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Abstract. Facing the black-box nature of deep learning models for image classification, a popu-
lar trend in the literature proposes methods to generate explanations in the form of heat maps
indicating the areas that played an important role in the models’ decisions. Such explanations are
called saliency maps and constitute an active field of research, given that many fundamental
questions are yet to be answered: how to compute them efficiently? How to evaluate them?
What exactly can they be used for? Given the increasing rate at which papers are produced and
the vast amount of literature that is already existing, we propose our study to help newcomers
become part of this community and to contribute to the research field. First, the two existing
approaches to generate saliency maps are discussed, namely post-hoc methods and attention
models. Post-hoc methods are generic algorithms that can be applied to any model from a given
class without requiring fine-tuning. On the contrary, attention models are ad-hoc architectures
that generate a saliency map during the inference phase to guide the decision. We show that both
approaches can be divided into several subcategories and illustrate each of them with one
important model or method. Second, we present the current methodologies used to evaluate
saliency maps, including objective and subjective protocols, depending on whether or not they
involve users. Among objective methods, we notably detail faithfulness metrics and propose an
implementation featuring the faithfulness metrics discussed in this paper (https://github.
com/TristanGomez44/metrics-saliency-maps). © 2023 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JEI.32.2.020801]
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1 Introduction

The interpretability (or “explicability”) of a system is its capacity to make a human understand its
decisions, in particular with the help of explanations. The study of this type of system is a field
that has experienced a renaissance with the recent surge of interest in deep learning. Indeed, deep
neural networks (DNN) yield excellent performance but their complexity is a major obstacle to
their deployment. It is not conceivable to let an algorithm make critical decisions alone, as these
models are not robust and the decisions produced may reflect undesirable biases in the data on
which they have been trained. In critical domains, it is therefore imperative that at least one
expert verify the validity of the model’s decisions. This verification is difficult in practice with
a standard DNN because this class of model has millions of parameters and, unlike a linear
regression model where there are only a few coefficients, it is not possible to directly understand
how the model made its decision. A new branch of the study of deep learning has therefore
emerged in recent years and focuses on the explainability of these models and proposes methods
to improve and evaluate them. As this field is still young, the definition of interpretability is not
well defined and there is no consensus on how to evaluate it. Despite these fundamental open
questions, many approaches to improve DNN interpretability have been introduced, among
which we distinguish between local and global approaches.

A global method sheds light on the behavior of a model on an entire dataset by showing
which features of the model give a high weight to or in which areas of the input space the model
has a limited performance.1 In contrast, a local method seeks to explain a decision on a specific
input. It shows the elements of the input that were important in the decision, to help the user
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better understand why the model produced a certain decision and not another. It serves as an
intermediary between the model and the user to make the decision made by the model
interpretable. Global explanations are intended for model experts and are effective for an audit
or global evaluation of the model. To facilitate human–model collaboration in routine use, local
explanations are preferable because they gain the user’s confidence in specific inputs to be
processed.1 Visual local explanations can take the form of examples,2–5 concepts,6 or saliency
maps. Saliency maps are heat maps that indicate the areas of the image that played an important
role in the model decision. In this tutorial, we focus on local explanations with saliency
methods, because this approach is largely dominant in computer vision. We will first study
the different approaches to computing saliency maps, which are divided into two categories:
post-hoc methods and attention models. Next, we discuss existing methodologies for evaluating
saliency maps, including objective and subjective protocols.

2 Saliency Map Generation

Two approaches have emerged in the literature to generate explanations based on saliency
maps, as illustrated in Fig. 1. Post-hoc methods allow one to explain the decisions of any
model from a certain class without requiring retraining. Attention models integrate an atten-
tion layer in the model to generate a saliency map (also called an attention map) during
the inference to guide the decision. Such architectures are called attention models. First,
we study the generic post-hoc methods that are used to explain the decisions made by any
visual classification model. Second, we will discuss architectures that integrate attention
modules.

2.1 Post-hoc Explanation Methods

There are three generic types of approaches for producing explanations of a model without
having to retrain it: feature map weighting approaches, backpropagation approaches, and input
image perturbation approaches, as illustrated in Fig. 2.

2.1.1 Notations

Let x ∈ RH×W×3 be the image passed to the model, and ycðxÞ be the score of the class to be
explained. We also note ði; jÞ ∈ ½0; : : : ; H� × ½0; : : : ;W�, the spatial position at the level of the

CNN

CNN Black footed
albatross !

Post-hoc
methodCNN Black footed

albatross !
Post-hoc
method

Post-hoc
method

Black footed
albatross !

(a)

(b)

Fig. 1 The two approaches to generate saliency maps: (a) post-hoc methods and (b) attention
models.
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input image and ði 0; j 0Þ ∈ ½0; : : : ; H 0� × ½0; : : : ;W 0�, the spatial position at the level of the feature
maps of the last layer.

2.1.2 Perturbation approaches to the input image

These methods consist in perturbing the input image to determine what contribution each part
makes to the yc score. One of the most popular perturbation-based post-hoc methods is local
interpretable model-agnostic explanations (LIME).7 This method splits the image into super-
pixels and estimates a weight for each superpixel. These weights correspond to the weights of
a linear model G which approximates the model F locally. Let z be the input image and
z 0 a simplified version of z. More precisely, z 0 is a binary vector where z 0i indicates whether
the i’th superpixel is present in z (z 0i ¼ 1) or whether it is replaced with gray pixels (z 0i ¼ 0).
We note Gðz 0Þ the prediction of the linear model by masking the superpixels indicated by z 0.
The model F is approximated as follows:

EQ-TARGET;temp:intralink-;e001;116;210Gðz 0Þ ¼ ϕ0 þ
XP
i

ϕiz 0i ; (1)

where
P

i are the weights of each superpixel. The authors define the following cost function

EQ-TARGET;temp:intralink-;e002;116;153Loss ¼ ΩðGÞ þ
X
ẑ∈Z

πðẑ; zÞðycðẑÞ − Gðẑ 0ÞÞ; (2)

where Z is a set obtained by sampling the neighborhood of z, πðx; zÞ ¼ expð−kx − zk22∕σ2Þ
is a similarity function to give greater weight to the neighbors of z that are closest, and Ω is
a regularization term to decrease the complexity in the explanation. A sample ẑ is generated
by randomly masking superpixels of the image, which amounts to changing the values of z 0.

