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Abstract. Deep learning (DL)-based semantic segmentation methods have been providing state-of-the-art per-
formance in the past few years. More specifically, these techniques have been successfully applied in medical
image classification, segmentation, and detection tasks. One DL technique, U-Net, has become one of the most
popular for these applications. We propose a recurrent U-Net model and a recurrent residual U-Net model, which
are named RU-Net and R2U-Net, respectively. The proposed models utilize the power of U-Net, residual net-
works, and recurrent convolutional neural networks. There are several advantages to using these proposed
architectures for segmentation tasks. First, a residual unit helps when training deep architectures. Second, fea-
ture accumulation with recurrent residual convolutional layers ensures better feature representation for segmen-
tation tasks. Third, it allows us to design better U-Net architectures with the same number of network parameters
with better performance for medical image segmentation. The proposed models are tested on three benchmark
datasets, such as blood vessel segmentation in retinal images, skin cancer segmentation, and lung lesion seg-
mentation. The experimental results show superior performance on segmentation tasks compared to equivalent
models, including a variant of a fully connected convolutional neural network called SegNet, U-Net, and residual
U-Net. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.1.014006]
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1 Introduction
Nowadays deep learning (DL) provides state-of-the-art perfor-
mance for image classification,1 segmentation,2 detection and
tracking,3 and captioning.4 Since 2012, several deep convolu-
tional neural network (DCNN) models have been proposed such
as AlexNet,1 VGG,5 GoogleNet,6 Residual Net,7 DenseNet,8

and CapsuleNet.9 A DL-based approach (CNN, in particular)
provides a state-of-the-art performance for classification, seg-
mentation, and detection tasks for several recently developed
advanced methods, including activation functions, improved
regularization techniques, and optimization approaches.1,10

However, in most cases, models are explored and evaluated
using classification tasks on very large-scale datasets such as
ImageNet,1 where the outputs of the classification tasks are
labels or probability values. Alternatively, small models with
architectural variants are used for semantic image segmentation
tasks. For example, a fully convolutional network (FCN) also
provides state-of-the-art results for image segmentation tasks
in computer vision.2 Another variant of FCN, SegNet, has also
been proposed.11

Owing to the great success of deep convolutional neural net-
works (DCNNs) in the field of computer vision, different var-
iants of this approach are applied in different modalities of
medical imaging, including segmentation, classification, detec-
tion, registration, and medical information processing. Medical
imaging comes from different imaging techniques, such as com-
puter tomography (CT), ultrasound, x-ray, and magnetic reso-
nance imaging (MRI). The goal of computer-aided diagnosis

is to obtain a faster and better diagnosis to ensure better treat-
ment of a large number of people at the same time. In addition,
efficient automatic processing reduces human error and signifi-
cantly reduces overall time and cost. Due to the slow process
and tedious nature of manual segmentation approaches, there
is a significant demand for computer algorithms that can per-
form segmentation quickly and accurately without human inter-
action. However, there are some limitations to medical image
segmentation, including data scarcity and class imbalance.
Most of the time, a large number of labels (e.g., in thousands)
are not available for training for several reasons.12 Labeling the
dataset requires an expert in this field, which is expensive, and it
requires a lot of effort and time. Sometimes, different data trans-
formation or augmentation techniques (data whitening, rotation,
translation, and scaling) are applied for increasing the number
of labeled samples available.13–15 In addition, patch-based ap-
proaches are used for solving class imbalance problems. In
this work, we have evaluated the proposed approaches on both
patch-based and entire image-based approaches. However, to
switch from the patch-based approach to the pixel-based ap-
proach that works with the entire image, we must be aware
of the class imbalance problem. In the case of semantic segmen-
tation, the image backgrounds are assigned a label and the
foreground or target regions are assigned with different classes.
Therefore, the class imbalance problem is resolved without any
trouble. Two advanced techniques, including cross-entropy loss
and Dice similarity, have been introduced for efficient training
of classification and segmentation tasks in Refs. 14 and 15.

Furthermore, in medical image processing, global local-
ization and context modulation are very often applied for
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localization tasks. Each pixel is assigned a class label with the
desired boundary that is related to the contour of the target lesion
in identification tasks. To define these target lesion boundaries,
we must emphasize the related pixels. Landmark detection in
medical imaging16,17 is one such example. There were several
traditional machine-learning and image-processing techniques
available for medical image segmentation tasks before the
DL revolution, including amplitude segmentation based on
histogram features,18 the region-based segmentation method,19

and the graph-cut approach.20 However, semantic segmentation
approaches that utilize DL have become very popular in recent
years in the field of medical image segmentation, lesion detec-
tion, and localization.21 In addition, DL-based approaches are
known as universal learning approaches, where a single model
can be utilized efficiently in different modalities of medical
imaging such as MRI, CT, and x-ray.

According to a recent survey, DL approaches are applied
to almost all modalities of medical imaging.21,22 Furthermore,
a large number of papers have been published on segmentation
tasks in different modalities of medical imaging.21,22 A DCNN-
based brain tumor segmentation and detection method were pro-
posed in Ref. 23. From an architectural point of view, the CNN
model for classification tasks requires an encoding unit and
provides class probability as an output. In classification tasks,
we have performed convolution operations with activation
functions followed by subsampling layers, and this reduces the
dimensionality of the feature maps. As the input samples tra-
verse through the layers of the network, the number of feature
maps increases but the dimensionality of the feature maps
decreases. This is shown in the first part of the model (in green)
in Fig. 2. Since the number of feature maps increases in the
deeper layers, the number of network parameters also increases.
Eventually, the softmax operations are performed at the end of
the network to compute the probability of the target classes.

As opposed to classification tasks, the architecture of
segmentation tasks requires both convolutional encoding and
decoding units. The encoding unit is used to encode input
images into a larger number of maps with lower dimensionality.
The decoding unit is used to perform upconvolution (transpose
convolution, or what is occasionally called deconvolution) oper-
ations to produce segmentation maps with the same dimension-
ality as the original input image. Therefore, the architecture for
the segmentation tasks generally requires almost double the
number of network parameters when compared to the architec-
ture for the classification tasks. Thus, it is important to design
efficient DCNN architectures for segmentation tasks, which
can ensure better performance with fewer numbers of network
parameters.

