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Abstract

Purpose: Multiple vendors are currently offering artificial intelligence (AI) computer-aided
systems for triage detection, diagnosis, and risk prediction of breast cancer based on screening
mammography. There is an imminent need to establish validation platforms that enable fair and
transparent testing of these systems against external data.

Approach: We developed validation of artificial intelligence for breast imaging (VAI-B), a plat-
form for independent validation of AI algorithms in breast imaging. The platform is a hybrid
solution, with one part implemented in the cloud and another in an on-premises environment
at Karolinska Institute. Cloud services provide the flexibility of scaling the computing power
during inference time, while secure on-premises clinical data storage preserves their privacy.
A MongoDB database and a python package were developed to store and manage the data on-
premises. VAI-B requires four data components: radiological images, AI inferences, radiologist
assessments, and cancer outcomes.

Results: To pilot test VAI-B, we defined a case-control population based on 8080 patients diag-
nosed with breast cancer and 36,339 healthy women based on the Swedish national quality
registry for breast cancer. Images and radiological assessments from more than 100,000 mam-
mography examinations were extracted from hospitals in three regions of Sweden. The images
were processed by AI systems from three vendors in a virtual private cloud to produce abnor-
mality scores related to signs of cancer in the images. A total of 105,706 examinations have been
processed and stored in the database.

Conclusions: We have created a platform that will allow downstream evaluation of AI systems
for breast cancer detection, which enables faster development cycles for participating vendors
and safer AI adoption for participating hospitals. The platform was designed to be scalable and
ready to be expanded should a new vendor want to evaluate their system or should a new hospital
wish to obtain an evaluation of different AI systems on their images.
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1 Introduction

Machine learning (ML) is rapidly progressing in many scientific fields, including medicine.1 For
breast cancer, we are beholding the emergence of commercially available artificial intelligence
(AI) systems for breast cancer detection (AI-CADe),2–8 triaging, diagnosis, and risk assessment.9

If the performance of such systems proves to be accurate and robust in a clinical setting, incor-
porating them into the screening process can significantly benefit both the hospital and the
screening participants. The most common use case, AI-CADe, would reduce radiologist work-
load and potentially reduce the rate of missed cancers.10 Some challenges remain despite the
potential impact of adopting these technologies in the screening process. Collectively these
challenges are known as the AI translational gap, which is currently under special investigation
by the Federal Drug Administration in the United States of America (USA).11

Independent validation of the performance of such AI-CADe systems is crucial, as they have
the potential to affect the well-being of breast cancer screening participants severely. Evaluating
such systems requires a test set, which in the context of mammography-based breast cancer
detection, should be an independent and diverse dataset that captures as much patient and equip-
ment variability as possible. This independent test set should consist of radiological images that
have not been part of the training process of any of the tested ML algorithms. This way, the
algorithms’ generalizability can be best evaluated. In addition, for a specific hospital considering
procuring an AI-CADe algorithm, they would be able to explore how each algorithm performs
on their images. Obtaining these data is relevant for the hospital since the performance of the
algorithm may vary with population characteristics and mammography equipment.

There is an imminent need to establish an independent validation platform addressing the
requirements described above. However, its implementation holds several challenges, mainly
due to data privacy and the computational resources required. Vendors of commercial AI-
CADe systems often provide their products as a web service to self-manage the required infra-
structure (usually consisting of resource-intensive and specialized hardware). Sending images
to their web services implies that the vendors obtain access to sensitive medical information.
The privacy of individuals is protected by regulatory frameworks such as the General Data
Protection Regulation (GDPR) in the European Union; therefore, information-sharing with
AI-CADe system vendors through web services is challenging. Moreover, sharing an anony-
mized or pseudonymized (term defined in Sec. 4) version of the test set with such companies
carries the risk that images meant for testing are used for training AI-CADe systems. One way to
overcome the data transfer challenges is to evaluate the systems locally at the hospital. However,
most hospitals do not have the infrastructure to evaluate these systems in-house. Therefore, an
external validation platform can provide a solution where the AI-CADe vendors do not have
access to the test data, the hospitals do not have access to the vendors’ intellectual property, and
each hospital would not need to invest in the necessary computational and human resources.

In this paper, we present the multicenter validation of artificial intelligence for breast imaging
(VAI-B) platform, currently with data from three hospitals being processed by three AI-CADe
systems for mammography-based breast cancer detection. We describe the process of extracting
the data, obtaining the inference results from the AI-CADe systems, and loading a database with
all the information needed to analyze their performance while preserving data privacy and secu-
rity. It addresses the challenge of external validation of AI-CADx algorithms in mammography
by describing a hybrid platform that combines cloud-based and on-premises solutions for pri-
vacy and scalability. Another strength is that our platform, as opposed to challenge-oriented
platforms, is intended to serve as a permanent resource that developers of AI-CADx algorithms
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can continuously access to prove the validity of their algorithms and determine if future algo-
rithm versions constitute improvements or not. A third strength is that, we provide a NoSQL
database schema and the accompanying code for data storage and organization, which is released
as a readily available open-source python package. The paper is structured as follows: first, we
introduce the organizational context of the effort; then, we describe the data components that are
managed by the platform and how they are extracted from the sources; then, we demonstrate the
implementation of the platform in the cloud and on-premises; and finally, we discuss the data
privacy and safety considerations.

