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ABSTRACT. Purpose: Given the dependence of radiomic-based computer-aided diagnosis
artificial intelligence on accurate lesion segmentation, we assessed the perfor-
mances of 2D and 3D U-Nets in breast lesion segmentation on dynamic contrast-
enhanced (DCE) magnetic resonance imaging (MRI) relative to fuzzy c-means
(FCM) and radiologist segmentations.

Approach: Using 994 unique breast lesions imaged with DCE-MRI, three segmen-
tation algorithms (FCM clustering, 2D and 3D U-Net convolutional neural networks)
were investigated. Center slice segmentations produced by FCM, 2D U-Net, and
3D U-Net were evaluated using radiologist segmentations as truth, and volumetric
segmentations produced by 2D U-Net slices and 3D U-Net were compared using
FCM as a surrogate reference standard. Fivefold cross-validation by lesion was
conducted on the U-Nets; Dice similarity coefficient (DSC) and Hausdorff distance
(HD) served as performance metrics. Segmentation performances were compared
across different input image and lesion types.

Results: 2D U-Net outperformed 3D U-Net for center slice (DSC, HD p < 0.001) and
volume segmentations (DSC, HD p < 0.001). 2D U-Net outperformed FCM in center
slice segmentation (DSC p < 0.001). The use of second postcontrast subtraction
images showed greater performance than first postcontrast subtraction images
using the 2D and 3D U-Net (DSC p < 0.05). Additionally, mass segmentation out-
performed nonmass segmentation from first and second postcontrast subtraction
images using 2D and 3D U-Nets (DSC, HD p < 0.001).

Conclusions: Results suggest that 2D U-Net is promising in segmenting mass and
nonmass enhancing breast lesions from first and second postcontrast subtraction
MRIs and thus could be an effective alternative to FCM or 3D U-Net.
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1 Introduction
Breast cancer is one of the leading causes of death in women. Magnetic resonance imaging (MRI)
has had an integral role in improving breast cancer diagnoses and potentially reducing biopsies, in
tumor staging, and in monitoring treatment response.1–3 Dynamic contrast-enhanced (DCE) MRI
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involves the acquisition of time series images after injection of a contrast agent; typically, one
precontrast timepoint and multiple postcontrast timepoint images are acquired in 60 to 90 s
intervals.3,4 Artificial intelligence methods, including detection, diagnosis, or segmentation tasks,
have been developed to support radiologists in their interpretation decision-making process. The
quality of segmentation needed, e.g., an approximate outline or a detailed contour, depends on the
subsequent task.5 Precise lesion segmentation is required to extract relevant tumor features to be
used in the classification components in computer-aided diagnosis (CADx) systems.4,6

A well-established and clinically used algorithm for breast lesion segmentation on DCE-
MRI is a technique based on the fuzzy c-means (FCM) clustering algorithm, which analyzes
the contrast uptake over time and yields volumetric segmentations.4 An alternative segmentation
method is U-Net, a deep learning convolutional neural network, which produces segmentations
based on a single timepoint.7 Without the requirement of using information from an entire
dynamic time series, the U-Net has the potential to produce accurate segmentations from a vari-
ety of imaging sequences, including regular and abbreviated DCE-MRI acquisitions.8 The U-Net
architecture can be designed to accept either 2D image slices or 3D image volumes.9 Several
studies have been conducted to assess the performance of using 2D and 3D U-Nets for lesion
segmentation from breast DCE-MRI.10–14 These methods have been developed using different
DCE timepoints, datasets sizes, or unique ensembles of modified U-Nets. The evaluation criteria
for these studies have been reported across a wide range, demonstrating the complexity of our
task.10–14 The U-Nets used in our study were trained to segment masses and nonmass enhancing
lesions from either first or second postcontrast subtraction images, i.e., subtraction images
between the first or second postcontrast image and the precontrast image. Using the 2D U-Net,
quasi-3D lesion segmentations can be obtained by stacking slice-by-slice segmentations; how-
ever, the lack of vertical (out-of-slice) continuity obtained by this “quasi-3D” U-Net may be a
potential source of error that a fully 3D U-Net avoids.