This research demonstrates two modified and improved seg-
mentation models: one using recurrent convolution networks
and another using recurrent residual convolutional networks.
To accomplish our goals, the proposed models are evaluated on
different modalities of medical imaging, as shown in Fig. 1. The
contributions of this work can be summarized as follows:

• Two new models called recurrent U-Net (RU-Net) and
recurrent residual U-Net (R2U-Net) are introduced for
medical image segmentation.

• Experiments are conducted on three different modalities
of medical imaging, including retinal blood vessel seg-
mentation, skin cancer segmentation, and lung segmenta-
tion (LS).

• Performance evaluation of the proposed models is con-
ducted by the patch-based method for retinal blood vessel
segmentation tasks and by the end-to-end image-based
approach for skin lesion and LS tasks.

• Comparison against recently proposed state-of-the-art
methods shows superior performance against equivalent
models with the same number of network parameters.

• Empirical evaluation is conducted on the robustness of the
proposed R2U-Net model against SegNet11 and U-Net13

based on the trade-off between the number of training
samples and performance during the training, validation,
and testing phases.

The paper is organized as follows: Sec. 2 discusses related
work. The architectures of the proposed RU-Net and R2U-Net
models are presented in Sec. 3. Section 4 explains experimental
setup and performance metrics. The datasets’ details and discus-
sion on experimental results are given in Sec. 5. The comparison
on experimental results against U-Net and SegNet is given in
Sec. 6. The conclusion and future direction are discussed in
Sec. 7.

2 Related Works
Semantic segmentation is an active research area where DCNNs
are used to classify each pixel in the image individually, which
is fueled by different challenging datasets in the fields of com-
puter vision and medical imaging.23–26 Before the DL revolu-
tion, the traditional machine-learning approach mostly relied
on hand-engineered features that were used for classifying pix-
els independently. In the past few years, a lot of models have
been proposed that have proved that deeper networks are better
for recognition and segmentation tasks.5 However, training very
deep models are difficult due to the vanishing gradient problem,
which is resolved by implementing modern activation functions
such as rectified linear units (ReLUs) or exponential linear
units.5,6 Another solution to this problem was proposed by
He et al.,27 a deep residual model that overcomes the problem
utilizing identity mapping to facilitate the training process.

In addition, CNN-based segmentation methods based on
the FCN provide superior performance for natural image
segmentation.2 The performance of FCN has improved with
recurrent neural networks, which are fine-tuned on very large
datasets.28 Semantic image segmentation with DeepLab is cur-
rently one of the state-of-the-art methods.29 SegNet consists of

Fig. 1 Medical image segmentation examples displaying RBVS on
the left, skin cancer lesion segmentation in the middle, and LS on
the right.
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two parts: the encoding network, which is a 13-layer VGG-16
network,5 and the corresponding decoding network that uses
pixel-wise classification layers. The main contribution of Ref. 11
is the way in which the decoder upsamples its lower resolution
input feature maps. Later, an improved version of SegNet, which
is called Bayesian SegNet, was proposed in 2015.30 Most of
these architectures are explored using computer vision applica-
tions. However, there are some DL models that have been pro-
posed specifically for the medical image segmentation, as they
consider data insufficiency and class imbalance problems.

One of the first and most popular approaches for semantic
medical image segmentation is the U-Net.13 According to the
U-Net architecture, the network consists of two main parts: the
convolutional encoding and decoding units. The basic convolu-
tion operations are performed followed by ReLU activation in
both parts of the network. For downsampling in the encoding
unit, 2 × 2 max-pooling operations are performed. In the decod-
ing phase, the convolution transpose (representing upconvolu-
tion or deconvolution) operations are performed to upsample
the feature maps. The very first version of U-Net had been used
for cropping and copying feature maps from the encoding unit
to the decoding unit. The U-Net model provides several advan-
tages for segmentation tasks: first, this model allows the use of
global location and context at the same time. Second, it works
with very few training samples and provides better performance
for segmentation tasks.13 Third, an end-to-end pipeline proc-
esses the entire image in the forward pass and directly produces
segmentation maps. This ensures that U-Net preserves the full
context of the input images, which is a major advantage when
compared to patch-based segmentation approaches.13,15

However, U-Net is not only limited to applications in the
domain of medical imaging, but nowadays this model is also
applied for computer vision tasks.31,32 Meanwhile, different
variants of U-Net models have been proposed, including a very
simple variant of U-Net for CNN-based segmentation of medi-
cal imaging data.33 In this model, two modifications are made
to the original design of U-Net: first, a combination of multiple
segmentation maps and forward feature maps are summed
(element-wise) from one part of the network to the other. The
feature maps are taken from different layers of the encoding and
decoding units, and finally, summation (element-wise) is per-
formed outside of the encoding and decoding units. The authors
report promising performance improvement during training with

better convergence compared to U-Net, but no benefit has been
observed when using a summation of features during the testing
phase.33 However, this concept proved that feature summation
impacts the performance of a network. The importance of skipped
connections for biomedical image segmentation tasks has been
empirically evaluated with U-Net and residual networks.34 The
deep contour-aware network had been proposed in 2016, which
can extract multilevel contextual features using a hierarchical
architecture for accurate gland segmentation of histology im-
ages, and it shows very good performance for segmentation.35

Furthermore, Nabla-Net, a deep dig-like convolutional architec-
ture, had been proposed for segmentation in 2017.36

Other DL approaches have been proposed based on U-Net
for three-dimensional (3-D) medical image segmentation tasks
as well. The 3-D U-Net architecture for volumetric segmentation
learned from sparsely annotated volumetric images.14 A power-
ful end-to-end 3-D medical image segmentation system based
on volumetric images called V-Net has been proposed, which
consists of an FCN with residual connections.15 This paper
also introduces a Dice loss layer.15 Furthermore, a 3-D deeply
supervised approach for automated segmentation of volumetric
medical images was presented in Ref. 37. HighRes3DNet was
proposed using residual networks for 3-D segmentation tasks
in 2016.38 In 2017, a CNN-based brain tumor segmentation
approach was proposed using a 3-D CNN model with a fully
connected conditional random field.39 Pancreas segmentation
was proposed in Ref. 40, and VoxResNet was proposed in
2016 where a deep voxel-wise residual network was used for
brain segmentation. This architecture utilized residual networks
and summation of feature maps from different layers.41

Alternatively, we have proposed two models for semantic
segmentation based on the architecture of U-Net in this paper.
The proposed recurrent CNN (RCNN) model based on U-Net is
named RU-Net, which is shown in Fig. 2. In addition, we have
proposed a residual RCNN (RRCNN)-based U-Net model,
which is called R2U-Net. Section 3 provides the architectural
details of both these models.