(a) (b)

(c)

Fig. 2 The three post-hoc explanation approaches: (a) feature map weighting (e.g., CAM-based
methods), (b) backpropagation (e.g., IG, SmoothGrad, but also LRP, DeepLIFT, etc.), and (c) input
image perturbation (e.g., LIME, SHAP, etc.).
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To reduce the complexity of the explanation computation, the following regularization term is
chosen:

EQ-TARGET;temp:intralink-;e003;116;711ΩðGÞ ¼
�
∞ if jϕj0 > C
0 else

; (3)

where kϕk0 is the number of coefficients whose value is nonzero. In practice, to respect this
constraint, the authors choose the I most important superpixels with the least absolute shrinkage
and selection operator algorithm8 and determine their weight ϕi with a least squares regression.
The other superpixels are assigned a zero weight.

Based on this work, Lundberg and Lee9 use Shapley values as a solution to the Eq. (1) with a
method called SHapley Additive exPlanations (SHAP). The authors show that Shapley values
are the only solution to the Eq. (1) that can guarantee properties such as local fidelity or con-
sistency: if the model changes such that the contribution of a superpixel increases or remains the
same, the weight of the superpixel will not decrease.

Parallel to the development of LIME-inspired methods, Petsiuk et al.10 introduced a method
called “randomized input sampling for explanation” (RISE). With this method, instead of being
split in superpixels, the image is sliced into a rectangular grid of size H 0 ×W 0. The method
consists to apply random binary masks on the input image to estimate which areas induce the
largest drop in the score when masked. The authors then directly use the average score drop
obtained when masking each spatial position as a saliency map.

A limitation of these methods is the number of inferences to be performed to get a good
estimate of the saliency map, which is exponential with the resolution of the map/number of
superpixels. Indeed, Petsiuk et al.10 run M ¼ 8k inferences per image of standard size
224 × 224 with the RISE method in resolution 7 × 7 with a standard backbone residual network
(ResNet)-50. Similarly, the authors of LIME perform 15k inferences per image to explain.
Contrary to the two other families that we will discuss next, these methods can be applied
to any type of image classifier and are therefore not restricted to convolutional neural networks
(CNNs) or even DNNs.

2.1.3 Feature map weighting approaches

Another major approach to generating saliency maps is based on weighting the feature maps
produced at the last layer of the CNN to explain the predicted class. These methods produce
saliency maps at the resolution of the feature maps at the last layer, i.e., S ∈ RH 0×W 0

. A funda-
mental work from this category is the class activation map (CAM) method, which allows visu-
alizing the areas that contributed most to the prediction of a specific class. To do so, the authors
aggregate the feature maps of the last layer by weighing them by the weight they have on the
score of the class to be explained, as illustrated in Fig. 3.

CNN

...

Feature
vector

Classification
scores

...

Feature maps
weights

...

, ,...,

Inner
product 

Classification weights of predicted class

Feature
maps

Saliency
map

...

Inference Computation of saliency map

Fig. 3 Illustration of the CAMmethod. The weights map is a weighted average of the feature maps
of the last convolution layer, using the weights of the classification layer.
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Let fk ∈ RH 0×W 0
, c, and wkc be the k’th feature map of the last layer, the index of the class to

be explained, and the weight of the linear classification layer connecting fk and the score of the
class c. The saliency map is defined as follows:

EQ-TARGET;temp:intralink-;e004;116;698CAMðxÞ ¼
X
k

wkc × fkðxÞ: (4)

One of the limitations of this method is that it requires the classification layer to be connected
directly to the feature maps and therefore cannot be applied to architectures, such as Visual
Geometry Group, where there are several dense layers between the maps and the classification
scores, and cannot be applied to models designed for other tasks than classification, such as
image description or the visual question answering task. Gradient-weighted CAM (Grad-
CAM)11 solves this problem by generalizing CAM to be applicable to all architectures where
class scores are a continuous function of the feature maps. To do so, Grad-CAM computes the
gradients of the classification score with respect to the feature maps to identify the maps that
contributed the most to the decision.

Chattopadhyay et al.12 note that Grad-CAM aggregates the partial derivatives all with the
same weight and that as a result, the areas highlighted by the explanation do not correspond
to the whole object, but only to parts of it. Also, when there are multiple occurrences of the
same object, the Grad-CAM saliency maps do not highlight them all. This can be considered
a problem since this situation is common outside the domain of single-label image classification.
Chattopadhyay et al.12 have therefore introduced Grad-CAM++, a variant of Grad-CAM where
each partial derivative is assigned a different weight.

Wang et al.13 have highlighted two problems concerning the gradient approaches of Grad-
CAM and Grad-CAM++. First, gradient saturation/evanescence causes a noisy appearance of
the saliency maps, and second, these approaches likely give too much weight to certain feature
maps. As a solution, Wang et al.13 proposed Score-CAM, a method that assigns a weight to
each feature map based on the increase in observed score by masking areas of the input image
that do not activate the map, as illustrated in Fig. 4.

Like the methods mentioned above, Score-CAM is formulated as follows:

EQ-TARGET;temp:intralink-;e005;116;379Score − CAMðxÞ ¼
X
k

ws
kc × fkðxÞ: (5)

The difference with the previous methods comes in the formulation of the weights attributed
to each feature map, which are defined as the variation of the score resulting from masking the
image areas not activating fk

EQ-TARGET;temp:intralink-;e006;116;299ws
kc ¼ ycðxÞ − ycðx · NormðUpsampleðfkÞÞÞ; (6)

...

Feature
maps
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CNN
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Difference with
original class
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Fig. 4 Illustration of the Score-CAM method. The image is successively masked by each feature
map and the class score variations are used as weights to aggregate the feature maps.
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where Upsample interpolates fk at the resolution of x and Norm is an operator that normalizes
the map between 0 and 1 as follows: NormðxÞ ¼ x−xmin

xmax−xmin
. A method similar to Score-CAM

named Ablation-CAM was introduced in parallel by Desai and Ramaswamy54 with motivations
close to those of Score-CAM. Ablation-CAM evaluates the importance of a feature map by
preventing the decision to exploit the information it contains and by measuring the relative
variation of the yc score. However, instead of hiding the input image, Ablation-CAM removes
the map from the yc calculation and measures the drop in score.