2 Organizational Context

Finding an appropriate organizational format for an independent multicenter validation platform
is challenging as many requirements exist. A first concern is proximity to regular healthcare
operations to ensure that the analytical results are of clinical relevance and to lower the perceived
threshold of using the platform for clinical decision-makers. To this end, the governance model
of VAI-B was designed to reside with the relevant National Program Areas of medical diagnos-
tics and cancer care, which consists of established professional committees promoting the devel-
opment of healthcare practices in Sweden. Since this governance would be functional also in
future upscaled operations, a key sustainability component is in place from the start. Another
requirement is trustworthiness, which is needed among care providers and AI system vendors. In
addition to national governance, the credibility of the platform builds on the academic merits of
its scientific leadership (primarily authors FS and SZ) and of its home organization, Karolinska
Institute. Credibility also stems from SZ and FS leading the national professional organization for
breast radiology (The Swedish Society of Breast Radiology). Another credibility contribution is
that VAI-B is connected to an incubator for validation platforms within the national community
analytic imaging diagnostics arena (AIDA), with substantial experience sharing clinical imaging
data.12

3 Data

There are four data components required for the independent validation of an AI system: radio-
logical images (“images” for brevity), AI system inferences (the inferred likelihood that an
image presents signs of cancer) (“inferences” for brevity), human radiologist assessments
(“assessments” for brevity), and cancer outcomes. The AI system processes the images to
create inferences, which can be compared against the cancer outcomes and the assessments.
As individuals get examined, the radiological data is acquired at the screening facilities and
stored in a picture archiving computer system (PACS) and a radiology information system (RIS).
In Sweden, the cancer outcomes data is reported from the hospitals to the Swedish National
Breast Cancer Quality Register (NKBC), as shown in Fig. 1.

For the extraction from the hospitals (images and assessments), the principal investigator
(author FS) contacted the legal data owner at each radiology department. Along with the request
for data, the hospital received a copy of the ethical approval and a description of the data
handling, including measures to ensure GDPR compliance. After review, written approval was
obtained from each hospital to extract the requested data. For NKBC, the standardized data
extraction procedure, defined by the organization as a request form, was sent by the principal
investigator to the Regional Cancer Center Stockholm–Gotland, which manages the NKBC data.
They forwarded it to the legal data owner of the registry, who decided to allow the requested
data extraction.

3.1 Images

The Digital Imaging and Communications in Medicine (DICOM) standard from the National
Electrical Manufacturers Association (NEMA) simplifies real-world concepts and activities of
medical imaging into the following information model13: A “patient,” in the DICOM standard,
is the individual that is examined; a “study” is an ordered procedure where one or multiple
modalities can be used to create images of a patient, and it is commonly defined by the
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combination of a unique patient and calendar day; “series” is used to group related images by
protocol (e.g., in magnetic resonance, it is common to find all the instances of a specific acquis-
ition sequence in the same series); “instance” is the minor component in the DICOM data model.
Usually, it consists of a single file containing metadata organized as DICOM tags and image
data. In this work, we refer to DICOM instances as images.

Images from different modalities (mammography including tomosynthesis, magnetic reso-
nance imaging [MR], and breast ultrasound) acquired from 2008 to 2021 were extracted from
three regions of Sweden (Västmanland, Östergötland, and Södermanland) for the pilot study.
The standard four-view mammogram examination is further explored and described. While the
platform could be extended to process the MR and ultrasound modalities, these are stored for
future use but due to the limited availability of commercial AI-CADx solutions for them, they are
not processed. The images were stored in DICOM format. Before transfer to the virtual private
cloud (VPC), they were pseudonymized at the institution using the CollectiveMinds (CM) Proxy
(further described in Sec. 4.1) that locally receives an image and modifies the metadata before
sending its pseudonymized version to our VPC storage service in a secure manner. Images for
105,181 examinations have been received so far from the three hospital regions.

3.2 Inferences

In the pilot study, three AI-CADe systems for mammography (Lunit INSIGHT MMG v1.1.7.2,
Therapixel MammoScreen v2.1.0, and Vara v2.1) have been run in the cloud solution to produce
the respective systems’ inferences. These were encrypted and transferred along with the images
to the on-premises environment. The JavaScript Object Notation (JSON) file format was used to
store Therapixel’s and Vara’s inferences, while for Lunit, the predictions were stored in a
DICOM dataset. Generally, each file contained the inference results (the suspicion of presence
of cancer) for a specific AI-CADe system for a particular study, i.e., a group of up to four images,
generally with views Cranio-Caudal (CC) and Medio-Lateral Oblique (MLO) for each laterality.
For a given examination, one or more inference rounds might occur depending on the images
contained in the examination. For more details, we refer the reader to Appendix C for an explicit
definition of when the instances are shown to the AI-CADe systems. A total of 175,403 infer-
ences from the three vendors have been created for 35,575 studies (more than one inference per
study is possible depending on the input case defined in Appendix C) that belong to 17,859
unique patients. The images that each model consumes from the images that are shown to them,
depend on the system that will create the inference. The three systems currently installed accept
the following input: Single-mammogram image (one by default), exam of four-mammogram