In this study, we investigated the potential of using U-Nets in breast lesion segmentation on
DCE-MRI by comparing the performances of 2D and 3D U-Nets relative to FCM.

2 Methods
The viability of using U-Nets in breast lesion segmentation on DCE-MRI was assessed by com-
paring the performances of 2D and 3D U-Nets in four evaluations. First, in comparison A, quasi-
3D and 3D U-Nets were compared to FCM, which served as a surrogate reference standard.15

Second, in comparison B, the 2D U-Net, 3D U-Net, and FCM segmentations were compared to
2D radiologist delineations on lesion center slices for a subset of 71 lesions.15 Next, in comparison
C, segmentations from first postcontrast subtraction images were compared to second postcontrast
subtraction images for quasi-3D and 3D U-Nets. Finally, in comparison D, the segmentation per-
formance of each method was evaluated for mass versus nonmass enhancing lesions.

2.1 Dataset
The dataset consisted of DCE-MRIs of 994 unique breast lesions (724 malignant and 270 benign)
from 689 patients aged 23 to 89 years. The deidentified data were retrospectively collected at the
University of Chicago over a span of 8 years (from 2005 to 2013) under Health Insurance
Portability and Accountability Act-compliant Institutional Review Board protocols. Routine
bilateral breast MRIs were acquired using a Philips Achieva scanner with either 1.5 T
(N ¼ 473) or 3 T (N ¼ 216) magnet strength. The breast DCE-MRI protocol included a fat-
saturated 3D T1 weighted spoiled gradient-echo sequence that was used to acquire precontrast
and postcontrast images with a temporal resolution of 60 to 75 s (TE = 2.2 to 2.8 ms, TR = 4.5 to
7.5 ms, flip angle = 10 deg to 20 deg, in-plane resolution = 0.5 to 1.0 mm, FOV = 28.0 to
44.1 cm, matrix = 320 to 552 × 256 to 525, slice thickness = 1 to 3.5 mm, and interslice gap
= 0.8 to 2.5 mm). Table 1 contains the clinical characteristics of the data obtained from pathology
and radiology reports, including pathological truth (benign or malignant) and lesion type (mass
or nonmass enhancement). A subset of 71 lesions was manually selected for radiologist delin-
eations so that the distribution of pathological truth and lesion type within this subset was similar
to the distribution in the overall group (Table 1). Table 2 presents size distributions of
the lesions.
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2.2 Establishment of Reference Standards and Preprocessing
Each lesion had previously been segmented using a well-established, in-house, automated 3D
FCM approach that yielded, as a surrogate “reference standard,” a 3D binary lesion segmenta-
tion.4 FCM segmentation was performed within a region defined by a human operator’s selection
of a rectangular bounding box about the lesion in a middle slice along with an indication of the
first and last slices in which the lesion appeared.4 The bounding-box volume of interest (VOI) for
the FCM segmentation of each lesion was also used as input for subsequent U-Net segmentations
of postcontrast subtraction images. Second postcontrast subtraction images were primarily used
as inputs for the U-Net; however, first postcontrast subtraction images were introduced for evalu-
ation in comparisons C and D of this study.

In addition, an expert radiologist (7 years of experience in breast imaging) manually delin-
eated the lesion within the center slice of the second postcontrast subtraction VOI for the subset
of 71 lesions. Here the radiologist segmentations were used as the “reference standard” for com-
parison B of this study. Since radiologist segmentations were only available for a limited set of
center slices and FCM segmentations are used in an FDA-approved clinical breast MRI work-
station,3 FCM segmentations served as a reasonable surrogate reference standard to train the U-
Net architectures.