Recently, Jung and Oh55 proposed learning important features class activation map (LIFT-
CAM) by noting that Shapley values can be used to evaluate the saliency of feature maps and
suggest approximating them with the deep learning of important features (DeepLIFT) algorithm.
This idea is similar to the SHAP method, but instead of approximating the Shapley values of
different parts of the input, Jung and Oh55 approximate the Shapley values of the feature maps.

Fu et al.14 also proposed aXiom-based Grad-CAM (Xgrad-CAM), an explanation method
based on desirable properties that the authors introduce: sensitivity and conservation. The sen-
sitivity property states that the weight assigned to a feature map is equal to the variation of the
score when the map is removed from the calculation of the classification score. The conservation
property states that the score must be explained exclusively by the contributions of the feature
maps. To produce explanations that respect these properties as much as possible, the authors
optimize a cost function composed of one term for each property. Other authors have also used
the activation statistics of individual feature maps to compute feature map weights and detect
high activation levels.15,16

2.1.4 Backpropagation approaches

Finally, the last family of approaches consists of backpropagating information from the output of
the model to the input image to yield a high-resolution saliency map, which indicates the impact
of each pixel on the decision, i.e., S ∈ RH×W . The basic method of this type of approach is
therefore to visualize these gradients and is simply called “gradient map” (GM), (also called
“sensitivity map”) which is equivalent to the “deconvolution” method in the case of a CNN
with a rectified linear unit (ReLU) activation

EQ-TARGET;temp:intralink-;e007;116;372GMijðxÞ ¼
∂ycðxÞ
∂xij

: (7)

To improve GM, Springenberg et al.17 introduced a method called “guided backpropagation”
with an idea also used by Grad-CAM++: negative gradients are suppressed with a ReLU acti-
vation, as they correspond to neurons that decrease the activity of the neuron that produces the
score of the class to be explained, as illustrated in Fig. 5.

Next, Sundararajan et al.18 proposed two properties that saliency maps should satisfy, namely
sensitivity and invariance to implementation. The sensitivity property is respected if when a
single input pixel xij is modified and when this affects the score ycðxÞ, then the contribution
of xij is changed too. The second property is satisfied if a method is not sensitive to the imple-
mentation of the model but only to the function implemented. Concretely, if two models imple-
ment the same function, i.e., if they produce the same predictions with the same inputs, an
implementation-invariant assignment method should produce the same saliency maps for these
two models. The authors introduce a method that respects these two properties called “integrated
gradients” (IG)18 by aggregating the GM resulting from the interpolation between the image we
seek to explain and a reference image as follows:

EQ-TARGET;temp:intralink-;e008;116;155IGijðxÞ ¼ ðxij − x̃ijÞ
Z

1

0

GMijðx̃þ αðx − x̃ÞÞdα; (8)

where x̃ is a reference image, which is an image that represents the absence of an object to be
classified. The authors argue that ~x should be chosen such that ycð~xÞ ≈ 0 and propose to use a
black image. Later, Smilkov et al.56 argue that GMs vary chaotically, which contributes to the
noise observed on these maps. In particular, they show that when interpolating from a reference
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image to an image to be explained, the partial derivatives of yc are abrupt and unpredictable.
To overcome this problem, Smilkov et al.56 proposed SmoothGrad to improve IG by aggregating
the GM obtained by perturbing the input image with Gaussian noise. Next, Adebayo et al.19

introduced a variant of SmoothGrad to address the same problem, called VarGrad, which uses
the variance of the IG maps of the perturbed input as an explanation.

We end this section by discussing two gradient-free methods called “DeepLIFT”20 and
“layerwise relevance propagation” (LRP).21 Unlike the methods mentioned earlier in this para-
graph, DeepLIFTand LRP do not involve gradient computation. Nevertheless, these methods are
close to gradient-based methods because they consist of backpropagating information from
the model output to the input and constructing an explanation map at the input resolution.
The DeepLIFT method postulates the “sum to difference” equation that states that the classi-
fication score can be explained by a sum of contributions from all the activations

EQ-TARGET;temp:intralink-;e009;116;298

XK
k¼1

X
ij

CΔxijΔy ¼ ycðxÞ − ycð~xÞ: (9)

The authors of DeepLIFT demonstrate the existence of rules to estimate the impact of one
layer’s activation to the following and to backpropagate the estimates to the input image.
According to the authors of DeepLIFT, the advantage of not using gradients is to propagate
a signal of importance even in situations where the gradient is zero and to avoid artifacts caused
by gradient discontinuities.

2.2 Attention Architectures

During the inference phase of a CNN with an averaging spatial aggregation layer (such as
the ResNet model22), the activations of the maps all have the same weight in the calculation
of the final feature vector. This can be a problem because some activations correspond to areas
of the image that do not contain relevant information for classification, such as the background in
the case of image classification. To overcome this problem, various attention modules have been
proposed in the literature to allow the model to focus on specific parts of the image. These
modules produce attention maps that give a different weight to different areas of the image,

Fig. 5 The guided backpropagation method is equivalent to the deconvolution method except that
it replaces the negative gradients with zero values to visualize only the pixels that participate in
the activation of the class to be explained. (a) Inference, (b) deconvolution, and (c) guided
backpropagation.
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allowing the model to ignore the background and highlight specific parts of the object of interest.
These maps can therefore be used as visual explanations in the same way as the maps produced
by the generic methods mentioned above, and will therefore also be called saliency maps. In the
literature, these architectures fall into three categories: convolutional approaches that use con-
volution layers, prototypical approaches that compare feature vectors to learned prototypes, and
nonparametric approaches that use nonparametric algorithms. The concept of attention has also
led to the transformer approach, a deep architecture mostly constituted of particular attention
layers called self-attention layers.