3 RU-Net and R2U-Net Architectures

3.1 RU-Net and R2U-Net Model Details

Inspired by the deep residual model,7 the RCNN,42 and the
U-Net13 model, we propose two models for segmentation tasks

Fig. 2 The RU-Net architecture with convolutional encoding and decoding units using RCLs, which is
based on a U-Net architecture. The residual units are used with the RCL for R2U-Net architectures.
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that are named RU-Net and R2U-Net. These two approaches
utilize the strengths of all three recently developed DL models.
The RCNN and its variants have already shown superior perfor-
mance on object recognition tasks using different bench-
marks.43,44 The recurrent residual convolutional operations can
be demonstrated mathematically, according to the improved
residual networks in Ref. 44. The operations of the recurrent
convolutional layers (RCLs) are performed with respect to the
discrete time steps that are expressed according to the RCNN.42

Let us consider the xl input sample in the l’th layer of the
RRCNN block and a center pixel of a patch located at ði; jÞ
in an input sample on the k’th feature map in the RCL. In addi-
tion, let us assume that the output of the networkOl

ijkðtÞ is at the
time step t. The output can be expressed as follows:

EQ-TARGET;temp:intralink-;e001;63;598Ol
ijkðtÞ ¼ ðwf

kÞT � xfði;jÞl ðtÞþ ðwr
kÞT � xrði;jÞl ðt− 1Þþ bk: (1)

Here, xfði;jÞl ðtÞ and xrði;jÞl ðt − 1Þ are the inputs to the standard
convolutional layers and the l’th RCL, respectively. The wf

k and
wr
k values are the weights of the standard convolutional layer and

the RCL of the k’th feature map, respectively, and bk is the bias.
The outputs of the RCL are fed to the standard ReLU activation
function f and are expressed as

EQ-TARGET;temp:intralink-;e002;63;497F ðxl; wlÞ ¼ f½Ol
ijkðtÞ� ¼ max½0; Ol

ijkðtÞ�; (2)

where Fðxl; wlÞ represents the outputs from of l’th layer of the
RCNN unit. The output of Fðxl; wlÞ is used for downsampling
and upsampling layers in the convolutional encoding and de-
coding units of the RU-Net model, respectively. In the case of
R2U-Net, the final outputs of the RCNN unit are passed through
the residual unit, as shown in Fig. 3(d). Let us consider the out-
put of the RRCNN block to be xlþ1, then it can be calculated as
follows:

EQ-TARGET;temp:intralink-;e003;63;375xlþ1 ¼ xl þ Fðxl; wlÞ: (3)

Here, xl represents the input samples of the RRCNN block. The
xlþ1 sample is the input for the immediately succeeding sub-
sampling or upsampling layers in the encoding and decoding
convolutional units of the R2U-Net model. However, the num-
ber of feature maps and the dimensions of the feature maps for
the residual units are the same as in the RRCNN block, which
is shown in Fig. 3(d).

The proposed DL models are the building blocks of the
stacked convolutional units, which are shown in Figs. 3(b) and
3(d). Four different architectures are evaluated in this work.
First, the U-Net with forward convolution layers and feature
concatenation is applied as an alternative to the crop-and-copy
method found in the primary version of U-Net.13 The basic con-
volutional unit of this model is shown in Fig. 3(a). Second, the
U-Net model with forward convolutional layers with residual
connectivity is used, which is often called a residual U-Net
(or a ResU-Net) and is shown in Fig. 3(c).15,31 The third archi-
tecture is the U-Net model with forward RCLs, as shown in
Fig. 3(b), which is named RU-Net. Finally, the last architecture
is the U-Net model with recurrent convolution layers with
residual connectivity, as shown in Fig. 3(d), which is named
R2U-Net. The pictorial representation of the unfolded RCL
layers with respect to time step is shown in Fig. 4. Here,
t ¼ 2 (0 to 2), refers to the recurrent convolutional operation

Fig. 3 Different variants of the convolutional and recurrent convolutional units (RCUs) including (a) the
forward convolutional unit, (b) the recurrent convolutional block, (c) the residual convolutional unit, and
(d) the recurrent residual convolutional unit.

Fig. 4 The lower part of units represents RCUs and upper parts are
for unfolded RCUs for t ¼ 2 (left) and t ¼ 3 (right). For t ¼ 2, we have
used one forward convolutional layer followed by two RCLs; on the
other hand, for t ¼ 3, one forward convolutional layer is used followed
by three RCLs. The orange and blue arrows represent the equivalent
representation of folded and unfolded RCUs and the convolutional
operation with respect to different time steps, respectively. The
orange and green rectangles indicate the kernels and the feature
maps for the respective layers.
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that includes one single convolution layer followed by two sub-
sequential RCLs.

In this implementation, we have applied concatenation to the
feature maps from the encoding unit to the decoding unit for the
RU-Net and R2U-Net models. The differences between the pro-
posed models with respect to the U-Net model are threefold.
This architecture consists of convolutional encoding and decod-
ing units that are the same as those used in the U-Net model.
However, the RCLs (and RCLs with residual units) are used
instead of regular forward convolutional layers in both the
encoding and decoding units. The residual unit with RCLs helps
to develop a more efficient deeper model. Second, the efficient
feature accumulation method is included in the RCL units of
both the proposed models. The effectiveness of feature accumu-
lation from one part of the network to the other is shown in the
CNN-based segmentation approach for medical imaging. In
this model, the element-wise feature summation is performed
outside the U-Net model.33 The U-Net model only shows the
benefit during the training process in the form of better conver-
gence. However, our proposed models show benefits for both
training and testing phases due to the feature accumulation
inside the model. The feature accumulation with respect to dif-
ferent time steps ensures better and stronger feature representa-
tion. Thus, it helps in extracting very-low-level features that
are essential for segmentation tasks for different modalities of
medical imaging (e.g., blood vessel segmentation). Third, we
have removed the cropping and copying unit from the basic
U-Net model and use only concatenation operations. Therefore,
with all the above-mentioned changes, the proposed models
are much better compared to equivalent SegNet, U-Net, and
ResU-Net models, which ensure better performance with the
same or fewer number of network parameters.

