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Abstract. The availability of massive amounts of data in histopathological whole-slide images (WSIs) has
enabled the application of deep learning models and especially convolutional neural networks (CNNs), which
have shown a high potential for improvement in cancer diagnosis. However, storage and transmission of
large amounts of data such as gigapixel histopathological WSIs are challenging. Exploiting lossy compression
algorithms for medical images is controversial but, as long as the clinical diagnosis is not affected, is acceptable.
We study the impact of JPEG 2000 compression on our proposed CNN-based algorithm, which has produced
performance comparable to that of pathologists and which was ranked second place in the CAMELYON17
challenge. Detecting tumor metastases in hematoxylin and eosin-stained tissue sections of breast lymph
nodes is evaluated and compared with the pathologists’ diagnoses in three different experimental setups.
Our experiments show that the CNN model is robust against compression ratios up to 24:1 when it is trained
on uncompressed high-quality images. We demonstrate that a model trained on lower quality images—i.e., lossy
compressed images—depicts a classification performance that is significantly improved for the corresponding
compression ratio. Moreover, it is also observed that the model performs equally well on all higher-quality
images. These properties will help to design cloud-based computer-aided diagnosis (CAD) systems, e.g., tele-
medicine that employ deep CNN models that are more robust to image quality variations due to compression
required to address data storage and transmission constraints. However, the results presented are specific to the
CAD system and application described, and further work is needed to examine whether they generalize to other
systems and applications. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.6.2.027501]
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1 Introduction
Computational histopathology involves computer-aided diagno-
sis (CAD) for microscopic analysis of stained histopathological
whole-slide images (WSIs) to study the presence, localization,
or grading of diseases. Emerging new scanners for digital micro-
scopic imaging make it possible to acquire gigapixel histopatho-
logical images at a large scale.1,2 These large-scale digital
datasets make digital pathology a perfect use case to deploy
data-greedy, deep-learning models. The availability of these
massive amounts of data in combination with recent advances
in artificial intelligence, based on state-of-the-art deep-learning
models and more specifically convolutional neural networks
(CNNs), results in a situation where for many clinical image-
analysis tasks, computational pathology solutions have a compa-
rable performance to that of humans.3 For example in pathology,
recent deep learning-based techniques are comparable or even
outperform humans in detecting and localizing breast cancer
metastases in lymph node WSIs.4

Although increasing the number of image samples boosts the
performance of a deep CNN by better learning of the image-

content diversity,5 the intrinsic image quality of the used sam-
ples will also impact the CNN’s performance. Furthermore,
dealing with a large database for storage and the associated
transmission for cloud-based computing is challenging and
for the design of a CAD system even critical. For example,
working on big data in the cloud requires reconciling two con-
tradictory design principles. On the one hand, cloud computing
is based on the concepts of consolidation and resource pooling,
while on the other hand, big data systems (such as Hadoop) are
built on the shared nothing principle, where each node is inde-
pendent and self-sufficient.6 These issues are more crucial in
telemedicine and cloud-based computation, regarding privacy
and security issues. For example, in the CAMELYON17 chal-
lenge,2,7 which is an international competition on designing
the best CAD algorithm for automated breast cancer metasta-
ses detection, about 1000 histopathological WSIs (>3 terabyte
image data) have been made publicly available. Downloading
the whole dataset on a local machine for training a CAD model
was cumbersome and requires a significant amount of time
and network bandwidth. Given the large size of WSIs, the
use of compression algorithms is a very appealing solution.
Particularly, lossy compression that can support larger com-
pression ratios is interesting. Luckily, it is generally not pro-
hibited by the main regulatory bodies in the European Union,
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United States, Canada, and Australia, provided that it does not
impair the diagnostic quality and does not cause new risks com-
pared with conventional practice.8 Hence, it is important to
define a strategy or protocol for an efficient parameterization
of the deployed compression techniques to yield a high com-
pression ratio without jeopardizing the classification perfor-
mance. The issue of higher compression ratio with lower
encoding time has been recognized as well in recent efforts
for creating the DICOM standard in the field of digital
pathology.9