2.2.1 Transformer approach

Attention architectures have recently gained interest following the proposal by Vaswani et al.23

of an architecture composed mainly of attention layers, named the transformer. This model has
shown its interest first in natural language processing23,24 but also more recently in computer
vision.25,26

Due to the multiplicity of attention maps produced by a transformer, it can be argued that this
type of architecture can be difficult to explain. However, it has been proposed to use the attention
map of the classification token noted CLS of the last layer as an explanation26:

EQ-TARGET;temp:intralink-;e010;116;519A ¼ softmax

�
Q½CLS�KTffiffiffiffiffi

dk
p

�
; (10)

where Q½CLS�, KT , and dk are the query of the last classification token, the keys of the last layer,
and the dimension of the keys. The resolution of the attention map A is determined by the input

image size H ×W and the patch size pH × pW : A ∈ R
H
pH

× W
pW . Some more recent works have also

proposed versions of post-hoc algorithms tailored for the transformer model.27,28

2.2.2 Convolutional approaches

Convolutional approaches use convolution layers to compute an attention map. Let
F ∈ RH 0×W 0×C be the tensor containing all the feature maps of the last layer of a CNN.
During the inference phase of a CNN with an averaging spatial aggregation layer (such as the
ResNet model22), the activations of the maps all have the same weight in the calculation of
the final feature vector. This can be a problem because some activations correspond to areas
of the image that do not contain relevant information for classification, such as the background
in the case of image classification. To overcome this problem, various attention modules
have been introduced in the literature to allow the model to focus on specific parts of the image.
These modules produce attention maps that give a different weight to different areas of the
image, allowing the model to ignore the background and highlight specific parts of the object
of interest. These maps can therefore be used as visual explanations in the same way as the maps
produced by the generic methods mentioned above, and will therefore also be called saliency
maps.

The first attention module studied here was proposed by Hu and Qi29 and is called “bilinear
attention pooling” (BAP). First, a 1 × 1 convolution layer is applied on the tensor F to obtain

an attention map AH
0
×W

0
×1. This module thus combines with a CNN that produces feature maps

as follows:

EQ-TARGET;temp:intralink-;e011;116;174F ¼ CNNðxÞ; (11)

EQ-TARGET;temp:intralink-;e012;116;128A ¼ Conv1×1ðFÞ: (12)

The attention map is then multiplied with the feature maps, which lead to a set of weighted
features Fatt ∈ RH 0×W 0×C. Finally, an average pooling is applied on the spatial dimensions to
obtain the final feature vector f ∈ RC; which is passed to the classification layer. The activations
of the Fatt tensor were amplified or reduced according to the weight indicated by the A map.
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This mechanism allows the model to focus on the object of interest or on specific parts of it.
To maximize the expressiveness of the model, the dominant approach in fine-grained classifi-
cation is to extract one feature vector per important part of the object and concatenate the vectors
before passing the final vector to the classification layer. Concretely, the 1 × 1 convolution has
a kernel of size N × C × 1 × 1 and produces N > 1 attention maps, i.e., a tensor of size
H

0
×W

0
× N, as illustrated in Fig. 6. Each attention map is multiplied by the feature maps and

the resulting tensor has dimension H 0 ×W 0 × N × C and is reduced into a feature matrix F of
dimension N × C using spatial average pooling. The matrix F is flattened into a vector f ∈ RNC

and passed to the linear classification layer. This mechanism allows the model to focus its atten-
tion on several different locations without losing information during spatial aggregation. The
BAP module was later reused by other authors, notably in the context of transfer learning,30

data augmentation strategies,31 and causal learning.32

With a model named multiattention CNN, Zheng et al.33 proposed an attention map
defined as a weighted average of feature maps where weights are produced by a dense layer.
Attention mechanisms with multiple convolution layers have also been introduced. For
example, Fukui et al.34 designed a model called attention branch network, which generates
an attention map A with a convolution sequence interleaved with batch normalization layers
and ReLU activations terminated by a sigmoidal activation. Instead of processing images one
by one, Dubey et al.35 use a cross-attention mechanism where images are processed in pairs,
and the information extracted from one image is used as attention on channels of the features
from the other image.

Some works also propose to use attention maps constructed from human gaze fixation den-
sity maps to improve the robustness and accuracy of attention models.36,37 Convolutional atten-
tion architectures with multiple attention modules can also be found in the literature.38–41 Note
that these works develop architectural innovations to improve the accuracy of the model and are
not designed to improve interpretability. Also, the attention mechanisms of these models can be
seen as variants of the architectures mentioned in this section. For these reasons, these archi-
tectures are not detailed here.

2.2.3 Prototypical approach

Instead of using convolutional layers, Chen et al.2 developed a model called ProtoPNet, which
uses prototypes represented by parameter vectors learned during training. During inference, the
similarity between these prototypes and the information extracted by the CNN is computed,
as illustrated in Fig. 7.

CNN
Feature
volume

1 × 1
convolution

Attention
maps

X

Spatial
pooling Rearanging Classification

layer Prediction

Feature
matrix

Feature
vector

Feature
volume

Fig. 6 Illustration of a bilinear CNN (B-CNN). A 1 × 1 convolution generates the attention maps.
Then, the maps are multiplied by the feature maps before applying a spatial aggregation. Finally,
the feature matrix is rearranged into a vector and is passed to the classification layer.
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More precisely, an attention map An is computed by comparing a prototype pn to each
feature vector Fij

EQ-TARGET;temp:intralink-;e013;116;294An
ij ¼ log

�kFij − pnk22 þ 1

kFij − pnk22 þ ϵ

�
: (13)

Then, a global similarity score sk is computed with a spatial max pooling:

EQ-TARGET;temp:intralink-;e014;116;233sn ¼ max
ij

An
ij: (14)

The similarity sn obtained represents how much the prototype pn exists in the image. The
linear classification layer y then takes the similarity vector s as input to produce a prediction.
Chen et al.2 also propose to assign each prototype to a class, with each class having N∕∕L pro-
totypes, where L is the number of classes. We denote ygt the label of image x and Py the set of
prototypes of class y. The training then proceeds in three phases. First, the CNN parameters are
optimized so the extracted feature vectors are close to the prototypes of the right class and at
the same time, the prototypes are optimized so that at least one prototype is found in each image
with the following cost function:

EQ-TARGET;temp:intralink-;e015;116;98Loss ¼ CEðyðxÞ; ygtÞ þ λ1Cþ λ2S; (15)