There are several advantages of using the proposed architec-
tures when compared to U-Net. The first is the efficiency in
terms of the number of network parameters. The proposed
RU-Net and R2U-Net architectures are designed to have the
same number of network parameters, when compared to
U-Net and ResU-Net, and the RU-Net and R2U-Net models
show better performance on segmentation tasks. The recurrent
and residual operations do not increase the number of network
parameters. However, they do have a significant impact on
training and testing performance, which is shown through an
empirical evaluation with a set of experiments in the following
sections.44 This approach is also generalizable, as it can easily be
applied to DL models based on SegNet,11 3D-U-Net,14 and V-
Net15 with improved performance for segmentation tasks.

3.2 Model Architecture and Parameters

We have conducted experiments using several different models,
including SegNet,11 U-Net,13 ResU-Net,31 RU-Net, and R2U-
Net. These models are evaluated with different numbers of con-
volutional layers in the convolutional blocks, and the numbers
of layers are determined with respect to time step t. The network
architectures along with the corresponding numbers of feature
maps in different convolutional blocks are shown in Table 1.
From the table, it can be clearly seen in rows 2 and 4 that the
numbers of feature maps in the convolutional blocks remain the
same; however, as a convolutional layer is added in the convolu-
tional block when t ¼ 3, the number of network parameters
increases. Feature fusion is performed with an element-wise
addition operation in different residual, recurrent, and recurrent
residual units. In the encoding unit of the network, each

convolutional block consists of two or three RCLs, where 3 ×
3 convolutional kernels are applied, proceeded by ReLU activa-
tion layers, followed by a batch normalization layer. For down-
sampling, a 2 × 2 max-pooling layer followed by a 1 × 1
convolutional layer is used between the convolutional blocks.
In the decoding unit, each block consists of a convolutional
transpose layer followed by two convolutional layers and a con-
catenation layer. We have empirically evaluated different fusion
techniques, including addition, concatenation, and addition
and concatenation between encoding and decoding units. The
concatenation operations perform better compared to the other
two methods. Therefore, the concatenation operations are used
between the features in the encoding and decoding units in the
network. The features are then mapped to a single output feature
map, where 1 × 1 convolutional kernels are used with a sigmoid
activation function. Finally, the segmentation region is gener-
ated with a threshold (T), which is empirically set at 0.5 in our
experiment.

The architecture shown in the fourth row in Table 1 is used
for retina blood vessel segmentation on the DRIVE dataset, as
well as skin cancer segmentation. We have also implemented the
SegNet model11 with similar architecture and a similar number of
feature maps for impartial comparison in the cases of skin cancer
lesions and LS. The architecture we used can be written as
1→ 32ð3Þ→ 64ð3Þ→ 128ð3Þ→ 256ð3Þ→ 512ð3Þ→ 256ð3Þ→
128ð3Þ→ 64ð3Þ→ 32ð3Þ→ 1 in the SegNet model for skin
cancer lesion segmentation, where each convolutional block
contains three convolutional layers and a batch normalization
layer that requires 14.94M network parameters. For LS, the
architecture can be written as 1→ 32ð3Þ→ 64ð3Þ→ 128ð3Þ→
256ð3Þ→ 128ð3Þ→ 64ð3Þ→ 32ð3Þ→ 1 for the SegNet model
(three convolutional layers and a batch normalization layer are
used in each block), which requires 1.7M network parameters.

4 Experimental Setup and Evaluation Metrics

4.1 Experimental Setup

To demonstrate the performance of the RU-Net and R2U-Net
models, we have tested them on three different medical imag-
ing datasets. These include blood vessel segmentation from
retina images (DRIVE, STARE, and CHASE_DB1, as shown
in Fig. 5), skin cancer lesion segmentation, and LS from

Table 1 Architectural details, the numbers of feature maps in the
convolutional blocks, and the number of network parameters for
RBVS, SLS, and LS.

Dataset t Network architectures

Number of
parameters
(in millions)

RBVS + LS 2 1 → 16ð3Þ → 32ð3Þ →
64ð3Þ → 128ð3Þ → 64ð3Þ →

32ð3Þ → 16ð3Þ → 1

0.841

LS 3 1 → 16ð4Þ → 32ð4Þ →
64ð4Þ → 128ð4Þ → 64ð4Þ →

32ð4Þ → 16ð4Þ → 1

1.037

SLS + RBVS 2 1 → 32ð3Þ → 64ð3Þ →
128ð3Þ → 256ð3Þ → 512ð3Þ →
256ð3Þ → 128ð3Þ → 64ð3Þ →

32ð3Þ → 1

13.34
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two-dimensional (2-D) images. For this implementation, the
Keras and TensorFlow frameworks are used on a single graphics
processing units machine with 56 G of RAM and an NVIDIA
GEFORCE GTX-980 Ti with 6 GB of memory.

4.2 Evaluation Metrics

For quantitative analysis of the experimental results, several per-
formance metrics are considered, including accuracy (AC), sen-
sitivity (SE), specificity (SP), F1-score, Dice coefficient (DC),
and Jaccard index (JA). To do this, we also use the variables
true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). The overall AC is calculated using Eq. (4),
and SE and SP are calculated using Eq. (5).

EQ-TARGET;temp:intralink-;e004;63;277AC ¼ TPþ TN

TPþ TNþ FPþ FN
; (4)

EQ-TARGET;temp:intralink-;e005;63;224SE ¼ TP

TPþ FN
SP ¼ TN

TNþ FP
: (5)

Furthermore, DC and JA are calculated using the following
equation:

EQ-TARGET;temp:intralink-;e006;63;182DC ¼ 2:TP
2:TPþ FNþ FP

JA ¼ TP

TPþ FNþ FP
: (6)

In addition, we have also conducted an experiment to determine
the Dice index (DI) loss function according to Ref. 45, and the
Jaccard similarity score (JS) is represented using Eq. (7), as in
Ref. 46. Here, GT refers to the ground truth and SR refers to the
segmentation result.

EQ-TARGET;temp:intralink-;e007;326;752DIðGT;SRÞ ¼ 2
jGT ∩ SRj
jGTj þ jSRj JSðGT;SRÞ ¼¼ jGT ∩ SRj

jGT ∪ SRj :
(7)

The F1-score is calculated according to the following equation:

EQ-TARGET;temp:intralink-;e008;326;694F1 − score ¼ 2 ×
precision × recall

precisionþ recall
; (8)

where the precision and recall are expressed as

EQ-TARGET;temp:intralink-;e009;326;640precision ¼ TP

TPþ FP
; recall ¼ TP

TPþ FN
: (9)

The area under the curve (AUC) and the receiver operating char-
acteristics (ROC) curve are common evaluation measures for
medical image segmentation tasks. In this experiment, we had
utilized both analytical methods to evaluate the performance of
the proposed approaches and had compared our results to the
existing state-of-the-art techniques.