2.3 U-Net Architectures
Two different U-Net architectures were evaluated in this study. The first was a 2D U-Net.7 We
found that the top and bottom slices of lesions were most difficult to segment, so those two slices
were excluded from each lesion in training (though they remained in the test set lesions). The
image slices of each lesion’s VOI were resized, by interpolation with a preserved pixel value
range, to 256 × 256 pixels prior to input into the 2D U-Net. The 256 × 256 pixels probability
map outputs, with values ranging from 0 to 1, were converted to binary segmentation images
based on a threshold of 0.25. The 2D U-Net only processes one image slice at a time, so “quasi-
3D” lesion segmentations were produced by stacking the 2D slice-by-slice segmentations
obtained by the 2D U-Net to form a 3D volume. Hence, in this paper, “quasi-3D U-Net” refers
to the volumetric segmentation produced by the 2D U-Net architecture.

Table 1 Summary of the DCE-MRI dataset by lesion type. Lesions were categorized by patho-
logical truth and enhancement type. Lesions that were not marked as either mass or nonmass
enhancing were labeled “unknown.”

Enhancement type

Pathological “truth”

Benign Malignant

All lesions (N ¼ 994) Mass 170 517

Nonmass 49 175

Unknown 51 32

Subset of lesions outlined
by radiologist (N ¼ 71)

Mass 14 40

Nonmass 7 10

Unknown 0 0

Table 2 Summary of the DCE-MRI dataset by lesion size. Lesions were categorized by effective
diameter (mm), defined by 2 � pðA∕πÞ, where A is the area of the lesion in the center slice of the
FCM segmentation in mm2.

<5 5 to 9 10 to 14 15 to 19 >20

All lesions (N ¼ 994) 64 344 252 125 209

Subset of lesions outlined by radiologist (N ¼ 71) 2 11 32 15 11
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The second architecture evaluated in this study was a 3D U-Net.9 This network is similar to
the structure of the 2D U-Net, but it is modified with the added third dimension. Prior to input
into the 3D U-Net, the lesion VOIs were resized, by interpolation with a preserved pixel value
range, to 256 × 256 × N voxels (N is the number of slices in the lesion). The network produced
256 × 256 × N voxel probability map outputs, with values ranging from 0 to 1, which were con-
verted to binary segmentation volumes based on a threshold of 0.23. The threshold for the binary
conversion was selected from a range of values between 0.14 and 0.30 to produce the greatest
mean Dice similarity coefficient (DSC) calculated from the resulting segmentations during train-
ing, hence the slight difference in threshold used for 2D U-Net and 3D U-Net.

2.4 Training and Statistical Analysis of Segmentation Performances
Fivefold cross-validation by lesion (N ¼ 994 lesions) was conducted to train and evaluate the
U-Net models. The folds were partitioned such that each fold contained a similar distribution
based on pathological truth (malignant or benign), lesion enhancement type, and lesion size.
Additionally, since adjacent slices within the same lesion VOI often are very similar in appear-
ance, all slices belonging to a given lesion were always allocated to the same fold. Training and
test folds were allocated by lesion, i.e., not by slice or patient. The base U-Net models were
trained using the Adam optimizer and a binary cross-entropy loss function; training was allowed
to run for up to 200 epochs.

DSC and Hausdorff distance (HD) were used to evaluate the performances of the different
segmentation methods relative to the specific reference standard.16,17 DSC is a measure of how
well the areas of the two regions overlap, and HD is a measure of how well the margins of the two
regions agree. Note that, throughout, better segmentation performance is indicated by higher
DSCs and lower HDs. Predictions from the quasi-3D and 3D U-Nets were resized to their origi-
nal lesion VOI dimensions before DSCs and HDs were calculated between the predictions and
the reference standards. HDs were calculated for each slice, and the median HD for each lesion
was used for 3D performance comparisons. To assess statistical significance of difference in
performance, the Wilcoxon signed-rank test was used for matched cases in comparisons A,
B, and C, and the Mann–Whitney U-test was used in comparison D due the analysis of
unmatched cases.16–19 The Bonferroni correction was used to correct p-values for multiple com-
parisons in comparisons B, C, and D.20

2.5 Comparison A: Comparing Quasi-3D U-Net to 3D U-Net Using FCM
as the Surrogate Reference Standard

The volumetric segmentations from quasi-3D and 3D U-Nets were compared and as previously
noted, FCM segmentations served as the surrogate reference standard for the 994 lesions
(Table 1). The Wilcoxon signed-rank test was used to assess statistically significant differences
between quasi-3D and 3D U-Net segmentation performances (Fig. 1).