For studying the impact of lossy compression on the diag-
nostic performance of human experts, several studies have
been reported.8,10–16 Mostly, they reported that the human visual
perception is to some extent robust against image quality deg-
radation. However, there is not a generally accepted tolerance
level with respect to the diagnostic accuracy. In addition,
because clinical evaluations can be subjective and have a bias
regarding the task at hand and the skill of experts, different stud-
ies have suggested different compression ratios corresponding
to the addressed clinical task. For example, Kalinski et al.8

reported that the impact of a JPEG 2000 compression ratio
up to 20 did not show significant influence on the detection
of Helicobacter pylori gastritis in gastric histopathological
images, performed by three pathologists. In another work by
Krupinski et al.,11 by involving six pathologists, a compression
factor of up to 32 did not cause noticeable difference in distin-
guishing benign from malignant cancer in breast tissue. At the
same time, they reported that increasing the compression ratio to
64:1 affected the diagnostic performance significantly. Marcelo
et al.13 studied the accuracy of diagnosis and confidence level of
10 pathologists between noncompressed and JPEG compressed
(reduced 90% in file size) pathology images. They reported no
statistically significant difference in diagnostic accuracy at 95%
confidence interval (CI). Johnson et al.14 reported a threshold of
about 13:1 compression ratio for human observer to discrimi-
nant JPEG 2000 compressed versus uncompressed breast
histopathological images. In work of Pantanowitz et al.,12 a
compression ratio of 200:1 was reported as an acceptable thresh-
old for measuring the HER2 score in immunohistochemical
images of breast carcinoma evaluated by a conventional image
processing algorithm.17 Lopez et al. used a cell counting CAD
system as a reference for statistical evaluation of cell counting
error in the uncompressed and JPEG-compressed histopatholog-
ical images. They involved three different compression ratios of
3, 23, and 46 and concluded that increasing the compression
ratio deteriorates the performance of cell counting in images.
They concluded that the significant factors influencing the
classification-performance degradation of a CAD system are
the compression ratio and the intrinsic image complexity.
According to their study, a more complex image is known as
an image with a higher number of nuclei.

Although all the above works study the impact of lossy com-
pression on the diagnostic performance, they do not involve a
complex model such as a deep CNN as a model observer.
Furthermore, their experiments with a CAD observer are limited
to training on the high-quality input data and evaluating on both
high- and low-quality image data, while they have not consid-
ered the performance of a model observer that has been adapted
(trained) on low-quality input data.

JPEG 200018 was introduced as a follow-up standard for
JPEG (ISO/IEC 10918-1 to ITU-T Rec. T.81) bringing
improved rate-distortion performance and additional

functionality, such as resolution and quality scalability.19

One of the main differences between JPEG 2000 and the
JPEG algorithm is the exploitation of the discrete wavelet
transform instead of a block-based discrete cosine transform.
In terms of visual artifacts, JPEG 2000 produces “ringing” and
“blocking” artifacts at high compression ratios, whereas JPEG
produces both particularly blocking artifacts.20 Nonetheless,
although their performance for higher bitrates is comparable
at mid and lower bitrates, JPEG 2000 outperforms JPEG in
terms of rate-distortion performance.21 With the use of the
JPEG 2000 algorithm, it also becomes possible to store
different parts of the same picture with different qualities,
which makes it attractive for the compression of WSIs,22

since ∼80% of a WSI area contains an empty (white) back-
ground region23 that does not contain any tissue. Helin
et al.24 showed that applying a very high degree of JPEG
2000 compression on the background part of WSIs and apply-
ing a conventional amount of compression (e.g., 35:1) on the
tissue-containing part results in a high overall compression
ratio. Compression gains of up to a factor 3 are reported com-
pared to classical, nonadaptive compression with JPEG 2000.

A number of studies have assessed the impact of the quality
of natural images in terms of compression on the performance of
a deep CNN.25,26 In work of Dodge and Karam,25 a VGG-16
network, which has been trained on the ImageNet 2012 data-
set,27 was found resilient to JPEG and JPEG 2000 compression
up to a compression factor of 10 and down to 30-dB peak signal-
to-noise ratio, respectively. In similar work by Dejean-Servières
et al.,26 again an experiment on the ImageNet dataset is per-
formed, where a CNN showed only a drop of one unit on the
classification ranking for object categorization after applying
the compression (with rate of 16:1). Here the classification
ranking is defined by sorting (in descending order) the output
probabilities of the assigned class labels, given an input
image by the network. So ideally the true class should be
recognized with rank one while categorizing in any lower rank-
ing can be considered as a greater error in the classification
performance.

