode and PA images for
DAS, MV, SVD-0, and SVD-4 are presented from left to right chronologically for each sub-figure.
SVD-0 and SVD-4 denote spatiotemporal SVD processed images with r st ¼ 0 and 4, respectively.
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signals from surrounding muscle, which were quasi-static in nature. Third, PA transients from
the large volume of high velocity circulating blood (in early filling, E wave and late or atrial
filling phase, A wave during diastole) inside the LV generates mainly destructive interference
during DAS beamforming, resulting in non-viable PA signals with random spatiotemporal fluc-
tuations. It is worth noting that the E and Awave velocity48 of mitral valve flow during diastole
have previously been reported to be ∼54.2 and 43.8 cm∕s, respectively.49 Furthermore, short-
duration pulses provided to the flash lamp within the laser source may also contribute to random
PA noise.34 Therefore, in the proposed method, singular values and vectors corresponding to
cardiac tissue displacements associated with the natural contraction and relaxation of the heart

Fig. 7 Video of SVD processed cardiac cine-loop demonstrating PAI diffuse and quasi-static
clutter reduction after processing (Video 2, MP4, 12 MB [URL: https://doi.org/10.1117/1.JBO
.26.4.046001.2]).).

Fig. 8 End-systole spatiotemporal SVD processed images as a function of lower singular valuer
order cutoff threshold (r st). Results with r st ¼ 0, 1, 2, 4, and 6 are presented from left to right
chronologically.
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Fig. 9 Variation of (a) CR, (b) gCNR, and (c) SNR as a function of r st for spatiotemporal SVD
processed images evaluated at systolic (blue), end-systolic (black), and diastolic (red) phase
of a cardiac cycle.

Fig. 10 Statistical analysis for CR comparison among DAS, MV, and SVD-4 (n ¼ 8). Panels
(a)–(c) show results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively.
SVD-4 presents with statistically higher CR values when compared to DAS and MV.

Fig. 11 Statistical analysis for gCNR comparison among DAS, MV, and SVD-4 (n ¼ 8). Panels
(a)–(c) show results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively.
SVD-4 shows statistically higher gCNR values when compared to DAS and MV.

Fig. 12 Statistical analysis for SNR comparison among DAS, MV and SVD-4 (n ¼ 8). Panels
(a)–(c) show results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively.
SVD-4 had statistically higher SNR values than DAS.
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over a cardiac cycle were preserved by discarding the first few singular values for the low-order
SVD cutoff to suppress spurious high amplitude quasi-static clutter and by suppressing random
PA signal fluctuations using high-order SVD cutoff (Fig. 2). To ensure that a suitable dataset is
generated for SVD processing, a custom ECG-R gating algorithm was developed using an open-
source Matlab toolbox.

Qualitative results shown in Figs. 4–7 show that significant improvement in myocardial sig-
nal specificity is achieved with rst ¼ 4, which was also validated by quantitative analysis. It is
worth noting that no additional temporal smoothing was applied to preserve the original spatial
and temporal resolution demonstrating a significant improvement over prior approaches using
higher persistence (Figs. 5 and 7).11,37 With SVD processing, significant enhancement of myo-
cardial signal was demonstrated with improved contrast between the myocardium and back-
ground as demonstrated by CR comparison results (Fig. 10). Additionally, gCNR comparison
was done to confirm that this contrast enhancement was not due to mere dynamic range alter-
nation rather target detectability. gCNR results shown in Figure 11 show that myocardial signal
detectability is significantly improved using spatiotemporal SVD processing when compared to
conventional DAS or MV results. Higher gCNR improvement observed at ES compared to either
systolic or diastolic phases can be attributed to the high strain rate at ES with the thickest wall
dimension.50 SNR results demonstrate statistically significant improvement with SVD-4 over
DAS for all cardiac phases. We observed an exception in the diastolic phase where MV
and SVD-4 had non-significant differences. In contrast to CR and gCNR (both measure target
detectability), SNR additionally considers the smoothness of the background regions. To under-
stand the SNR trend, we also evaluated the mean PA amplitude of the target region and standard
deviation of background region individually and found that SVD-4 had higher mean PA ampli-
tudes demonstrating improved myocardial signal enhancement in all phases corroborating the
improvement in CR and gCNR. However, reduction in background standard deviation in
diastolic phase was not as significant as in the end-systole and systolic phase resulting in non-
significant SNR improvement statistically between MV and SVD images even though SVD-4
had higher mean SNR value. Overall, qualitative and quantitative results demonstrate that spa-
tiotemporal SVD processing can potentially improve in vivo cardiac PAI quality.

It is worth noting that myocardial tissue identified in SVD processed PA images showed similar
anatomical variation as a function of time as observed in B-mode images. For example, in
Fig. 4(b), thickening and shortening of the anterior wall is evident from the B-mode image at
ES. Observe thickening and shortening of the anterior wall from SVD-4 images [myocardial boun-
daries indicated with arrows in Fig. 4(b)] with clear contrast when compared to the background.
Binary maps were generated by applying a threshold on the SVD-4 images (from Fig. 4) at the
systolic, end-systolic, and diastolic phases, which are shown in Fig. 13. Anatomical variation at
different cardiac phases can be clearly observed in Fig. 13, demonstrating that both spatial and
temporal localization of myocardial PA signals is achieved using spatiotemporal SVD processing.
One common approach in PA-based oxygen saturation (% sO2) estimation is to use a quality con-
trol region-of-interest (ROI).38,51 In the future, we will utilize the SVD processed images to define
our quality control ROI utilizing improved target detectability and perform multispectral imaging
to evaluate the myocardial % sO2 as a function of time over a cardiac cycle.