3D DSC, 
med HD

3D DSC, 
med HD

994 FCM 
segmenta�on 

volumes 

Quasi-3D U-Net
volumetric 

segmenta�ons 

3D U-Net
volumetric 

segmenta�ons

Quasi-3D
vs 
3D 

REFERENCE 
STANDARD 

COMPUTER SEGMENTATION PERFORMANCE
METRICS RELATIVE TO 

REFERENCE

STATISTICAL 
PERFORMANCE 
COMPARISONS

Fig. 1 Flowchart of comparison A of this study (N ¼ 994). FCM lesion segmentation volumes were
used as reference standard to compare quasi-3D U-Net (2D architecture) and 3D U-Net segmen-
tations in a by-lesion fivefold cross-validation process. DSC, Dice similarity coefficient and med
HD, median Hausdorff distance of all slices in the lesion. Wilcoxon signed-rank tests were per-
formed on the resulting paired data.
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2.6 Comparison B: Comparing FCM, Quasi-3D U-Net, and 3D U-Net
Using Radiologist-Delineations as the Reference Standard

Next, FCM, quasi-3D U-Net, and 3D U-Net center slice segmentations were compared using the
radiologist references available for the subset of 71 lesions. For each of the three segmentation
methods, DSCs and HDs were calculated on the center slice with respect to the radiologist reference.
Statistically significant differences between quasi-3D U-Net, 3D U-Net, and FCM segmentations
were assessed using the Wilcoxon signed-rank test including a Bonferroni correction (Fig. 2).

2.7 Comparison C: Comparing Segmentation Across Postcontrast Timepoints
(First Versus Second Postcontrast)

The segmentations obtained in comparison A using second postcontrast subtraction images as
input were compared to those using the first postcontrast subtraction images for the quasi-3D and
3D U-Nets. Wilcoxon signed-rank tests were used to assess statistical significance between the
results after a Bonferroni correction.

2.8 Comparison D: Comparing Segmentation Across Lesion Enhancement
Types (Mass Versus Nonmass Enhancement)

Finally, the segmentation performances on mass and nonmass enhancing lesions were compared.
The segmentations resulting from the first and second postcontrast subtraction inputs to the
quasi-3D and 3D U-Nets evaluated in comparison C were compared based on lesion enhance-
ment type. For each comparison, a Mann–Whitney U-test including a Bonferroni correction for
statistical significance was used to compare the segmentation performances of the set of mass
lesions to the set of nonmass lesions.

3 Results

3.1 Comparison A: Comparing Quasi-3D U-Net to 3D U-Net Using FCM
as the Surrogate Reference Standard

Segmentation performance was assessed by comparing the medians of DSC and HD (Table 3).
Note that better segmentation performance is indicated by higher DSCs and lower HDs. Of the
994 lesions in the dataset, the 3D U-Net failed to segment 6 lesions (from 3 unique patients) that
were <9.1 mm in effective diameter and had an unknown enhancement type. Without prediction
volumes available to compare to the reference standard, DSC was essentially zero and it was
impossible to calculate HDs, therefore, these lesions were excluded from HD statistical compar-
isons for the 3D U-Net. The results of the Wilcoxon signed-rank test show that the quasi-3D
U-Net statistically significantly outperformed the 3D U-Net in terms of DSC (p < 0.001) and
HD (p < 0.001) for lesion segmentation from second postcontrast subtraction VOIs.