Fig. 1 Simplification of the individual’s journey through Sweden’s current breast cancer screening
program. The diagram shows where the relevant data is stored (Images in PACS, assessments in
RIS, and cancer outcomes in NKBC). The PACS and RIS systems are controlled by each par-
ticipating hospital, while the NKBC is a national-level organization. For the asymptomatic individ-
ual that goes through the screening examination (also regarded as a participant), there are records
of the assessments done by two radiologists. For all individuals that get diagnosed, there exists
a record in NKBC.
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images (all), exams from different time points (two), other modalities (none). The main case for
the three algorithms is as described in Appendix C. Generally, four images are shown per infer-
ence. Although one of the algorithms outputs one score per image, the others output a score per
laterality and it is in this way that the pilot of the platform stores the inferences. If more than two
scores exist for a given examination, the maximum per laterality is used. For all of the algo-
rithms, the output presents both segmentation of possible lesions as well as a classification score
that tries to predict if cancer was present in the set of images, thus, including both CADe and
CADx. In this work, we refer to both as inferences.

3.3 Assessments

The mammography screening assessments in Sweden are subject to double reading, where each
examination is reviewed by two radiologists independently. If either of the radiologists flags the
case as suspicious of breast cancer, a consensus discussion is held to determine whether the
woman should be recalled for further diagnostic workup or not.14 In Sweden, the initial radi-
ologist assessments and the decision in the consensus discussion are binary - positive or negative.
In the health care systems of other countries, a graded system may be used to denote the level of
cancer suspicion. The outcome of the individual assessments, as well as the final consensus
decision, is recorded in the RIS of each region. For VAI-B, the RIS data extracted from each
region were securely transferred to the on-premises storage and received as comma-separated
values (CSV) tables with non-standard formats (Windows-1252 encoding, “$” as column delim-
iter, and “£” as string delimiter). Limited descriptions of the columns came with an attached
text file. Each table row represents one decision of the double reading process used in Sweden.
We obtained 1,146,786 final decisions for unique studies in the time spanning from January 01,
2008 to December 30, 2021.

The specific counts per combination of decisions (first, second, and final) and how these
combinations were mapped to one of healthy, selection, technical recall, or N/A are shown
in Appendix A, while the summary of the same data can be seen in Table 1.

3.4 Cancer Outcomes

The AI-CADe inferences and the radiological assessments can be evaluated against a reference
standard, which defines an examination as representing a cancer case or not. In VAI-B, the refer-
ence standard is determined by the cancer diagnosis date being within a particular follow-up time
after the screening date of any given examination. Keeping the two mentioned dates in the data-
base allows us to create alternative definitions of the reference standard. Since a cancer diagnosis
close to the screening date (e.g., 3 months) was the result of screening radiologists’work, a shorter
follow-up time will bias the reference standard toward cases that were apparent to the radiologists.
A longer follow-up time (e.g., 3 years) will decrease this bias but will increase uncertainty around
whether the cancer was present in the breast when the mammogram was acquired.

Table 1 Summary of the extracted assessments. The status represents the collapsed final deci-
sion. It can be one of healthy (the radiologists did not find any indication of cancer), selection (the
woman is recalled for further examination), or technical recall (an error in the acquisition procedure
is detected by the radiologists). Missing information (N/A) is common since not all invited women
participate in the study. The unique request number is the number of examinations assessed with
the respective status.

Status Unique request numbers in assessments

Healthy 1,106,090 85.31%

Selection 39,320 3.03%

Technical recall 1376 0.11%

N/A 149,740 11.55%

Total extracted 1,296,526 100.00%
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The diagnosis dates were obtained from an extraction of the NKBC.15 The extraction resulted
in multiple tables containing all the diagnosed cancer cases between 2008 and 2021 across the
regions. NKBC provided a description of each column and the data type. Each row in the table
represents one diagnosed cancer and is marked by a participant ID number, date of diagnosis,
unique study ID, pathological, treatment, and patient characteristics. There were 12,345 unique
patients with at least one cancer in the NKBC extraction.

4 Implementation

This section describes the implementation of the cloud and on-premises infrastructures. We also
explain the data model used to create the database and the ingestion process for each data
component.

4.1 Hybrid Architecture for Inference and Analysis

The platform is a hybrid solution consisting of an on-premises environment and a VPC for cloud
services that satisfies the privacy and computational constraints. The latter supports the required
infrastructure for the AI models from the vendors to run correctly while at the same time ensuring
that the pseudonymized images are not accessible by the vendors.