5 Experimental Results

5.1 Blood Vessel Segmentation

We have experimented on three different popular datasets
for retinal blood vessel segmentation, including DRIVE,47

STARE,48 and CHASE_DB1.49

5.1.1 Databases details

The DRIVE dataset consists of 40 color retina images, of which
20 samples are used for training and the remaining 20 samples
are used for testing. The size of each original image is
565 × 584 pixels.47 To develop a square dataset, the images are
cropped to only contain the data from columns 9 to 574, which
then makes each image size 565 × 565 pixels. In this implemen-
tation, we consider 190,000 randomly selected patches from 20
of the images in the DRIVE dataset, where 171,000 patches
are used for training, and the remaining 19,000 patches are
used for validation. The size of each patch is 48 × 48 for all the
three datasets, as shown in Fig. 6. The second dataset, STARE,
contains 20 color images, and each image has a size of
700 × 605 pixels.48,50 Owing to the small number of samples

Fig. 5 Example images from training datasets where (a) is taken from
the DRIVE dataset, (b) is taken from the STARE dataset, and (c) is
taken from the CHASE-DB1 dataset. The first row shows the original
images, the second row shows the FOVs, and third row shows the
target outputs.

Fig. 6 Example patches are shown in (a) and the corresponding
outputs of the patches are shown in (b).
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in the STARE dataset, two approaches are often applied for
training and testing when using this dataset. First, training is
sometimes performed with randomly selected samples from all
20 images.51

Another approach is the “leave-one-out” method, where in
each trial one image is selected for testing, and training is con-
ducted on the remaining 19 samples.49,52 Therefore, there is
no overlap between the training and testing samples. In this
implementation, we used the “leave-one-out” approach for
the STARE dataset. The CHASE_DB1 dataset contains 28 color
retina images, and the size of each image is 999 × 960 pixels.49

The images in this dataset are collected from both the left and
right eyes of 14 school children. The dataset is divided into two
sets where samples are selected randomly. A 20-sample set is
used for training and the remaining 8 samples are used for
testing.

As the dimensionality of the input data in the STARE and
CHASE_DB1 datasets is larger than that of the DRIVE dataset,
we considered 250,000 patches in total from 20 images for
both STARE and CHASE_DB1 datasets. In this case, 225,000
patches are used for training and the remaining 25,000 patches
are used for validation. As the binary field of view (FOV) (which
is shown in the second row of Fig. 5) is not available for the
STARE and CHASE_DB1 datasets, we generated FOV masks
using a similar technique to the one described in Ref. 52. One
advantage of the patch-based approach is that the patches give
the network access to local information about the pixels, which
has an impact on the overall prediction. Furthermore, it ensures
that the classes of the input data are balanced. The input patches
are randomly sampled over an entire image, which also includes
the outside region of the FOV.

5.1.2 Experimental results

Owing to the data scarcity of retinal blood vessel segmentation
datasets, the patch-based approach is used during training and
testing phases. We used a random initialization method and
a stochastic gradient descent optimization approach, with cat-
egorical cross-entropy loss, a batch size 32, and 150 epochs
in this implementation.

Results of DRIVE dataset. Figure 7 shows the training and
validation AC when using the DRIVE dataset. The proposed

R2U-Net and RU-Net models provide better performance
during both the training and the validation phases, when com-
pared to the U-Net and ResU-Net models. Quantitative results
are achieved with the four different models using the DRIVE
dataset, and the results are shown in Table 2. The overall AC
and AUC are considered when comparing the performance of
the proposed methods in most cases. The results we have
achieved with the proposed models with 0.841M network
parameters (Table 1, second row) are higher than those obtained
when using the state-of-the-art approaches in most cases.
However, to compare with the most recently proposed method,57

a deeper R2U-Net is evaluated with 13.34M network parameters
(Table 1, fourth row) that showed the highest AC (0.9613) and a
better AUC of 0.979. Most importantly, we can observe that the
proposed RU-Net and R2U-Net models provide better perfor-
mance in terms of AC and AUC, compared to the U-Net and
RU-Net models. The precise segmentation results achieved with
the proposed R2U-Net model are shown in Fig. 8(a).

Results of STARE dataset. The quantitative results when
using the STARE dataset, along with a comparison to the
existing methods, are shown in Table 2. In 2016, a cross-
modality learning approach was proposed by Li et al.56 and had
reported AC of ∼0.9628 for STARE dataset, which had been
previously the highest recorded result. Recently, Zhao et al.57

proposed a method with a weighted symmetry filter and showed
an AC of 0.9570. In this work, we have used the “leave-one-out”
method and have reported the average results of five different
trials. We have achieved an AC of 0.9712 with the R2U-Net
model for the STARE dataset, which is 0.84% and 1.42% better
than the results obtained when using the methods proposed by
Li et al. and Zhao et al., respectively. In addition, the RU-Net
and R2U-Net models outperform the U-Net and ResU-Net mod-
els in this experiment. The R2U-Net model shows 0.22% and
0.12% better AC compared to U-Net and ResU-Net, respec-
tively. The qualitative results of R2U-Net when using the
STARE dataset are shown in Fig. 8(b).

Results of CHASE_DB1 dataset. The results of the quan-
titative analysis are given in Table 1. From the table, it can be
seen that the RU-Net and R2U-Net models provide better per-
formance than the U-Net and ResU-Net models when applying

Fig. 7 Training and validation AC of the proposed RU-Net and R2U-Net models compared to the
ResU-Net and U-Net models for blood vessel segmentation task. (a) Training AC and (b) validation.
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the CHASE-DB1 dataset. In addition, the proposed methods
are compared against the recently proposed approaches for
blood vessel segmentation using the CHASE_DB1 dataset. Li
et al.56 proposed an approach with cross-modality learning and
achieved an AC of 0.9581. However, we have achieved an AC of
∼0.9634 with the R2U-Net model, which is about 0.53%

improvement, compared to the result in Ref. 56. The precise
segmentation results with the proposed R2U-Net model on the
CHASE_DB1 dataset are shown in Fig. 8(c).

The ROC curve for the highest AUCs of the R2U-Net (with
1.07M network parameters) model on each of the three retina
blood vessel segmentation (RBVS) datasets is shown in Fig. 9.