Although these studies involve a CNN for the assessment of
classification performance on compressed natural images, to
the best of our knowledge, no similar study has been carried
out on the histopathological images/WSIs. The outcome of such
a study can be different from the obtained results for the natural
images, since the histopathological image contents have a high
intercomponent correlation and can be processed differently.

In this paper, we investigate the impact of the compression
ratio to evaluate the performance of a deep CNN applied
to JPEG 2000 compressed, histopathological WSI data. We
employ a recently proposed CAD model that produces compa-
rable performance to that of pathologists in detecting cancer
metastases in breast lymph nodes. Since our CAD system
exploits a learning model, we study the impact of degradation
in image quality due to compression, both by varying the quality
(i.e., compression ratio) of the training data in the training
phase as by varying the quality of the test data during the testing
phase. Such a study reveals the adaptivity of the CNN model for
preserving its high performance on lower quality images when
its parameters are adapted.

In the following, we first introduce the data that has been used
in this study. Afterward, the CNN model is briefly explained and
our experimental setup and the obtained results are detailed.
Finally, the results are discussed and conclusions are drawn.
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2 Materials and Methods

2.1 Dataset

We use the CAMELYON16 dataset4 for the experiments. This
dataset, which is the preceding version of CAMELYON17,
contains tumor annotations at pixel level (Fig. 1). The task in
CAMELYON16 was detecting and segmenting the metastases
in WSIs, while in CAMELYON17 the task was changed to
categorization of each detected metastatic region into four
types (i.e., grades), according to their area. This can be consid-
ered as a postprocessing stage to what was defined in
CAMELYON16. In this study, we base our evaluation of
the CAD performance on the task that was defined in the
CAMELYON16 challenge, as it obtains more accurate quanti-
fied measures in comparison with the slide-level categorization
task of CAMELYON17.

The CAMELYON16 dataset consists of WSIs having pixels
acquired with a resolution equal to 0.243 μm, collected from
two clinical centers in the Netherlands. Originally, the dataset
was split into a training set and a testing set. The training set
consists of 111 WSIs with and 159 without metastases. The test-
ing set consists of 129WSIs, 49 with and 80 without metastases.
We removed one slide (namely tumor slide number 114) from
the testing set because it does not have an exhaustive annotation
for all its mestastasis regions as also mentioned by the data pro-
vider. For ground truth, the pixel-level annotation for the pos-
itive (i.e., containing tumor) WSIs was provided by a group of
pathologists. The original WSIs were stored in the TIFF format
that was already compressed by the JPEG compression with
80% quality and 4:2:2 Y’CbCr chroma subsampling. The WSIs
are stored in a pyramidal structure with different levels of
magnification. Here we use the 20× magnification level, since
it has shown the highest performance for tumor detection.28

In our study, the uncompressed high-quality data (also labeled
with 1:1 ratio) refers to this dataset. More details about this data-
set can be found in the paper of Bejnordi et al.4

2.1.1 Data sampling

Since involving all the regions inside a WSI is redundant and
inefficient for training a CNN model, a data-sampling stage
is applied, which consists of two parts: region of interest
(ROI) detection and patch extraction. As mentioned earlier,

about 80% of a WSI area contains empty background region,23

which can be easily detected using a conventional image
processing technique such as Otsu thresholding.1 By detecting
the empty regions of each WSI, they are ignored for further
analysis by the CNN model. Because of the very large
image-frame size of WSIs, directly using them as input to a
CNN is impractical. A common approach is, therefore, the
processing of image patches and employing the CNN as a
patch classifier.29 In a patch classification approach, the input
to the CNN is a patch image with predefined dimensions and
the output is the predicted class of the central pixel inside
the image patch. After training the network on image patches,
prediction on WSIs can be performed by sliding a window over
the entire WSI and consequently predicting the central pixel of
the window. Training the model on all possible extracted patches
is redundant, and the population of samples between two classes
would be highly imbalanced because in most cases only a small
portion of the examined tissue contains tumor cells. For com-
pensating the problem of highly imbalanced data in patch sam-
pling, we only randomly select a limited number of negative
patches, while all the extracted positive patches from the train-
ing set are used.30 Here the negative and positive patches refer to
the patches that have been labeled as normal and tumor patches,
respectively.