The process of creating the COnsolidated BReast cancer Analysis-DataBase (COBRA-DB)
requires several steps summarized as follows (arrows refer to Fig. 2):

I. Identify suitable studies to be included. In this step, the assessments and cancer outcomes
were extracted from their respective sources (arrows 1 and 2) before being securely trans-
ferred to the on-premises environment for subsequent patient selection. The selection
consisted of all patients that were diagnosed with cancer (all individuals in the cancer
outcomes data) plus a randomized sample of controls (individuals not in the cancer
outcomes data and with existing assessments data) at a 1:5 case-to-control ratio for
each examination year, as well as a cohort-based population for all examinations of
the year 2017. A list of the selected individuals was sent back to the hospitals (arrow 3).
This list cannot be pseudonymized since the hospitals need the original identifiers to
know what images to send. Simultaneously, both data components (assessments and
cancer outcomes) were parsed, validated, pseudonymized, and stored in the database,
further detailed in Sec. 4.3. A pseudonymized version of the selected individuals was
sent to CM to assert that the expected data was received. The population selection is
shown in Fig. 3 and the preliminary number of individuals selected for each population
is shown in Table 2.

Fig. 2 Overview of the order in which the data is transferred between the hospitals, NKBC, the
VPC, and the on-premises environment. The arrows represent the path that the specified data
follows.
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II. Send images to the VPC. The hospitals sent the images to the CM-Proxy (described in
Appendix B) (arrow 4), which in turn uploaded the pseudonymized version of the
images to the VPC (arrow 5). The specific pseudonymization procedure is described in
Appendix B.

III. Run the AI-CADe systems and obtain the inferences. A selection of studies is requested
(arrow 6) and their images are processed by the AI-CADe systems, previously installed in
the VPC, to create inferences for each study.

IV. Ingest data into the database. The images and the inferences were sent to the
on-premises server (arrow 7) to be ingested into the database.

4.2 Image Processing in the VPC

This part of the implementation was performed by CM. Before the images were sent, a VPC in
Amazon Web Services was prepared by installing the AI-CADe systems from the different com-
panies with systems’ requirements specified by each vendor. The installation was done through
manual configuration by the engineers from the companies and from CM. Then, the pseudony-
mized images were sent from the participating hospitals to the VPC, as explained in step II in
Sec. 4.1. Upon the arrival of the images, an automatic process launched, which ingested the data
into a structured repository of files, keeping images mapped to each pseudonymized individual.
From there, the image processing pipeline started, which auto-scaled the infrastructure to paral-
lelize over multiple servers hosting Docker containers that ran the inference and created results
for the cohort and case-control populations. The populations were requested. We defined rules to
input images to the AI-CADe systems to ensure comparability of the results, and the details can
be found in Appendix C. For each study, the processing time fell in the range of 10-15 seconds
per algorithm and given that the processing is done in a scalable way, multiple studies can be
processed simultaneously. The images and inferences were synchronized to the on-premises
environment for further analysis.

4.3 Database and Ingestion Pipeline

A MongoDB database was chosen to support the quality control and structuring of the extracted
data16 due to the benefits described in the discussion section below.17 Scripts were developed to
carefully ingest the extracted data into the database. The following design principles were incor-
porated into the data model18:

1. Flat is better than nested. Essential data lies directly at the root of document documents
(akin to a JSON object) in the database. Infrequently accessed data is hierarchically
embedded inside the same document.

Fig. 3 Conceptual overview of the different population selections “Source,” “Case-control,” and
“Cohort” further explained in Table 2. Time is represented in the horizontal direction while the
data from screening regarding healthy and cancer cases are shown in red and blue. The latest
data has an unknown outcome if we consider the 36 months’ time that we use for the selection of
the data.
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2. Sparse is better than dense. As opposed to tables with missing values, in the database
documents, the field does not exist if the value is missing.

3. Readability counts. The field names and values must have enough information to make
their meaning intuitive. To improve readability, the snake case style is used to define
the field names. Whenever possible, enumerations are defined with uppercased
variables.

The designed data model and ingestion details are presented below in four parts that match
the data components described in Sec. 3 Data. We use this style to indicate literal references
to the python package or the database.

Each different document model (also known as schema) inherits the properties of the
Entity type, which is the abstract base class for our data model. We exploited the similarity
between the standard Dataclass in python and the MongoDB document-oriented data model
to be able to map back and forth between database documents and python objects. Instances
of a concrete Entity live in a collection with the same name as the Entity, e.g., all
RadiologicalSeries instances are stored in the RadiologicalSeries collection
of the database. Instances of an Entity contain a metadata field with information about the
data model version, the date-time of creation, and the date-time of modification if any. The
metadata also includes a project_name field in case documents from different projects with
different ethical approvals are stored in the same database, and it allows us to filter the correct
data depending on the user and application.

4.3.1 Radiological data

Three of the entities in the database contain DICOM tags. These are the ImageMetadata,
RadiologicalSeries, and RadiologicalStudy. They store the DICOM tags that are
relevant to the instance. The most frequented information was parsed from the DICOM tags and
stored at the document’s root. For example, in the RadiologicalStudy, the tags “Study
Date” and “Study Time” are stored in the RadiologicalStudy.date attribute as an ISO
date,19 allowing us to use the standard datetime python library or the MongoDB Query
Language (MQL) aggregation $dateDiff to compare dates and making it straightforward to
calculate time deltas when defining the study population.