2D DSC, 
HD

2D DSC, 
HD

FCM
center slices

Quasi-3D U-Net
center slices

3D U-Net
center slices

Quasi-3D 
vs 
3D 

REFERENCE 
STANDARD 

COMPUTER 
SEGMENTATION 

PERFORMANCE
METRICS RELATIVE 

TO REFERENCE

STATISTICAL 
PERFORMANCE 
COMPARISONS 

2D DSC, 
HD
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center slices 

FCM 
vs 

Quasi-3D 
FCM

vs 
3D

Fig. 2 Flowchart of comparison B of this study (N ¼ 71). Radiologist segmentations were used as
reference standard to compare FCM, quasi-3D U-Net, and 3D U-Net center slice segmentations.
DSC, Dice similarity coefficient and HD, Hausdorff distance. Wilcoxon signed-rank tests were
performed on the resulting paired data.
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3.2 Comparison B: Comparing FCM, Quasi-3D U-Net, and 3D U-Net
Using Radiologist-Delineations as the Reference Standard

Based on the segmentation results for the subset of 71 lesions, we found that the center slices
from each lesion segmentation produced by FCM, quasi-3D U-Net, and 3D U-Net had good
agreement with the radiologist-segmented reference standard (Table 4). The statistical compar-
isons of performance between each segmentation method’s agreement with the reference stan-
dard is shown in Table 5. The results indicate that quasi-3D U-Net outperformed both 3D U-Net
and FCM for lesion segmentation on second postcontrast subtraction center slices.

Table 3 Comparison A: summary statistics of the performance metrics of quasi-3D and 3D U-Nets
as compared to FCM reference standards for volume segmentation. U-Nets were trained and tested
using fivefold cross validation by lesion. Minimum, maximum, and median values of DSC and HD
metrics of all cases are shown. Parenthetical values represent 95% confidence intervals.

Segmentation
method

Min
DSC

Max
DSC Median DSC

Min HD
(mm)

Max HD
(mm) Median HD (mm)

Quasi-3D U-Net 0.270 0.955 0.780a (0.774, 0.787) 0.737 73.6 7.30a (6.79, 7.72)

3D U-Net 0b 0.935b 0.721b (0.710, 0.732) 0.741c 98.2c 7.53c (1.48, 56.3)

Note: DSC, Dice similarity coefficient and HD, Hausdorff distance (N ¼ 994).
aStatistically significantly greater performance after Bonferroni correction for two comparisons.
bExcluding six lesions with DSC = 0, minimum DSC = 0.035, maximum DSC = 0.935, and median DSC = 0.721
(0.710, 0.733).

cDue to failed segmentation, six lesions were excluded from 3D U-Net HD results because HD could not be
calculated for those lesions.

Table 5 Comparison B: statistical comparisons between the median performance metrics in
Table 4 from FCM, quasi-3D U-Net, and 3D U-Net center slice predictions using radiologist-delin-
eations as the reference standard. U-Nets were trained and tested using fivefold cross validation
by lesion. Raw, uncorrected p-values from the Wilcoxon signed-rank test are reported; statistical
significance was assessed after correcting for three comparisons (N ¼ 71).

Segmentation comparison DSC comparisons HD comparisons

FCM versus quasi-3D U-Net Quasi-3D U-Net outperformed FCM
p < 0.001

Quasi-3D U-Net outperformed
FCM p < 0.05

Quasi-3D U-Net versus 3D U-Net Quasi-3D U-Net outperformed 3D
U-Net p < 0.001

Quasi-3D U-Net outperformed
3D U-Net p < 0.05

FCM versus 3D U-Net FCM outperformed 3D U-Net
p < 0.001

Failed to reach statistical
significance. p ¼ 0.753

Note: DSC, Dice similarity coefficient and HD, Hausdorff distance.

Table 4 Comparison B: summary statistics of the performance metrics of FCM, quasi-3D U-Net,
and 3D U-Net, as compared to radiologist reference standard for center slice segmentation.
U-Nets were trained and tested using fivefold cross validation by lesion. Minimum, maximum,
and median DSC and HD metrics of all cases are shown. Parenthetical values represent 95%
confidence intervals (N ¼ 71).