In total, 650k patches of size 300 × 300 pixels are extracted.
A patch is labeled as a positive sample (tumor) if >20% of its
pixels are annotated as positive, otherwise it is labeled as a neg-
ative (normal) sample. For better training of the model, the
extracted patches are augmented on the fly (during training)
by applying random rotation, using multiples of 90 deg (i.e.,
rotation angles of {0, 90, 180, 270}). Consequently, the images
are also randomly chosen to be flipped or not. Flipping may be
vertically, horizontally, or in both directions. For increasing the
generalization ability of the classifier against minor changes in
chromatic information, we apply color augmentation on the
training image patches that has become a common practice in
training a deep CNN.4,7 This leads to training a wider range of
color variations compared to what typically occurs in the train-
ing set. To do so, we insert some noise into the lightness and
saturation channels of the HSL color coordinates, by adding
a (uniformly distributed) random value to the pixels of each
patch (or subtracting a random value from them). The maximum
magnitude of such an additive noise is equal to 0.25% of maxi-
mal value of the channel (e.g., 0.25 × 255).

Fig. 1 An example WSI from the CAMELYON16 dataset. (a) A histopathology WSI of size 220k ×
98k pixels is shown with multiple zoom levels. (b) An image patch of size 300 × 300 pixels. The meta-
stases have been delineated by the pathologists (green contours).
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2.2 JPEG 2000 and Image Quality

The extracted patches from the data sampling stage are com-
pressed. We deployed JPEG 2000 with 6 wavelet decomposition
levels and 14 different compression ratios. Figure 2 shows a nor-
mal and a tumor patch compressed at different compression ratios.

2.3 Automated Tumor Detection

Our recently proposed CNN-based model1 is adopted as an
automated cancer metastases detection system in breast lymph
node WSIs. This model uses the “Inception-v3” architecture,31

a 48-layer deep CNN, as patch classifier. The input data to
the model are full-color RGB image patches and its output is
a 2-element vector with one-hot encoding, representing a binary
classification. For speeding up the training, the parameters of
CNN are initialized using the parameters, which have been
trained on the ImageNet 2012 dataset.27 The Inception-v3 archi-
tecture has shown to have a better performance for image clas-
sification with a much lower number of parameters, compared
with its preceding versions, due to its convolution factorization
strategy.31 In computational pathology, this model has shown
human-level performance in detecting tumor cells28 and won
second place in the CAMELYON17 challenge,2,7 which
includes the CAMELYON16 dataset used in this paper.

2.4 Experiments and Evaluation

2.4.1 Experiments

First, ROI selection and patch extraction are performed on the
training and test WSIs as described earlier. About 150k positive
samples were extracted from the regions with metastases in

positive WSIs, according to the provided ground truth. For
compensating the problem of severe class imbalance in samples,
we have extracted only about 500k negative samples from the
normal regions of the negative and positive WSIs. Afterward,
these samples are compressed by the JPEG 2000 algorithm
using 14 different compression ratios.

The impact of changing the compression ratio of JPEG 2000
on the performance of the CNN is extensively evaluated for the
following three distinct scenarios.

1. The CAD system is trained on high-quality uncom-
pressed images and is evaluated on compressed
low-quality images with several compression ratios.

2. The CAD system is trained and tested on the same
level of compression. For example, if the model is
trained on images compressed by a factor of 32,
it is also evaluated on images that are compressed by
the same factor.

3. The CAD system is trained on images compressed
with the maximal compression ratio that still allowed
the classification performance to be above a prede-
fined threshold (e.g., <10% drop from the maximum
F1 score). Thereafter, it is evaluated with test images
with both lower and higher compression ratio.

The first scenario is highly applicable to telemedicine and in
particular telepathology,32 where a primary diagnosis can be
obtained by transmitting the compressed images to a remote
CAD system. Such a remote CAD system can have already
been trained on high-quality input data. The second scenario
is more relevant in cloud-based computing and training,

Fig 2 Examples of (a) normal and (b) tumor image patches compressed with JPEG 2000 at different
compression ratios.
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where several pathology labs share their data to a remote server
for training and evaluation. The third scenario is valid for a case
where a powerful computation engine is locally available, e.g.,
exploiting a supercomputer in a clinical institute or large hos-
pital, so that the transmission of high-quality images is not
an issue internally, but utilizing external images from remote
data sources for training still has limitations due to transmission
bandwidth constraints.

2.4.2 Evaluation method

The performance of the binary classification between tumor
and normal image patches is evaluated by reporting the F1
score and area under the receiver operating characteristic (ROC)
curve, called AUC. Evidently, the configuration of a CAD
system with a higher AUC and F1 score represents a better
performance.