Fig. 7 Illustration of the prototypical architecture of ProtoPNet. The feature vectors extracted
by the convolutional layers are compared to the prototypes, producing attention maps, and
a similarity vector. This vector is then passed to the classification layer to produce a prediction.
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where CE is the cross-entropy function and the terms C and S are respectively intended to move
the feature vectors of a prototype closer to the right class and away from prototypes of other
classes. These terms are defined as follows:

EQ-TARGET;temp:intralink-;e016;116;699C ¼ min
pu∈Py

min
Fij

kpu − Fijk22; (16)

EQ-TARGET;temp:intralink-;e017;116;649S ¼ − min
pu∈=Py

min
Fij

kpu − Fijk22: (17)

During this first phase, the parameters of the classification layer h are set at constant values.
Let wnc be the weight of the prototype pn on the class c. Then, if pn is a prototype of the class c,
wnc is set to 1 and otherwise, it is set to −0.5. This has the effect of forcing the network to learn
prototypes that are representative of the class. During the second training phase, the prototypes
are replaced by the feature vectors that are closest to them to interpret each prototype as
a patch of an image. Indeed, each feature vector corresponds to a patch of size H∕H 0 ×W∕W 0

on the input image. Let pn be a prototype of class c. This vector is replaced as follows:
pn ¼ argmin

Fij;x∈Xc

kFij − pnk2, where Xc is the set of images of the class c. We then go through all

the feature vectors extracted among all the images of the class c to find a vector that is as close to
p as possible so as not to significantly alter the global behavior of the model. The third and last
step of the training consists in optimizing only the wnc parameters of the h classification layer.
The authors use the cross-entropy, to which they add a parsimony term on the wnc weights as
follows:

EQ-TARGET;temp:intralink-;e018;116;464Loss ¼ CEðyðxÞ; ygtÞ þ λ3
X
nc

jwncj: (18)

Chen et al.2 argue that this regularization term penalizes models that reason by the negative,
i.e., models with negative wnc weights.

Various architectural modifications to the ProtoPNet architecture have been introduced.
ProtoTree is a soft decision tree introduced by Nauta et al.3 where the prototypes are arranged
in a binary tree, and the image is directed to the left or to the right of a node according to its
similarity with the prototype associated with the node. To facilitate the training, the images
are directed smoothly through the tree and at each new node. It has also been proposed to use
prototypes that are shared between classes42 or deformable to enrich the expressiveness of the
explanations.43 Several authors also modify the loss function of the original ProtoPNet. Huang
et al.44 encourage the model to learn prototypes whose absence/presence is certain in each image,
to generate more accurate attention maps. To improve the interpretability of the prototype space,
Wang et al. force N∕∕L prototypes of the same class to form a subspace of dimensionN∕∕Lwith
a cost function term that promotes orthogonality.45 Finally, Xiao et al. proposed to force the
attention maps corresponding to the most present prototypes to be close to the saliency map
produced by Grad-CAM with a term in the cost function, to provide meaningful and relevant
explanations.42 The ProtoPNet model has also inspired other variants that let the model reason
negatively46 or that use prototypes defined by not one but several vectors.47

2.2.4 Non-parametric approaches

In this category, we group the few approaches that we have identified generating attention maps
without trainable parameters. For example, Choe et al. designed an architecture where the feature
maps are simply averaged to obtain an attention map that correctly locates the objects of
interest.48 To generate multiple attention maps, Zheng et al. compute weighted averages of the
feature maps, based on their similarity.49 First, the fk maps are spatially normalized with a soft-
max activation function

EQ-TARGET;temp:intralink-;e019;116;107Fnorm ¼ softmaxspatðFÞ: (19)
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We denote fknorm the maps after the normalization. Thus we have

EQ-TARGET;temp:intralink-;e020;116;723

X
ij

fknorm ij ¼ 1: (20)

The maps are then flattened to have only one spatial dimension Fflat−norm ¼
flatðFnormÞ ∈ RH 0W 0×K . We then compute a similarity matrix Msim ∈ RK×K , which indicates the
similarity between the feature maps’ activations:

EQ-TARGET;temp:intralink-;e021;116;642Msim ¼ softmaxðFT
flat−norm × FflatÞ; (21)

where × denotes the matrix product, and the normalization softmax is applied on the second
dimension of Msim. The attention maps Ak are defined as follows:

EQ-TARGET;temp:intralink-;e022;116;585Ak
ij ¼

X
k
0
Msim

kk 0fk
0

ij : (22)

We can also cite bilinear-representative non-parametric attention (BR-NPA),50 which intro-
duces a multipart nonparametric attention mechanism that groups feature vectors by similarity.
This algorithm first consists to select N vectors among the feature vectors that have a high norm
and a low cosine similarity with each other. Then each vector is refined by aggregating the
feature vectors that have a high cosine similarity with it. The normalized cosine similarity maps
can then be interpreted as attention maps.

2.3 Visualization

The Fig. 8 shows examples of saliency maps with one post-hoc method from each category
(perturbation-based, feature map weighting-based, and backpropagation-based) and one atten-
tion model from each category (convolutional, prototypical, and nonparametric) on three data-
sets: Caltech-UCSD Birds-200-2011 (CUB-200-2011),51 Fine-Grained Visual Classification of
Aircraft (FGVC-Aircraft),52 and Stanford cars.53

Visualizing saliency maps is a qualitative evaluation method used by all the previously cited
works here.2,3,7,9–14,17–21,43–45,54–57 This method is widely used because it is simple to set up.
However, it can not be used to rank explanations and the conclusions of the analysis are largely
dependent on the input images selected and on the researcher performing it. As a consequence,
quantitative evaluation protocols have been proposed and are detailed in the next section.

3 Saliency Map Evaluation

Saliency map evaluation methods are divided into two categories: objective and subjective.
Objective methods are automatic procedures that evaluate properties of the saliency map, such
as fidelity, relevance, sensitivity, or invariance. Subjective methods confront users with saliency
maps and are divided into two subcategories: direct and indirect methods. Direct methods ask
users to evaluate properties of the saliency maps, such as relevance, quality, or consistency.
Indirect methods ask questions to the users that are not directly about the explanation to deter-
mine what information they can extract about the model or the task. Objective and subjective
methodologies are complementary as they do not evaluate the same aspects of the saliency maps.
Note that assessing the interpretability of an attention model or post-hoc method is currently an
open problem. Given that there is no widely accepted standard evaluation protocol yet, we review
in the following all evaluation protocols that we have identified in the literature.