Table 2 Experimental results of the proposed approaches for RBVS and their comparison with other traditional and DL-based approaches.

Dataset Methods Year SE SP AC AUC

DRIVE Cheng et al.51 2014 o.7252 0.9798 0.9474 0.9648

Azzopardi et al.53 2015 0.7655 0.9704 0.9442 0.9614

Roychowdhury et al.54 2016 0.7250 0.9830 0.9520 0.9620

Liskowski and Krawiec55 2016 0.7763 0.9768 0.9495 0.9720

Li et al.56 2016 0.7569 0.9816 0.9527 0.9738

Zhao et al.57 2018 0.7740 0.9790 0.9580 0.9750

U-Net (1.07M) 2018 0.7537 0.9820 0.9531 0.9755

ResU-Net (1.07M) 2018 0.7726 0.9820 0.9553 0.9779

RU-Net (1.07M) 2018 0.7751 0.9816 0.9556 0.9782

R2U-Net (1.07M) 2018 0.7792 0.9813 0.9556 0.9784

R2U-Net (13.34M) 2018 0.7661 0.9807 0.9613 0.9793

STARE Marín et al.58 2011 0.6940 0.9770 0.9520 0.9820

Fraz et al.59 2012 0.7548 0.9763 0.9534 0.9768

Roychowdhury et al.54 2016 0.7720 0.9730 0.9510 0.9690

Liskowski and Krawiec55 2016 0.7867 0.9754 0.9566 0.9785

Li et al.56 2016 0.7726 0.9844 0.9628 0.9879

Zhao et al.57 2018 0.7880 0.9760 0.9570 0.9590

U-Net (1.07M) 2018 0.8270 0.9842 0.9690 0.9898

ResU-Net (1.07M) 2018 0.8203 0.9856 0.9700 0.9904

RU-Net (1.07M) 2018 0.8108 0.9871 0.9706 0.9909

R2U-Net (1.07M) 2018 0.8298 0.9862 0.9712 0.9914

CHASE_DB1 Fraz et al.59 2012 0.7224 0.9711 0.9469 0.9712

Fraz et al.60 2014 — — 0.9524 0.9760

Azzopardi et al.53 2015 0.7655 0.9704 0.9442 0.9614

Roychowdhury et al.54 2016 0.7201 0.9824 0.9530 0.9532

Azzopardi et al.53 2016 0.7507 0.9793 0.9581 0.9793

U-Net (1.07M) 2018 0.8288 0.9701 0.9578 0.9772

ResU-Net(1.07M) 2018 0.7726 0.9820 0.9553 0.9779

RU-Net (1.07M) 2018 0.7459 0.9836 0.9622 0.9803

R2U-Net (1.07M) 2018 0.7756 0.9820 0.9634 0.9815

Note: Bold values indicate the highest testing accuracy for the task.
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5.2 Skin Cancer Segmentation

5.2.1 Database

This dataset is taken from the Kaggle competition on skin lesion
segmentation (SLS) that occurred in 2016.61 This dataset con-
tains 900 images, along with associated ground-truth samples
for training. Another set of 379 images is provided for testing.
The original size of each sample is 700 × 900, which is rescaled
to 128 × 128 for this implementation. The training samples
include the original images, as well as corresponding target
binary images containing cancerous or noncancerous lesions.
The target pixels are set to a value of either 255 or 0, denoting
pixels inside or outside the target lesion, respectively.

5.2.2 Experimental results

In this implementation, this dataset was preprocessed with mean
subtraction and was normalized according to the standard
deviation. We used the ADAM optimization technique with a
learning rate of 2 × 10−4 and binary cross-entropy loss. In
addition, we also calculated the means squared error during the

training and validation phase. In this case, 10% of the samples
were used for validation during training with a batch size of 32
and 150 epochs. The training AC of the proposed R2U-Net and
RU-Net models was compared with that of the ResU-Net and U-
Net models for an end-to-end image-based segmentation
approach. The training and the validation AC for all four models
are shown in Fig. 10. In both cases, the proposed RU-Net and
R2U-Net models showed better performance when compared
with the equivalent U-Net and ResU-Net models. This clearly
demonstrated the robustness of the learning phase of the pro-
posed models for end-to-end image-based segmentation tasks.

The quantitative results of this experiment are compared
against the existing methods, as shown in Table 3. We have
evaluated the proposed RU-Net and R2U-Net models with
respect to the time step t ¼ 2 in the RCL unit. The time step
value t ¼ 2 means that the RCL unit consists of one forward
convolution followed by two RCLs. We compared the proposed
approaches against the recently published results using perfor-
mance metrics, including SE, SP, AC, AUC, and DC. The pro-
posed R2U-Net model provides a testing AC of 0.9472 with a
higher AUC, which is 0.9430. Furthermore, the JA and DC are
calculated for all models, and the R2U-Net model provides the
values 0.9278 for JA and 0.9627 for the DC for SLS. Although
we are in the third position in terms of AC compared to ISIC-
201661 (highest) and FCRN-5063 (second highest), the proposed
R2U-Net models show better performance in term of the DC and
JA. These results were achieved with an R2U-Net model with
34 layers that contained ∼13.34M network parameters. The
architectural detail is shown in Table 1. However, the AC of
the proposed RU-Net and R2U-Net models is still higher when
compared to the FCRN-38 networks.63 In addition, the work
presented in Refs. 61 and 63 is evaluated with the VGG-16
and Inception-V3 models for skin cancer lesion segmentation.
These models contain ∼138M and 23M network parameters,
respectively. Furthermore, the RU-Net and R2U-Net models
show higher AC and AUC, compared to the VGG-1663 and
GoolgeNet models.63 In most cases, the RU-Net and R2U-
Net models show better performance against equivalent
SegNet,11 U-Net,13 and ResU-Net31 models for SLS.

Some qualitative outputs of the SegNet, U-Net, and R2U-Net
model for skin cancer lesion segmentation are shown for visual

(a) (b) (c)

Fig. 8 Experimental outputs for three different datasets for RBVS using R2U-Net. The first row shows
input images in grayscale, the second row shows the ground truth, and the third row shows the exper-
imental outputs. The images correspond to the (a) DRIVE, (b) STARE, and (c) CHASE_DB1 datasets.

Fig. 9 AUC for RBVS for the best performance achieved with R2U-
Net on three different datasets.
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comparison in Fig. 11. In most cases, the target lesions are seg-
mented accurately with a similar shape in ground truth.