Since the discrimination threshold of the binary classification
system is varied, we report the diagnostic capability of the sys-
tem with a complementary measurement of the precision–recall
(PR) curve. In comparison with alternative measures such as
ROC curve, a PR curve can better expose the differences
between algorithms, especially when highly skewed cancer
detection data are studied.33 The PR curve visualizes the perfor-
mance of a classifier by ignoring the true negative samples; this
property highlights well the change in classification perfor-
mance when imbalanced data are processed. It is worth mention-
ing that even if the training set contains an equal number of
patches per class, the data originally are considered imbalanced,
since the area of tumor region is often smaller than the normal
region in a pathology slide.

3 Results

3.1 Scenario 1: High-Quality Training Data and
Evaluation on Lower-Quality Images

In this experiment, the CNN model is trained on uncompressed
images for a fixed number of iterations equal to 10k. Afterward,
we evaluate its performance on the test set, which has been
compressed with 14 different compression ratios, including
the original uncompressed test images (compression ratio 1:1).
The obtained F1 score and AUC values are depicted in
Table 1 and the PR curves are plotted in Fig. 3. As expected, by
degrading the image quality due to increasing the compression

ratio, the CNN performance was decreased. It can be observed
that up to a factor of 24, the performance does not show con-
siderable changes, but for a ratio of 32:1, the F1 score drops to
0.908. As the F1 scores and the PR curves illustrate, a factor of
24 shows a trade-off between performance and compression.

3.2 Scenario 2: Training and Testing on Images of
the Same Quality

In this experiment, we have trained the networks multiple times,
each time using training images that are compressed with a spe-
cific ratio. After training, the model is evaluated on the test set,
which has been compressed with the same ratio as applied on
the training set. Table 2 and Fig. 4 show the obtained results.
The outcome drastically differs from the previous experiment.
As can be observed, the performance of the CNN is in this
case not much impacted, meaning that a CNN can be trained
to handle larger compression ratios. The difference between
the performance of the model under different compression ratios
is minimal. In comparison with the performance of the model in
the previous experiment (scenario 1), the improvement is sig-
nificant per compression rate. For example, the F1 score for
compressed images with the factor of 164 is equal to 0.934,
whereas when the model is trained on high-quality images,
its F1 score was only 0.586. This represents about 59%
improvement. A possible explanation for such a strong improve-
ment is the adaptation of the network parameters to the distor-
tion and degradation of the image quality, which are also present
in its training set.

3.3 Scenario 3: Evaluation on Varying-Quality
Images with Fixed Compressed Trained Images

In this experiment, the performance of the model, which was
trained on images compressed with a factor of 48, is evaluated
on a compressed test set with various compression ratios as well
as uncompressed images. The compression ratio of 48:1 was
selected, as it shows a maximum compression ratio where
the F1 score of the CNN drops <10% of its maximum, accord-
ing to the previous experiment (scenario 2). As we can observe
from Table 3 and Fig. 5, the results improve for the higher com-
pressed images (lower than 48:1 factors), compared with the
first experiment when the model was trained on uncompressed
images. The reason may be similar to what is observed in
scenario 2 because the system has learned the compression

Table 1 F1 scores, AUC values, and their 95% CIs for the CAD model, tested on the images with different compression ratios, when it is trained
on the uncompressed (1:1) high-quality training images (scenario 1).

Metric

JPEG 2000 compression ratios

1:1 2:1 4:1 8:1 12:1 16:1 24:1 32:1 48:1 64:1 96:1 128:1 164:1 256:1

F1 score CI upper bound 0.954 0.954 0.952 0.946 0.938 0.934 0.923 0.903 0.878 0.836 0.754 0.687 0.580 0.594

Mean 0.956 0.957 0.954 0.949 0.941 0.937 0.927 0.908 0.883 0.841 0.759 0.692 0.586 0.600

CI lower bound 0.959 0.959 0.957 0.952 0.944 0.940 0.931 0.913 0.887 0.845 0.764 0.698 0.592 0.605

AUC CI upper bound 0.991 0.991 0.991 0.989 0.987 0.985 0.980 0.972 0.957 0.931 0.872 0.820 0.668 0.661

Mean 0.992 0.992 0.991 0.990 0.988 0.987 0.981 0.974 0.959 0.934 0.876 0.825 0.674 0.668