3.1 Objective Evaluation

Adebayo et al. proposed an evaluation of backpropagation approaches to determine what type of
explanation these methods can or cannot produce.58 Specifically, they measure the dependence
of the maps produced by various methods on the parameters of the explained models. They show
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that several methods produce maps that depend little on the parameters of the last layers of the
model or the class of the image, notably guided backpropagation, questioning the effectiveness
of these methods in this evaluation framework. Other work has also questioned the fidelity of
explanation methods59 or attention models.60–62 On the contrary, recent work has shown that
guided backpropagation is effective in detecting anomalies in input images.63

Some works evaluate how well the map highlights visual cues relevant to the task, i.e., the
object to be classified in the case of image classification.11–13 An important aspect of this method
is that it does not only evaluate the explanation but also the model. Indeed, if a model uses bad
visual cues in the image, such as the background in the case of object detection, the explanation
should show this behavior, i.e., highlight the background. Thus, an explanation that is faithful to

Fig. 8 Examples of saliency maps from each category of approach. From left to right: RISE
(perturbation-based), Score-CAM (feature map weighting-based), SmoothGrad (backpropaga-
tion-based), B-CNN (convolutional), ProtoPNet (prototypical) et BR-NPA (nonparametric).
The three attention models generate three attention maps, and the first, second, and third attention
maps are represented in red, green, and blue colors, respectively. (a)–(c) CUB-200-2011
dataset,51 (d)–(f) FGVC-Aircraft dataset,52and (g)–(i) Stanford cars dataset.53
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the behavior of a model with a low accuracy would be penalized by this method. Other authors
introduce important properties that an explanation should possess, such as consistency and local
fidelity,9 sensitivity and conservation,14 or sensitivity and invariance to implementation.18

Similarly, the fidelity of saliency maps has been assessed using dedicated objective
metrics,10,12–14,55 which are called interchangeably fidelity, reliability, or faithfulness metrics.
These metrics consist in perturbing the image processed by the model to determine whether
the areas emphasized by the explanation contribute significantly to the class score. In the
following, we discuss all the reliability metrics introduced so far in the literature, to the best
of our knowledge. The input image is a tensor x ∈ RH×W×3, and the saliency map is a 2D matrix
S ∈ RH 0×W 0

with a lower resolution, H 0 < H and W 0 < W. The faithfulness metrics are divided
into two groups: the single-step metrics that require one modification of the input image and the
multistep metrics that require several. Given that there are multiple fidelity metrics proposed by
various authors, we propose an implementation featuring all the faithfulness metrics discussed in
this paper to simplify faithfulness evaluation (https://github.com/TristanGomez44/metrics-
saliency-maps).

3.1.1 Single-step metrics

These metrics apply the saliency map on the input image as a soft mask to measure the impact
that this masking procedure has on the score. The increase in confidence (IIC) metric12 measures
how often the confidence of the model in the predicted class increases when highlighting the
salient areas. First, the input image is masked with the explanation map as follows:

EQ-TARGET;temp:intralink-;e023;116;469Im ¼ normðupsampðSÞÞ · I; (23)

where normðSÞ is the min–max normalization function, defined as normðSÞ ¼ S−minðSÞ
maxðSÞ−minðSÞ,

upsampðSÞ is a function that upsample S to the resolution of I, and · is the element-wise product.
The IIC metric is defined as

EQ-TARGET;temp:intralink-;e024;116;396IIC ¼ 1½cI<cIm �; (24)

where cI is the score of the predicted class with I as input and cIm is the score of the same class
with Im as input. The intuition is that a faithful saliency map S highlights areas such that when
the nonsalient areas are removed, the class score increases. Therefore, maximizing this metric
corresponds to an improvement. Note that this metric is a binary value and is only useful when
computing its mean value over a large number of images.

Another example is the average drop (AD) metric,12 which uses the same masking operation
of the input image as IIC. Instead of measuring the frequency of score increase, AD measures the
amplitude of the average score drop when highlighting the salient areas. Note that after the
masking operation, the score is not supposed to decrease, which is why minimizing this metric
corresponds to an improvement. Jung et al. proposed a variant of the AD metric called AD in
deletion (ADD),55 which consists to mask the salient areas instead of the nonsalient areas. To do
this, the image is masked with the inverse of the saliency map, which highlights the nonsalient
areas. Contrarily to AD, this metric removes the salient areas and the class score is expected to
decrease, which means that maximizing this metric results in an improvement.

3.1.2 Multi-step metrics

Instead of using the saliency map as a mask, these metrics modify the input image incrementally,
guided by the saliency map, and measure the impact of the modifications on the classification
score. The deletion area under curve (DAUC) metric10 evaluates the reliability of the saliency
maps by progressively masking the image starting with the most important areas according to the
saliency map and finishing with the least important. First, S is sorted and parsed from the highest
element to its lowest element. At each element Si 0j 0 , we mask the corresponding area of I by
multiplying it by a mask Mk ∈ RH×W , where
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EQ-TARGET;temp:intralink-;e025;116;735Mk
ij ¼

�
0; if i 0r < i < i

0 ðrþ 1Þ and j 0r < j < j 0ðrþ 1Þ
1; otherwise;

(25)

and r ¼ H∕H 0 ¼ W∕W 0. After each masking operation, the model m runs an inference with the
updated version of I, and the score of the initially predicted class is updated, producing a new
score ck

EQ-TARGET;temp:intralink-;e026;116;664ck ¼ m

0
@I ·

Yk̃¼k

k̃¼1

Mk̃

1
A; (26)

where k ∈ f1; : : : ; H 0 ×W 0g. Second, once the whole image has been masked, the scores ck are
normalized by dividing them by the maximum maxk ck and then plotted as a function of the
proportion pk of the image that is masked. Finally, the DAUC is defined as the AUC of this
graph. The intuition behind this is that if a saliency map highlights the areas that are relevant
to the decision, masking them would quickly result in a large decrease in the initially predicted
class score, which in turn will minimize the AUC. Therefore, minimizing this metric corresponds
to an improvement. Instead of progressively masking the image, the insertion AUC (IAUC)10

metric starts from a blurred image and then progressively reveals it by replacing blurred patches
with unmodified patches, starting from the most salient areas. Similarly, if the areas highlighted
by the map are relevant for predicting the correct category, the score of the corresponding class is
supposed to increase rapidly when revealing the original image. Maximizing this metric corre-
sponds to an improvement.