Segmentation
method

Min
DSC

Max
DSC Median DSC

Min
HD (mm)

Max
HD Median HD (mm)

FCM 0.209 0.961 0.832 (0.813, 0.859) 0.796 31.2 4.06 (3.38, 4.80)

Quasi-3D U-Net 0.274 0.959 0.864 (0.845, 0.889) 0.796 28.5 3.28 (2.97, 4.50)

3D U-Net 0.246 0.952 0.802 (0.766, 0.834) 1.13 26.6 4.17 (3.04, 5.30)

Note: DSC, Dice similarity coefficient and HD, Hausdorff distance.
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We observed improved U-Net segmentation agreement with the radiologist reference as
lesion size increased, and Fig. 3 shows how quasi-3D U-Net yielded greater DSC values than
3D U-Net, relative to radiologist delineations, across all lesion sizes.

3.3 Comparison C: Comparing Segmentation Across Postcontrast Timepoints
(First Versus Second Postcontrast)

An example of the segmentations produced by the 2D U-Net, 3D U-Net, FCM, and radiologist
for a mass and nonmass enhancing lesion is shown in Fig. 4. In the second postcontrast sub-
traction images, more lesion enhancement is provided to the U-Net, which as expected, tended to
result in segmentations that more closely resembled FCM than segmentations from the first post-
contrast subtraction segmentation inputs. Also as expected, the radiologist delineations acquired
on the central slice of the second postcontrast subtraction image tended to resemble the center
slice of the second postcontrast subtraction segmentation from the 2D U-Net.

The performance metrics calculated for the segmentations produced by the U-Nets from first
and second postcontrast subtraction inputs are included in Table 6. The statistical comparisons
between the resulting DSC and HD metrics for each method are shown in Tables 7 and 8. The
results show statistically significantly greater performance from the second postcontrast subtrac-
tion inputs than from the first postcontrast subtraction inputs using the quasi-3D and 3D U-Nets,
except in the case of nonmass enhancing lesions using the 3D U-Net. The results from both the
first and second postcontrast subtraction inputs support the results found in comparisons A and
B. The quasi-3D U-Net statistically significantly outperformed the 3D U-Net for the combined
lesion types based on DSC, however HD failed to show statistically significant differences
between quasi-3D and 3D U-Net for the first postcontrast subtraction input.

3.4 Comparison D: Comparing Segmentation Across Lesion Enhancement
Types (Mass Versus Nonmass Enhancement)

The results in Tables 6–8 demonstrate that, relative to the FCM reference standard, mass lesion
segmentation statistically significantly outperformed nonmass enhancing lesion segmentation
using first and second postcontrast subtraction image inputs to both the quasi-3D and 3D U-
Nets. For nonmass enhancing lesions, quasi-3D U-Net always statistically significantly outper-
formed the 3D U-Net (as in comparisons A and B). For mass lesions, the DSC results indicate

Fig. 3 Difference in DSC calculated from the center slice of the quasi-3D (2D) U-Net or 3D U-Net
and the radiologist reference versus lesion size. The majority of lesions yielded greater agreement
between the radiologist and the quasi-3D (2D) U-Net than with the 3D U-Net. DSC, Dice similarity
coefficient.
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that quasi-3D U-Net statistically significantly outperformed the 3D U-Net (as in comparison B),
however, the HD results from the first postcontrast subtraction inputs showed that the 3D U-Net
statistically significantly outperformed quasi-3D U-Net.

4 Discussion
A crucial component of artificial intelligence systems is proper segmentation of lesions and other
breast regions before subsequent extraction of quantitative values for clinically significant quan-
tities. This study explored the performance of volumetric segmentations obtained with a 2D
U-Net (quasi-3D U-Net) and a 3D U-Net. Segmentation performance was assessed against a

Fig. 4 Example cases showing the center slice U-Net segmentations produced from the first or
second postcontrast subtraction images for a (a) mass enhancing lesion and (b) nonmass enhanc-
ing lesion. The center slice FCM and radiologist references are also shown.