We created an ImageMetadata document for each image file, which retains information
about the original file’s name and location, the database-assigned ID for the series and study it
belongs to, and the DICOM tags as human-readable text. Private tags were ignored. During
the ingestion of the ImageMetadata collection, there were no assumptions about the folder
structure or how the files were organized, as the root path was recursively searched for any file
with the “.dcm” extension (DICOM file).

The database creation scripts were written to allow reusability in any context where a
researcher wants to get the metadata of many DICOM files organized. A python package (also
named cobra-db) was developed to standardize and facilitate frequent operations in the database
(accessible at https://github.com/mammoai/cobra-db). The basic requirements are that the file-
system with the images must be accessible from the computer creating the collection; the
DICOM files must contain the SOPInstanceUID, the SeriesInstanceUID, and the
StudyInstanceUID (or PatientID and StudyDate).

The script for ingesting images used multiprocessing to read many files on multiple drives
simultaneously. For the images, the metadata is extracted using pydicom.20 Only the header of
the file is read from the disk while the pixel data is ignored, reducing the time it takes to scan
a drive.

For several years, our group has collected and studied the Cohort of Screen-Aged Women
(CSAW),14 which contains data with the same components described above. We tested the
needed processing time by running the ingestion script on all the CSAW data. For images
that were, on average 25 MB, the system allowed us to read two images per second per worker
for rotative hard disk drives (HDD) and 18 images per second for solid state drives (SSD).
Using multiple processes, the drive limit was around ten images per second for HDD and
above 90 images per second for SSD. Indexing 1M files from a single spinning disk took
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23 hours. Furthermore, by running three disks in parallel (with 1,104,403, 1,024,146, and
220,882 images each), indexing the 2.3M images took 28 h. The ImageMetadata collection
for indexing the 2.3M images of CSAW required 36GB of storage. For the VAI-B images
received at Karolinska Institute until the time of submission (belonging to 105,181 examina-
tions), the same script allowed us to ingest the metadata in 413 min.

With the ImageMetadata collection created, we aggregated images by any DICOM tag
using MQL. We grouped by SeriesInstanceUID executing the following aggregation pipeline:

db.ImageMetadata.aggregate(
[{
$group: {
_id: '$dicom_tags.SeriesInstanceUID.Value',
image_ids: {$push: '$_id'}

}
}],
{allowDiskUse: true}

)
Images’metadata was grouped into series, and the tags shared among all these images were

passed to the RadiologicalSeries.dicom_tags dictionary. This operation consid-
ered three cases: (1) The tag had a value and was equal to all the other dictionaries.
(2) The tag had a value that differed from at least one of the other dictionaries. (3) The tag
was missing in some dictionaries but is equal in all others. For the first case, the field was kept.
For the second case, there was a disagreement, and the field was discarded. For the third case,
the majority decided if the field should be kept or not. We have called this aggregation method
“intersection allow missing minority.” Once the shared DICOM tags dictionary was created,
we continued to extract the essential information to the document’s root. The specific infor-
mation that was extracted is shown in Fig. 4. Finally, the database-assigned ID of the series was

Fig. 4 Entity relationship diagram describing the data model and specific content of the docu-
ments of the different collections of the database.
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set in each image document as series_id. Grouping the instances by the study was analo-
gous to the one going from ImageMetadata to RadiologicalSeries. In this case, the
images were grouped by the unique combinations of PatientID and StudyDate using the fol-
lowing query.

db.ImageMetadata.aggregate(
[{
$group: {
_id: {
patient_id: '$dicom_tags.PatientID.Value',
study_date: '$dicom_tags.StudyDate.Value'

},
image_ids: {$push: '$_id'}

}
}],
{allowDiskUse: true}

)
The DICOM tags of the images for the same patient and date were aggregated in the same

way as described above (intersection allows missing minority). Then, the most useful informa-
tion was parsed and stored in the root of the RadiologicalStudy document. A few fields
like modality and study_uid were filled with the union of all the values seen for such
study. This way, the researcher can, e.g., count all studies containing at least one image of
mammography (MG) modality by executing the command db.RadiologicalStudy.
countDocuments({modality:'MG'}). Finally, the studies were grouped by
PatientID, and the Patient collection was populated. All the studies belonging to
a unique patient were marked with the database-assigned ID of the patient.

4.3.2 Cancer outcomes

The extracted data from NKBC were ingested into the database through a script that converted
each row into a document of the type NKBCRecord. The data types specified in the docu-
mentation provided by NKBC were used to parse the received data. Before pseudonymization,
the personal number (a 10- or 12-digit identification number of people residing in Sweden)
was validated, as explained in Appendix D: Prehashing validation of Swedish personal num-
ber. Then, the personal number was hashed, and the other column names were converted to a
readable version (e.g., the column “a_pat_sida” became field laterality, and the values
“1” and “2” were converted to right and left, respectively). The columns were parsed
according to the developed enumerations classes that served as documentation and validation
of the data.