The performance of SVD processing depends on the choice of lower singular valuer
order cutoff threshold (rst), which was chosen empirically by evaluating a range of rst values

Table 1 Summery of computational times (seconds).

DAS MV

SVDa
Total (per frame) Total (per frame)

Mouse 1 45.81 (0.12) 446.58 (1.16) 1.71

Mouse 2 54.40 (0.12) 506.61 (1.10) 2.45

Note: Mouse 1, Nt ¼ 300 frames, Mouse 2, Nt ¼ 461 frames. DAS = Delay-and-sum, MV= minimum variance,
SVD = singular value decomposition
aAdditional time needed to process entire cardiac cycle using spatiotemporal SVD after DAS.
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[Figs. 8 and 9]. However, this is not an optimal solution when the proposed algorithm must be
applied to larger datasets. In future work, we will investigate the feasibility for automated deter-
mination of the low order cutoff threshold by estimating the mean frequency of each temporal
singular vectors contained in the matrix V.30

In this paper, the focus was on in vivo murine cardiac PAI where the myocardial signals are
diffuse in nature. PAI has also been used for imaging prostate brachytherapy seeds,52,53 percuta-
neous radiofrequency ablation needle detection,54 and surgical guidance7 where the signals of
interest appear to be more coherent. We anticipate that our proposed spatiotemporal SVD
processing can be applied for those applications with appropriate adjustment of singular value
thresholds. Adaptive beamforming methods such as MV, DMAS beamforming22 can be also be
coupled with SVD processing to improve murine cardiac PAI quality if channel data is acces-
sible. However, researchers must be mindful of any non-linearity introduced by these adaptive
beamforming algorithms.

Despite the presented encouraging results, this study still has some limitations. First, the
SVD processing was considered as decomposing the matrix S into weighted, ordered sum
of separable matrices as hypothesized for ultrafast functional US imaging.29,30 However, from
our study we observed some overlap between the myocardial and background signal subspace
even after applying SVS thresholding. Therefore, to account for the background signal, further
signal processing approaches are necessary. One potential approach might be the use of photo-
acoustic sub-aperture processing (PSAP) developed by our lab to suppress incoherent clutter for
DAS PA images.55 One example with PSAP processing to suppress background signals in the
SVD processed images is presented in Appendix A. Second, the low and higher order singular
value cutoffs were chosen empirically and were fixed for all mice. However, it is anticipated that
adaptive methods30,31 for selecting the singular value cutoff may improve performance further by
accounting for physiological variation (for example, heart rate under anesthesia) that occurs with
different mice. Third, any singular value below low order and above high order singular value
cutoff was set to zero in our implementation. However, adaptive weighting functions based on
the singular values27 can be can be designed to weight the SVS to further enhance myocardial PA
signals. Fourth, only healthy murine model was considered in this study. However, efficacy
should be evaluated for murine cardiovascular disease models such ischemia-reperfusion13 for
further validation, which will be studied in future.

5 Conclusion

In this work, a spatiotemporal SVD method for in vivo murine cardiac PAI data was demon-
strated. Qualitative and quantitative comparison between conventional DAS, MV, and SVD
processing show that higher quality single wavelength in vivo cardiac PA images can be realized
using the proposed method.

Fig. 13 (a)–(c) Binary maps of the myocardial wall generated by applying a threshold on SVD-4
images at systolic, end-systolic, and diastolic phases of cardiac cycle, respectively. Radial thick-
ening and longitudinal shortening of the wall at ES is observed in Fig. 13(b).
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Fig. 14 Schematic diagram demonstrating coupled PSAP and SVD processing.

Fig. 15 Representative background suppression results from coupled PSAP and SVD process-
ing. (a)–(c) show results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respec-
tively. Results with DAS, DAS-SVD (r st ¼ 2), and PSAP-SVD (r st ¼ 2) are presented from left to
right chronologically for each sub-figure. r st denotes the lower singular value order chosen for
thresholding.
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6 Appendix A: Background Suppression Using PSAP

Figure 14 presents a schematic diagram demonstrating coupled PSAP and SVD processing for
background suppression in the DAS SVD processed images. In addition to DAS beamforming
with full aperture, beamforming was also done with two non-overlapping sub-apertures having
no common elements defined using binary weighting vectors. Here, sub-aperture 1 (S1) weight-
ing vector was constructed of ones and zeros with an alternating pattern of two elements and sub-
aperture 2 (S2) weighting vector was complementary of sub-aperture 1. Further details on PSAP
can be found in Ref. 55. Both cardiac cycle data reconstructed with S1 and S2 were filtered with
the proposed spatiotemporal SVD method (Sec. 2.1). Then, 3D (2D space + 1D time) weighting
matrix (WPSAP) was determined by calculating zero lag normalized cross-correlation (NCC)
between each frame of S1 and S2 reconstructed cardiac cycle. During NCC calculation, inco-
herent clutter signals from background have low similarity while myocardial PA signal have high
similarity.55 Therefore, DAS SVD processed images were multiplied with WPSAP to suppress
background signals. The resultant images are denoted as PSAP-SVD.

Figure 15 shows representative background suppression results from coupled PSAP and
SVD processing. Figures 15(a)–15(c) show results at systolic, end-systolic, and diastolic phase
of a cardiac cycle, respectively. Results with DAS, DAS-SVD (rst ¼ 2), and PSAP-SVD
(rst ¼ 2) are presented from left to right chronologically for each sub-figure. We observe that
coupled PSAP and SVD processing achieved simultaneous suppression of background signal
and enhancement of myocardial PA signal for all three cases.
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