Like DAUC, the deletion correlation (DC)64 metric also consists in gradually masking the
input image by following the order suggested by the saliency map, but instead of the AUC of the
score curve, it is defined as the linear correlation of the class score variations and the saliency
scores. As it measures the correlation between the saliency of a pixel and its impact on the class
score, maximizing this metric is an improvement. Similarly, the insertion correlation (IC)64

metric is inspired by IAUC and starts from a blurred image, and gradually reveals the image
according to the saliency map. This correlation metric should also be maximized to indicate
an improvement. Examples of masked images generated during the computation of the faithful-
ness metrics can be found in Fig. 9.

3.1.3 Benchmark

In Tables 1 and 2 can be found a benchmark performed on several explanation methods
and attention models, using both single-step and multistep metrics. We also compute an
Activation Map (AM) by averaging the feature maps as a simple baseline explanation. For each
metric except IIC, we provide the mean and standard deviation over 100 random test images.
For the IIC metric, we only provide the mean, as IIC is a binary value when computed on
a single image. From this benchmark, we observe a limited consensus between metrics, which
is consistent with previous observations.65,66

3.2 Subjective Evaluation

Subjective evaluations are user experiments, that we distinguish into two categories, direct and
indirect, depending on whether the question asked to the users is directly related to the explan-
ation or not. The direct category requires users to evaluate certain properties of the saliency
maps, like their consistency,67 the discriminability of the highlighted features,68,69 how well
it covers the object of interest,12,54,67 the relevance,67 or the overall quality.70,71 On the other
hand, the indirect category evaluates the saliency maps by asking users to extract information
about the model with the help of a saliency map. This can take the form of model output pre-
diction,72–75 ground-truth (GT) class prediction,76–81 recommendation,7,82–84 or identification of
the model objective.83 The value of a saliency map is then determined by the difference in user
performance with and without the saliency map.
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Fig. 9 Examples of image modifications applied during the computation of the faithfulness
metrics: (a) DAUC, DC; (b) IAUC, IC; (c) IIC, AD; (d) ADD.

Table 1 Evaluation of explanations methods and attention models on multistep metrics.

Model Viz. method Accuracy DAUC IAUC DC IC

CNN SmoothGrad 0.842 0.0398� 0.059 0.64� 0.271 0.429� 0.395 −0.009� 0.04

AM 0.0362� 0.03 0.222� 0.213 0.313� 0.098 −0.088� 0.077

RISE 0.0271� 0.066 0.427� 0.325 0.567� 0.296 0.227� 0.398

Ablation-CAM 0.0215� 0.019 0.261� 0.229 0.358� 0.17 −0.04� 0.138

Score-CAM 0.0207� 0.019 0.449� 0.295 0.316� 0.125 0.195� 0.125

Grad-CAM++ 0.0161� 0.013 0.454� 0.297 0.347� 0.096 0.192� 0.129

ProtoPNet — 0.848 0.2964� 0.228 0.368� 0.257 0.095� 0.144 −0.06� 0.164

InterByParts — 0.819 0.0811� 0.091 0.477� 0.191 0.232� 0.113 −0.042� 0.057

B-CNN — 0.848 0.0208� 0.022 0.299� 0.274 0.266� 0.102 −0.023� 0.072

BR-NPA — 0.855 0.0155� 0.014 0.493� 0.281 0.413� 0.12 −0.023� 0.057

Note: Bold value indicates best accuracy. Note that we do not highlight the best mean value for faithfulness
metrics because of the large standard deviation that is observed.
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3.2.1 Indirect evaluation

This type of evaluation ask questions to the user that are not directly about the explanation. As a
consequence, the questions are independent of the explanation type and can be used to evaluate
any type of local explanation. For this reason, we will also discuss user experiments where the
explanation is not a saliency map.

Several researchers have conducted experiments asking users to predict the model output,
i.e., to simulate the model. Alqaraawi et al.72 measure how accurately users can simulate the
model with the following experiment. First, users are shown examples of correct and incorrect
predictions: one true positive, one false positive, one true negative, and one false negative. The
positive and the negative examples belong to either one of two classes, which are balanced dur-
ing the whole experiment. Each prediction is also accompanied by the corresponding input
image and the model scores to illustrate each example. Second, another image is presented
to users and they have to predict whether the system will recognize the positive class or not
and rate their confidence in this prediction using a Likert item. This setup is illustrated in
Fig. 10. To measure the impact of the saliency map and the model scores on the user prediction
accuracy and confidence, the authors also tested three alternative setups where the map is
masked, the scores are masked and both the map and the scores are masked. The results
demonstrate that showing the saliency maps to users significantly improves their performance,
but the effect size is small. On the other hand, the effect of showing scores to users was not
significant. This method can be used to attribute a quality score to an explanation, where the
score is defined as the user prediction accuracy when being helped by the explanation.

Due to the difficulty of users to predict the output of a complex model like a CNN, other
authors focused on simpler tasks with models that are easier to explain, such as decision sets,73

decision trees, and logistic regression.75 Some authors proposed using prototypes instead of
saliency maps to explain CNN decisions to users and help them simulate the model.74

Counterfactual frameworks have also been introduced,75,76 where users are asked to predict the
impact of a modification of the input on the output.

Another type of experimental protocol consists to ask users to predict the GT class using the
model’s explanation77–80 or to determine if the model prediction is correct or not.81 Note that the
methodology in this line of work implies that the models should have a negligible error rate so
the explanations highlight features that are relevant to solve the task. Another task that has been
introduced is to ask users to identify features that are important for the model using
explanations.72,83 Finally, other authors have also asked users to identify the features used
by the model72,83 or to ask them to estimate model performance based on explanations.77–80

Note that with these protocols, one can also use user accuracy to rank explanations.