4.3.3 Assessments

As for the cancer outcomes, the assessments were first converted to Unicode Transformation
Format 8-bit (utf-8) text before being parsed as RISRecord documents and then stored in
the database. The data were systematically validated against the supplied documentation to
check that the variables in the provided tables contained valid values for all rows.

4.3.4 Inferences

The inference data was transferred to the on-premises servers as the inferences were created from
the VPC solution. In the definition of the InferenceStudyResult, we created one parser
for each vendor’s JSON format. This way, we can extract the comparable metrics and store
them in a shared data schema. The data from each inference was persisted in the original_
data except for the encoded images that one of the companies’ outputs within the inference
result.
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5 Data Safety and Privacy

Ethical approval (EPM 2022-00186-01) was granted by the ethical review authority to perform
the scientific study, including the extraction of the data and its usage for evaluation purposes.
One of the critical challenges for the design and implementation of our platform was to manage
the data safely and to create mechanisms to ensure the privacy of the individuals in compliance
with GDPR while providing insightful results to the different stakeholders. In this section, we
describe the adopted principles and actions. While creating the platform, we followed the nine
principles of lawfulness, fairness, transparency, purpose limitation, data minimization, accuracy,
storage limitation, integrity, and confidentiality.

The hybrid infrastructure provided the flexibility to minimize the data in two ways:
(1) Only images and their inferences were stored in the cloud, while clinical details were pseu-
donymously stored in the on-premises database. (2) The number of transferred images was
minimized by selecting them before their extraction from the hospitals. The image metadata
that would not be needed was deleted before the images were transferred from the hospital to
the VPC.

All information in the database was pseudonymized. Pseudonymization refers to the action of
replacing the identity of a person with a consistent and fake identifier that cannot be reversed
without a certain key.21 When extracting the images from the hospital, the fields that are required,
but could compromise an individual’s identity, such as height, weight, and age, are rounded to
coarser intervals to decrease the risk of re-identification further. The pseudonymization of
images is described in Appendix B. After the data selection was made and the pseudonymized
version of the assessments and cancer outcomes were ingested into the database, and the original
data was locked in encrypted storage with strict access control.

At every stage of the process, the data is kept secure. At rest (in the cloud and on-premises
infrastructures), it was stored in servers with physical hard-drive encryption, access control, and
inside a VPN. For the assessments and cancer outcomes data, each hospital uploaded its data to
a secured OneDrive location, where it was fetched by the researchers for further processing
and pseudonymization. OneDrive has been designated by the IT department of the institute
as safe for storing personal data since it has two-factor authentication and the access control
can be granularly defined. The images were pseudonymized inside the hospital facilities and
sent through an encrypted channel to CM. The commercial partner CM has been subject to
an approval process before deciding to use their solution and then later audited to ensure that
they conform with the agreed security protocols. Once the AI-CADe systems started processing
the images, the vendors could no longer access the VPC.

6 Discussion

We have described the implementation of a hybrid platform for external validation of AI-CADe
systems. There are clear advantages of processing the images in the cloud. While it is possible to
build a GPU-enabled on-premises data center, using a cloud services provider requires fewer
human resources, is faster, and is more scalable. Therefore, we created an intermediate cloud
infrastructure that benefits hospitals, researchers, and AI-CADe vendors. The AI-CADe systems
are not accessible to the researchers, and the images are not available to the vendors, protecting
both the vendors’ intellectual property and the individuals’ personal data. The vendors can install
and verify that their AI-CADe systems work correctly before the VPC is enclosed and the images
are shown to the AI-CADe system.

One strength of the cloud part of our platform is the flexibility and scalability that the cloud
infrastructure provides. This scalability shortened the estimated processing time for the infer-
ences without increasing the computational costs, thanks to the possibility of doing massive
cloud-based parallelization. In the pilot phase, the cloud and on-premises infrastructures were
developed simultaneously in different organizations, requiring adapters to be implemented
on-the-fly to interface them properly. Compared to the installation stage described in Sec. 4.2
a more standardized option is planned for future versions of our platform developed to handle
automatic registration of new algorithms. This could be achieved by using containerization and
defining the inputs that will be provided to the systems as well as the outputs that are expected.
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Further considerations are that the price of validation increments linearly to the number of
exams processed, and that the system will only work in hospitals that allow CM to install the
proxy to extract the images. Finally, since the images need to be sent to the VPC in Germany,
it might be legally challenging for other countries, especially non-Europeans, to share their data
with VAI-B.

In Sec. 4.1, we describe a series of steps that require interfaces that for the sake of the proof of
concept, were bootstrapped to be manual interventions. In the future, these interfaces are planned
to be standardized and automated as Application Programming Interfaces (APIs) with the
benefits of lowering the probability of human error (and its propagation to further steps) and
decreasing the time to validate an algorithm, which brings economic incentives to all stake-
holders to participate in the external evaluation. More importantly, well-designed and auto-
mated interfaces are important since they can lower the risk of human error that could lead to
data breaches.