Table 6 Comparisons C and D: summary statistics of the performance metrics of quasi-3D U-Net
and 3D U-Net, as compared to FCM surrogate reference standard. U-Nets were trained and tested
using fivefold cross validation by lesion (Nmass ¼ 687 and Nnonmass ¼ 224).

Input
U-Net
model Lesion type

Median
DSC

Median
HD (mm)

First postcontrast
subtraction images

Quasi-3D Mass 0.7492 6.9375

Nonmass 0.6126 12.0575

3D Mass 0.7357 6.6667

Nonmass 0.5858 12.9417

Second postcontrast
subtraction images

Quasi-3D Mass 0.8059 6.8838

Nonmass 0.6993 11.0459

3D Mass 0.7668 6.7734

Nonmass 0.5458 15.1173

Note: DSC, Dice similarity coefficient and HD, Hausdorff distance.
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well-established FCM method, which served as a surrogate reference standard, or radiologist
reference segmentation.

There were several limitations of this study. First, the segmentation performances were
evaluated within bounding-box VOIs; the inputs to the U-Net were based on the FCM volume
dimensions. Future investigations could be focused on identifying lesions from the whole breast,
rather than from a predefined region of interest. However, use of the bounding-box VOIs does
mimic clinical practice where a radiologist may roughly indicate the region about a lesion as
input to automatic characterization and CADx. Also there were a limited number of radiologist
segmentations available, each acquired for the second postcontrast subtraction center slices
(N ¼ 71 lesions); this could have influenced the results of the comparisons performed in
comparison B. Additionally, there were no radiologist volume segmentations available for full
lesion volumes, so FCM segmentations were used as surrogate reference standards. Finally, the
3D U-Net architecture may not be considered fully 3D since many lesions had too few slices to
properly pool in the axial dimension. Future work may include an investigation of U-Net
performance for breast lesion segmentation by exploring segmentation from abbreviated
DCE-MRI sequences. Also, U-Nets may be trained with attention gating, which could potentially
improve segmentation performance by focusing the network on the lesions and drawing attention
away from the background tissue.

This study found that there were statistically significant differences in performance between
U-Net and FCM segmentation methods, relative to each other and to a radiologist reference
segmentation. In the task of segmenting breast lesions from second postcontrast subtraction
DCE-MRI VOIs, the quasi-3D U-Net statistically significantly outperformed the 3D U-Net
in segmenting volumes (N ¼ 988). Additionally, the comparison between center slices from
FCM, quasi-3D U-Net, and 3D U-Net relative to the radiologist reference suggested that 2D
U-Net outperforms FCM and 3D U-Net (N ¼ 71). Although the vertical (out-of-slice) context
was an assumed advantage for the fully 3D U-Net, our results suggest that using the quasi-3D U-
Net, which performs a series of 2D convolutions, max pooling, and upsampling operations, can
accurately capture the lesion context and enable more precise localization of lesion pixels on a
slice-by-slice basis. Another advantage of using the series of 2D convolutions, over 3D ones, is
that less training is required due to the reduced complexity of the 2D net. Relative to FCM vol-
umes, U-Net segmentations of second postcontrast subtraction inputs were statistically signifi-
cantly greater than first postcontrast subtraction inputs, and segmentation of mass lesions
statistically significantly outperformed nonmass lesion segmentation. Although improved seg-
mentation using second postcontrast subtraction inputs were found, the 2D U-Net statistically
significantly outperformed the 3D U-Net for the first postcontrast subtraction inputs; this could
provide a potential benefit to abbreviated MRI applications. The results of this study suggest that
using a 2D U-Net to yield quasi-3D U-Net segmentation of breast lesions from postcontrast
subtraction DCE-MRIs is feasible and thus could be an effective alternative to more complex
segmentation techniques. Ultimately, this work has the potential to encourage future incorpo-
ration of the quasi-3D U-Net method into artificial intelligence algorithms designed to improve
the efficiency and efficacy of clinical workflows that include breast DCE-MRI.
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