Table 2 Evaluation of explanations methods and attention models on single-step metrics.

Model Viz. method Accuracy IIC AD ADD

CNN SmoothGrad 0.842 0.0 0.988� 0.039 0.033� 0.184

AM 0.03 0.718� 0.302 0.562� 0.367

RISE 0.18 0.38� 0.318 0.725� 0.35

Ablation-CAM 0.11 0.42� 0.331 0.718� 0.365

Score-CAM 0.2 0.255� 0.265 0.879� 0.186

Grad-CAM++ 0.16 0.285� 0.276 0.847� 0.218

ProtoPNet — 0.848 0.09 0.604� 0.409 0.577� 0.424

InterByParts — 0.819 0.73 0.005� 0.011 −0.004� 0.029

B-CNN — 0.848 0.04 0.588� 0.331 0.712� 0.3

BR-NPA — 0.855 0.01 0.884� 0.207 0.85� 0.241

Note: Bold value indicates best accuracy. Note that we do not highlight the best mean value for faithfulness
metrics because of the large standard deviation that is observed.
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3.2.2 Direct evaluation

This type of evaluation asks questions that are directly about the explanations to the users.
Samuel et al.67 showed users a series of incorrect predictions illustrated by the input image,
the GT class, and the predicted class along with explanation maps for both the GT and the pre-
dicted class. Users then have to rate the degree to which the saliency maps justify the misclas-
sifications, using the Likert scale item provided below, as illustrated in Fig. 11. This degree of
justification is then used as a score to rank explanations.

Another line of work consists in directly asking users about the quality of explanations.70,71

Jeyakumar et al. let users select the method that they consider to offer a better explanation among
various explanation methods (saliency maps, examples).70 Note that contrary to the previous
protocols, this method does not generate an absolute quality score for each explanation but
an average user preference rate. Also, Mohseni et al. asked users to review and evaluate heat

Fig. 11 The user interface used by Samuel et al.67 The user must evaluate to what extent
the saliency maps justify the classification errors using the scale provided below the images.
(a) Original image, (b) true class, and (c) predicted class.

Fig. 10 The user interface used by Alqaraawi et al.72 On top are shown examples of correct and
incorrect classifications along with model scores and saliency maps.
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maps that highlighted the visual features used by the artificial intelligence (AI) to make its
classification decision and were asked to rate the “quality” of the AI’s decision on a scale of
1 to 10.71 It is also possible to inquire users about less abstract properties of saliency maps. Other
researchers let users choose which explanation map best highlights the object of interest.12,54,67

As with Jeyakumar et al., this method does not generate a score but an average preference rate.
Similarly, Samuel et al.67 ask users to evaluate how consistently the saliency maps of an explan-
ation method cover the parts of the object of interest. Finally, some experiments consist to ask
users or experts to evaluate how discriminative the features highlighted by the saliency maps
are.68,69 These last two protocols use user quality estimations as scores to rank explanations.

4 Future Directions

Future work should first focus on improving the objective evaluation of the explanations pro-
tocols, as they are unreliable.66,85 For example, Adebayo et al. proposed experiments showing
that the explanation produced by guided-backpropagation (GP)17 is independent of the weights
of the model.58 Yona et al.85 later showed that the conclusions of Adebayo et al. were largely due
to the considered task and demonstrated that GP could generate model-dependant explanations
on tasks where the image contains multiple potential objects of interest.

Another example is Tomsett et al., who showed that there is little consistency in how faithful-
ness metrics are calculated in the literature and that such inconsistencies significantly affect the
obtained fidelity value.66 Furthermore, the authors used measures from the psychometric liter-
ature to show that the metrics have low statistical consistency and reliability.66 Gomez et al. also
showed that depending on the type of faithfulness metric considered, different types of explan-
ation methods are favored.65

One property that may be a partial explanation for these issues is the fact that faithfulness
metrics generate samples that lie outside of the training distribution (OOD).64 In consequence,
the explanations are generated based on a model that is in a specific OOD regime. This is not an
intended feature of the metrics but rather an undesired side effect, and this might bias the results
obtained. This demonstrates that another line of work should study the various experimental
parameters used when evaluating explanations and how they impact the established benchmark.

As a consequence of the current issues that faithfulness metrics and more generally evalu-
ation protocols have, it is still difficult today to compare explanation methods and to determine
which one provides the best fidelity. For this reason, current progress on building more faithful
methods is currently limited. Another line of work should further study the potential applications
of saliency maps with user studies. In particular, we argue in favor of more research in the indi-
rect evaluation domain. Indeed, these approaches are application-oriented and allow for the
evaluation of the potential usefulness of saliency maps in a realistic use case. This is of great
importance, given that user studies have yet to find experimental setups in which saliency maps
are really useful to explain models trained on nontrivial tasks.72

5 Conclusion

In this tutorial paper, we first reviewed the state-of-the-art of saliency maps generation. We
described the two approaches (post-hoc methods and attention models) and illustrated each
category with several examples. One of the main differences between the post-hoc methods and
the attention models is the computation cost. When considering only the training cost, post-hoc
methods are more efficient because they do not require retraining a model. However, if one
considers the inference cost, attention models can be more efficient, especially when compared
to the perturbation-based methods. Indeed, post-hoc methods can require a number of samples
that ranges from a few to several thousand, whereas attention models only require one inference.
Practitioners desiring to generate saliency maps should then be guided by a compromise between
training computation time and inference computation time. However, the most relevant criterion
to compare these two types of approaches is their interpretability, both in terms of reliability/
faithfulness and understandability by the users. Despite this, there currently are only a few works
that compare these approaches62,65 and no conclusion can be drawn yet.
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The lack of consensus on the interpretability of attention models and post-hoc methods is also
due to the difficulty to evaluate saliency maps. For this reason, we also described the currently
existing objective and subjective evaluation protocols. Even though many frameworks were
introduced, the community has yet to agree on which ones are relevant, and for what use.
Some evaluation protocols also pose unsolved problems. For example, it has been shown that
the multistep metrics are likely to generate OOD samples,64 which questions the reliability of
the obtained values and one can argue that single-step metrics could have the same issue as they
also fill the input image with black pixels. Assessing and addressing this issue would allow the
community to build more robust faithfulness evaluation methods.
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