Although there are multiple databases of breast cancer imaging22–24 and the usage of
MongoDB for storing medical imaging has been previously explored,25,26 to the authors’ knowl-
edge, there is no open-source database that considers the interactions between AI-CADe sys-
tems, radiologists, breast radiological imaging, and cancer outcomes data; and that at the same
time provides the scripts for building a new instance of the database in a private server. Omi-db,
for example, has also published a python package22 that allows for client connectivity to the
already created OPTIMAM official database, unfortunately, it does not provide the database
instance creation scripts, therefore it was not possible to use it with our private images in the
proposed hybrid platform. The strengths of using a MongoDB database system for indexing the
images are (1) General purpose database. As opposed to PACS which is strongly focused on
medical imaging. Tabular and hierarchical data, such as DICOM metadata, can be stored. Thus,
making the database adaptable to the needs of the research group. (2) Indexing. It allows index-
ing on any field or combination of multiple fields, which improves latency during custom
queries. (3) Expressive aggregation pipelines. By using the MQL, it is possible to obtain data
in the exact format and characteristics required for the downstream evaluation operations.
(4) Full ecosystem. MongoDB provides the database engine and tools to manage and access
the data. For example, Compass (the official graphical user interface) allows non-programmatic
access to the database, while the different APIs provide access in all popular programming
languages. On the limitations side, the database is currently focused only on metadata and
text-based information. Although it holds the file paths for all images, it does not manage
the files.

Carefully defining the data model as a python package also provides advantages. First, the
data is ensured to have a level of quality. Second, the reusability of the data and the schema is
enhanced, as other team members can use the API to connect to the database. With the open-
sourced package, other engineers that work with medical imaging can build their database in-
stance with their data and then adapt it or extend it to their needs. In the light of the rising interest
in federated learning approaches,27 we consider that the cobra_db package could be used as a
normalizing step in the process of creating the datasets at each node of a federated learning effort
where each institution would first create their internal cobra_db instance that and then with
standardized MQL language, export the desired dataset to be used with other federated learning
and privacy-preserving libraries such as Syft.28

Altogether, VAI-B enables AI-CADe vendors to obtain validation results showing the
accuracy and robustness of their system across patient age groups, mammography equipment
types, cancer subtypes, and different hospitals. For participating hospitals, VAI-B allows them
to obtain performance results for their specific clinical setting regarding patient population,
radiologists, and mammography equipment. Judging from the engagement from the care pro-
viders and AI vendors thus far, the organizational and technical setup has been successful in
establishing trust in the platform. The external evaluation of algorithms provided by VAIB is
available to any hospital and company that wants to validate their algorithms. New hospitals
are able to participate by sending their images and processing them with the algorithms that
are already in the platform. This will provide them with performance results of algorithms on
their data. To do this, the CMProxy should be installed inside the hospital and a selection of
images must take place (arrows 2, 3, and 4 in Fig. 4). To obtain the ground truth to what
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the systems are compared, the cancer outcomes for each exam are required. For the current
Swedish hospitals, our research group is who contacts the NKBC. On the other hand, new
companies that would like to participate can send algorithms to receive feedback on the
improvement opportunities. Therefore, the platform serves as a testing suite that allows the
companies to benchmark and compare their own models and provide a quality control that is
tuned to the specific image distribution of the targeted hospital. To do so, the companies must
install their service on the platform. Such process currently takes place in a manual way but
could be further automated.

7 Conclusion

We have designed and implemented the VAI-B platform—a multicenter platform for the external
validation of AI systems in breast imaging. By creating a hybrid processing and storage solution,
we addressed the privacy requirements of the different data providers while leveraging the
scalability and flexibility of a cloud-based service. We have developed the method to extract,
transform, and load (ETL) data in a database, which involved the development of the data
model based on the available data. The conventions to access the database are written as
an open-source python package that standardizes the frequent actions in the database. The
same package allows the creation of a new database with any DICOM imaging data. We have
also defined procedures for deidentification and for choosing the images consumed by the
AI-CADe systems.

Most importantly, we have created a platform that will allow downstream evaluation of
AI-CADe systems for breast cancer detection, which enables faster development cycles for
participating vendors and safer AI adoption for the participating hospitals. The platform was
designed to be scalable and ready to be expanded should a new vendor want to evaluate their
system or should a new hospital wish to obtain an evaluation of different AI systems on their
images.

8 Appendix A: Collapsing Assessments into a Single-Categorical
Variable

For each screening examination, it was expected to have two independent decisions and one final
decision. The possible choices were Discussion, Healthy, Selection, or Technical Recall. We
must also consider the missing decision (N/A in Tables 2 and 3) as a possible choice. When
aggregating the assessment decisions per examination, we have 39 permutations in the data.
When making any kind of simplification (e.g., accuracy, sensitivity, or specificity scores),
we need to create a single binary variable from the three decisions. The combinations of the
first, second, and final assessments and how we collapsed them into one of the decision cat-
egories are shown in Table 3.

Table 3 Combinations of first, second, and final decisions that were present in the extracted
assessments data.