However, if we closely observe the outputs in the first, sec-
ond, and fourth rows of images in Fig. 11, it can be clearly dis-
tinguished that the proposed R2U-Net model provides a very
similar output shape to the ground truth when compared to the
outputs of the SegNet and U-Net models. If we observe the third
row of images in Fig. 11, it can be clearly seen that the input
image contains three lesions. One is a target lesion, and the other
brighter lesions are not targets. The R2U-Net model segments
the desired part of the image more accurately when compared to
the SegNet and U-Net models. Finally, the fifth row clearly dem-
onstrates that the R2U-Net model provides a very similar shape

to the ground truth, which is a much better representation than
those obtained from the SegNet and U-Net models. Thus, it can
be stated that the R2U-Net model is more capable and robust
for skin cancer lesion segmentation.

5.3 Lung Segmentation

5.3.1 Database

The Lung Nodule Analysis (LUNA)-16 competition at the
Kaggle Data Science Bowl, in 2017, was held to find lung
lesions in 2-D and 3-D CT images. This dataset consisted of
267 2-D samples, each containing a sample photograph, and

Fig. 10 Training and validation AC of R2U-Net, RU-Net, ResU-Net, and U-Net for SLS. (a) Training AC
and (b) validation AC.

Table 3 Experimental results of the proposed approaches for skin cancer lesion segmentation and their comparison with other traditional and DL-
based approaches.

Methods Year SE SP AC AUC DC JA

ISIC-201661 2016 0.910 0.965 0.953 — — 08430

Conv. classifier VGG-1662 2017 0.533 — 0.613 0.6420 — —

Conv. classifier Inception-v362 2017 0.760 — 0.693 0.7390 — —

VGG-1663 2017 0.796 0.945 0.903 — 0.794 0.707

GoogleNet63 2017 0.901 0.916 0.916 — 0.848 0.776

FCRN-3863 2017 0.882 0.932 0.929 — 0.856 0.785

FCRN-5063 2017 0.911 0.957 0.949 — 0.897 0.829

FCRN-10163 2017 0.903 0.903 0.937 — 0.872 0.803

SegNet11 2018 0.9395 0.9222 0.9263 0.9308 0.9502 0.9052

U-Net (16.67M) 2018 0.9457 0.9307 0.9343 0.9324 0.9554 0.9148

ResU-Net (16.67M) 2018 0.9287 0.9479 0.9432 0.9378 0.9608 0.9245

RecU-Net (16.67M) 2018 0.9477 0.9443 0.9458 0.9383 0.9624 0.9273

R2U-Net (16.67M) 2018 0.9224 0.9545 0.9472 0.9430 0.9627 0.9278

Note: The results of VGG-16 and GoogleNet are taken from Ref. 63. Bold values indicate the highest testing accuracy for the task.
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label image displaying correct LS.64 For this study, 80% of the
images were used for training, and the remaining 20% were used
for testing. The original image size was 512 × 512; however, we
resized the images to 256 × 256 pixels in this implementation.

5.3.2 Experimental results

LS is very important for analyzing lung-related diseases, and it
can be applied to lung cancer segmentation and lung pattern
classification for identifying other problems. In this experiment,
the ADAM optimizer is used with a learning rate of 2 × 10−4.

We have used DI loss function, according to Eq. (7). In this
case, 10% of the samples are used for validation with a batch
size of 16 for 150 epochs. Table 4 shows a summary of how well

the proposed models performed against the equivalent SegNet,11

U-Net, and ResU-Net models. In terms of AC, the proposed
R2U-Net model has showed 0.26% and 0.55% better testing
AC compared to the equivalent SegNet11 and U-Net13 models,
respectively. In addition, the R2U-Net model provided 0.18%
better AC against the ResU-Net model with the same number
of network parameters. The qualitative results are shown in
Fig. 12, where the first column shows the input samples, the
second column represents ground truth, and the third, fourth,
and fifth columns show the outputs of the SegNet,11 U-Net,13

and R2U-Net models, respectively. It can be visualized that the
R2U-Net shows better segmentation results with internal details
that are very similar to those displayed in the ground data. If
we observe the input, the ground truth, and the output of the

Fig. 11 Illustration of qualitative assessment of the proposed R2U-Net for the skin cancer segmentation
task. (a) The input sample, (b) ground truth, (c) the outputs from the SegNet11 model, (d) the outputs from
the U-Net12 model, and (e) the results of the proposed R2U-Net model.
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different approaches in the first and second rows, the outputs of
the proposed approaches show better segmentation with more
accurate internal details. In the third row, the R2U-Net model
clearly defines the inside hole in the left lung, whereas the
SegNet11 and U-Net13 models do not capture this detail. The
last row of images in Fig. 12 shows that the SegNet11 and
U-Net models provide outputs that incorrectly capture parts of
the image that are outside of the lesion. On the contrary, the
R2U-Net model provides a much more accurate segmentation
result. Many models struggle to define the class boundary prop-
erly during segmentation tasks.65 The outputs in Fig. 12 are
provided as heatmaps, which show the sharpness of the segmen-
tation borders. These outputs show that the ground truth tends to
have a sharper boundary when compared to the model outputs.
The ROC with AUCs is shown in Fig. 13. The highest AUC is
achieved in the proposed R2U-Net model.

In this implementation, we evaluated both proposed models
for patch-based modeling of retinal blood vessel segmentation
and end-to-end image-based methods for skin and lung lesion
segmentation. In both cases, the proposed models outperformed
the existing state-of-the-art methods, including SegNet,11

U-Net,13 ResU-Net,31 and FCRN-38,63 in terms of AUC and
AC on all three datasets. Thus, the quantitative and qualitative
results clearly demonstrated the effectiveness of the proposed
approach for segmentation tasks.

6 Discussions

6.1 Trade-off between the Number of Training
Samples versus Accuracy

To further investigate the performance of the proposed R2U-Net
model, the trade-off between the number of training samples
versus the performance was investigated for the LS dataset.
We considered the U-Net and R2U-Net models with t ¼ 3, and
these models contained 1.07M network parameters. In the case
of SegNet,11 we considered a similar architecture that was pro-
posed in Ref. 11 with 1.7M network parameters. At the begin-
ning of the experiment, the entire dataset was divided into

two sets, where 80% of the samples were used for training and
validation, and the remaining 20% of the samples were used for
testing during each trail. During this experiment, we used differ-
ent split ratios of [0.9, 0.7, 0.5, 0.3, and 0.1] where the number
of training samples was increased, and the number of validation
samples was decreased for each successive trail. For example,
a split ratio of 0.9 meant that only 10% of the samples were used
for training and the remaining 90% of the samples were used for
validation. Likewise, a split ratio of 0.7 meant that only 30% of
the samples were used for training and the remaining 70% of the
samples were used for validation. Figures 14(a) and 14(b) show
the training and validation DI coefficient errors (1-DI) with
respect to the number of training and validation samples. In each
trial, we considered 150 epochs, and the errors presented were
the average training and validation errors of the last 20 epochs.

These figures show that the proposed R2U-Net model shows
the lowest training and validation error for all of the tested split
ratios, except for the result where the split ratio is equal to 0.5
for the validation case.

In this case, the error of the R2U-Net model is only slightly
greater than that of the U-Net model. These results clearly
demonstrate that the R2U-Net model is a more capable tool
when used for extracting, representing, and learning features
during the training phase, which ultimately helps in ensuring
a better performance. In each trial, we have tested the models
with the remaining 20% of the samples, and the testing errors
are shown in Fig. 15. The R2U-Net model shows the lowest
error for almost all trials relative to the error obtained from the
SegNet11 and U-Net13 models.

6.2 Network Parameters Versus Accuracy

In our experiments, the U-Net, ResU-Net, RU-Net, and
R2U-Net models were utilized with the following architecture:
1 → 16 → 32 → 64 → 128 → 64 → 32 → 16 → 1 for reti-
nal blood vessel segmentation and LS. In the case of the retinal
blood vessel segmentation, we used a time step of t ¼ 2. This
same architecture was tested for lung lesion segmentation for
both t ¼ 2 and t ¼ 3. Even though the number of network

Table 4 The experimental results of the proposed RU-Net and R2U-Net approaches for lung segmentation and their comparison with the SegNet,
U-Net, and ResU-Net models for t ¼ 2 and t ¼ 3.

Methods Year SE SP JSC F1-Score AC AUC DI

SegNet (1.02M)11 2018 0.9766 0.9791 0.9784 0.9575 0.9784 0.9778 0.9652

SegNet (1.752M)11 2018 0.9757 0.9931 0.9887 0.9777 0.9887 0.9844 0.9754

U-Net (t ¼ 2) 2018 0.8645 0.9929 0.9635 0.9156 0.9635 0.9287 0.9780

ResU-Net (t ¼ 2) 2018 0.9781 0.9975 0.9781 0.9522 0.9781 0.9568 0.9792

RU-Net (t ¼ 2) 2018 0.9747 0.9962 0.9911 0.9811 0.9911 0.9855 0.9831

R2U-Net (t ¼ 2) 2018 0.9861 0.9940 0.9922 0.9830 0.9922 0.9901 0.9857

U-Net (t ¼ 2) 2018 0.9816 0.9945 0.9916 0.9822 0.9916 0.9881 0.9801

ResU-Net (t ¼ 2) 2018 0.9838 0.9951 0.9926 0.9833 0.9926 0.9895 0.9825

RU-Net (t ¼ 2) 2018 0.9875 0.9959 0.9942 0.9872 0.9942 0.9918 0.9863

R2U-Net (t ¼ 2) 2018 0.9912 0.9952 0.9943 0.9879 0.9944 0.9933 0.9880

Note: Bold values indicate the highest testing accuracy for the task.
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parameters slightly increased with respect to the time step in the
recurrent convolution layer, improved performance was still
observed, as seen in the last rows of Table 4. Furthermore,
we implemented an equivalent SegNet11 model that required
1.73M and 14.94M network parameters, respectively. For skin
cancer lesion and LS, the proposed models showed better per-
formance against SegNet11 when using both 1.07M and 13.34M
network parameters, which were around 0.7M and 2.66M less
when compared to SegNet.11 Thus, it can be stated that our
model provided better performance with the same or fewer num-
ber of network parameters, compared to the SegNet, U-Net, and
ResU-Net model. Thus, our proposed model possessed signifi-
cant advantages in terms of memory and processing time.

6.3 Computational Times

The computational time for training per epoch and for segment
per sample in the testing phase is shown in Table 5, for all three

Inputs Ground truth SegNet U-Net R2U-Net

(a) (b) (c) (d) (e)

Fig. 12 The experimental results for LS, where (a) shows the inputs, (b) shows the ground truth,
(c) shows the outputs of SegNet,10 (d) shows the outputs of U-Net,12 and (e) shows the outputs of
R2U-Net.

Fig. 13 ROC curve for LS for four different models, where t ¼ 3.
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applications. For blood vessel segmentation, the model takes
around 209, 217, and 283 s∕epoch for the DRIVE, STARE, and
CHASE_DB datasets, respectively. The training time for skin
cancer and LS tasks are 23 and 14 s, respectively. On the other
hand, the processing times during the testing phase for the
DRIVE, STARE, and CHASE_DB datasets are 2.84, 6.42, and
8.66 s∕sample, respectively. According to Ref. 56, it would take
around 90 s on average to segment an entire image (which is
equivalent to a few thousand image patches). Alternatively, the

proposed R2U-Net approach takes around 6 s∕sample, which is
an acceptable rate in a clinical use scenario. In addition, when
executing skin cancer segmentation and LS, entire images could
be segmented in 0.32 and 1.145 s, respectively.

7 Conclusions and Future Works
In this paper, we proposed an extension of the U-Net architec-
ture using RCNNs and recurrent residual CNNs. The proposed
models have been called “RU-Net” and “R2U-Net,” respec-
tively. These models were evaluated using three different appli-
cations in the field of medical imaging, including retinal blood
vessel segmentation, skin cancer lesion segmentation, and LS.
The experimental results demonstrated that the proposed RU-
Net and R2U-Net models showed better performance in most
of the cases for segmentation tasks with the same number of
network parameters when compared to the existing methods,
including the SegNet, U-Net, and ResU-Net models, on all three
datasets. The quantitative and qualitative results, as well as the
trade-off between the number of training samples versus perfor-
mance, showed that the proposed RU-Net and R2U-Net models
were more capable of learning during training, which ultimately
showed better testing performance. In the future, we would
like to extend this model to a 3-D architecture to carry out a
3-D medical imaging analysis, including 3-D LS, brain tumor
segmentation, and detection from 3-D MRI images.
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