Case First decision Second decision Final decision Unique request numbers Count as

1 Healthy Healthy Healthy 812,089 Healthy

2 Healthy N/A Healthy 263,044 Healthy

3 N/A N/A N/A 149,740 N/A

4 Discussion Discussion Selection 17,986 Selection

5 Discussion Healthy Healthy 14,604 Healthy

6 Healthy Discussion Healthy 9796 Healthy
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9 Appendix B: Collective Minds Proxy and Pseudonymization
Procedure

The CMs Proxy is a lightweight server application installed locally in a hospital or institution.
The proxy receives DICOM data sent directly from PACS or a modality, minimizes and pseu-
donymizes the header, and performs a secure (HTTPS) atomic transfer to a designated area in the
CMs Radiology VPC. Therefore, ensuring that no identifiable information ever leaves the prem-
ise of a collaborating institution or hospital. For DICOM metadata, we use a modified version of
the NEMA 2017c standard for de-identification. The following modifications were introduced to
preserve data relevant to the tests we want to perform.

• Patient ID, Accession number, admission ID, interpretation ID. Performed procedure step
ID, performing physician’s name, requested procedure ID, results ID, and study ID are
hashed using “salted” SHA512/256 instead of blanked. Only the data controller has access
to the salt.

• Retain patient characteristics option. The patient characteristics are binned to enhance pri-
vacy. Day is removed from day of birth (DOB), and only month and year are stored. Weight
is rounded to intervals of 5 kg. Length is rounded to intervals of 5 cm. Age is rounded to
intervals of 5 years.

• Acquisition time is preserved.

• Study description is preserved.

• Retain institution identity option is followed.

Table 3 (Continued).

Case First decision Second decision Final decision Unique request numbers Count as

7 N/A N/A Selection 8967 Selection

8 Healthy Discussion Selection 5616 Selection

9 Discussion Discussion Healthy 5593 Healthy

10 Discussion Healthy Selection 3329 Selection

11 Discussion N/A Selection 3229 Selection

12 Discussion N/A Healthy 954 Healthy

13 Healthy N/A Technical recall 333 Technical recall

14 Discussion Discussion Technical recall 318 Technical recall

15 Discussion Healthy Technical recall 241 Technical recall

16 Healthy Healthy Technical recall 221 Technical recall

17 Healthy Discussion Technical recall 180 Technical recall

18 Healthy N/A Selection 132 Selection

19 N/A N/A Technical recall 74 Technical recall

20 N/A Discussion Selection 45 Selection

21 N/A N/A Healthy 9 Healthy

22 Discussion N/A Technical recall 8 Technical recall

23 N/A Healthy Selection 5 Selection

24 Selection N/A Selection 5 Selection

25 Healthy Healthy Selection 3 Selection

26 Selection Selection Selection 3 Selection

27 Technical recall Healthy Healthy 1 Healthy

28 Discussion Technical recall Technical recall 1 Technical recall
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• Retain device identity option is followed.

• Retain longitudinal temporal information with full dates option is followed.

10 Appendix C: Input Selection Procedure

For comparability, it is imperative to control which specific images are given to each AI-CADe
system. A set of tests are performed to classify and qualify each study.

• Assertion of headers,

• Image laterality (R/L)

• View position (MLO/CC)

• Acquisition time

• Instance number (fallback if acquisition time is not present)

• SOPInstanceClassUID present and prioritized as

• 1.2.840.10008.5.1.4.1.1.1.2 - Digital Mammography X-Ray Image Storage - For
Presentation

• 1.2.840.10008.5.1.4.1.1.1.2.1 - Digital Mammography X-Ray Image Storage - For
Presentation

• 1.2.840.10008.5.1.4.1.1.1 - Computed Radiography Image Storage

The inference tasks are defined by the following logic with six different input cases. The
selection targets to find instances from four different combinations of laterality and position
(R-MLO, L-MLO, R-CC, L-CC).

• Input case 1 – One instance each of R/L-MLO and R/L-CC is found.

• Input case 2 – Instances for R/L-MLO and R/L-CC are found. Multiple instances exist for
one or many.

• Input case 2a – The most recent instances are selected.

• Input case 2b – The oldest instances are selected.

• Input case 3 – One or many of R/L-MLO and R/L-CC are missing. Only one instance of
each existing combination is found.

• Input case 4 - One or many of R/L-MLO and R/L-CC are missing. Multiple instances exist
for one or many combinations found.

• Input case 4a – The most recent instances are selected.

• Input case 4b – The oldest instances are selected.

Please note that input cases 1 and 2a/b will generate input sets with four instances, while
input cases 3 and 4a/b will have less than four.

11 Appendix D: Prehashing Validation of Swedish Personal Number

Various formats exist to represent the same personal number (e.g., 19000101-5678,
190001015678, and 01015678), resulting in different hashes. The personal numbers were
validated with the following actions. First, all nonalphanumerical characters were deleted, then
the remaining characters were checked for the following characteristics:

• All characters were alphanumerical: worth one point.

• Correct length (12 characters YYYYMMDDXXXX): worth two points.

• A valid date could be parsed from YYMMDD: worth four points.

• The last digit was a correct checksum: worth eight points.
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The points are summed, creating a score from 0 to 15, interpreted as a binary flag of 4 bits.
The score is stored along the hashed Personal Number and helps assert comparability of two
hashed personal numbers.
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