CI lower bound 0.993 0.992 0.992 0.991 0.989 0.988 0.983 0.976 0.961 0.936 0.879 0.829 0.680 0.675

Journal of Medical Imaging 027501-5 Apr–Jun 2019 • Vol. 6(2)

Zanjani et al.: Impact of JPEG 2000 compression on deep convolutional neural networks. . .



artifacts from the training samples. In comparison with the sec-
ond experiment, the performance slightly decreases on either
side of the trained compression ratio. In a nutshell, from the
results, we can observe that a trained CNN model on the
low-quality images, e.g., with compression ratio of 48:1, can
perform almost equally well on all higher-quality images and
even on the slightly lower-quality samples.

4 Conclusion and Discussion
Compression of histopathology images has not yet been approved
by regulatory agencies in the US for clinical applications. The
contribution of this paper is that the investigation provides evi-
dence that compression may be used from the CAD point of
view, but a much larger effort is needed to accept compression

Table 2 F1 scores, AUC values, and their 95% CIs for the CAD model, tested on the compressed images, which have been compressed with
the same ratio as applied to the training images (scenario 2).

Metric

JPEG 2000 compression ratios

1:1 2:1 4:1 8:1 12:1 16:1 24:1 32:1 48:1 64:1 96:1 128:1 164:1 256:1

F1 score CI upper bound 0.955 0.952 0.952 0.949 0.953 0.950 0.946 0.945 0.943 0.927 0.933 0.930 0.933 0.908

Mean 0.956 0.953 0.953 0.950 0.954 0.951 0.947 0.946 0.944 0.929 0.934 0.931 0.934 0.910

CI lower bound 0.957 0.954 0.955 0.952 0.956 0.953 0.948 0.947 0.946 0.930 0.936 0.933 0.936 0.912

AUC CI upper bound 0.991 0.991 0.990 0.990 0.991 0.990 0.989 0.988 0.988 0.981 0.984 0.984 0.985 0.975

Mean 0.992 0.991 0.991 0.990 0.991 0.991 0.990 0.989 0.989 0.982 0.985 0.985 0.985 0.976

CI lower bound 0.992 0.992 0.991 0.991 0.992 0.991 0.990 0.989 0.989 0.982 0.986 0.985 0.986 0.977
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Fig. 3 Evaluation of the CAD model on compressed test images, when trained on uncompressed (1:1)
high-quality training images: (a) PR curves and (b) enlarged view on the PR curves. The F1 scores are
shown in the legend of the graphs.
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in the clinical practice. In this investigation, the aim is to access
the impact of JPEG 2000 compression on the diagnostic per-
formance of a deep CNN model for detecting metastases in
breast lymph node histopathological WSIs. To do so, three
series of experiments have been set up. When employing
the uncompressed high-quality images for training the deep
neural network model, the performance drops significantly
for a compression ratio of 48:1 and higher, but it does not

change significantly for the 24:1 and lower compression ratios.
Our findings about the robustness of the CNN model against
JPEG 2000 compression is in near agreement with the cut-off
quality threshold of 32:1 ratio in the work of Krupinski et al.,11

which involved pathologists as observers for classifying
benign versus malignant breast cancer in WSIs. However,
this work did not examine any effects on the human perfor-
mance when reviewing such images.

(a) (b)

Fig. 4 Evaluation of the CAD model on compressed test images with the same compression ratio as
applied to the training images: (a) PR curves and (b) enlarged view on the PR curves. The F1 scores are
shown in the legend of the graphs.

Table 3 F1 scores, AUC values, and their 95% CIs for the CAD model tested on the images with different compression ratios while it was trained
on 48:1 compressed training images (scenario 3).

Metric

JPEG 2000 compression ratios

1:1 2:1 4:1 8:1 12:1 16:1 24:1 32:1 48:1 64:1 96:1 128:1 164:1 256:1

F1 score CI upper bound 0.929 0.930 0.926 0.925 0.927 0.929 0.936 0.935 0.939 0.933 0.912 0.891 0.847 0.737

Mean 0.932 0.933 0.930 0.928 0.930 0.932 0.939 0.939 0.943 0.936 0.915 0.895 0.852 0.745

CI lower bound 0.935 0.936 0.934 0.931 0.934 0.936 0.942 0.942 0.946 0.938 0.919 0.899 0.856 0.752

AUC CI upper bound 0.985 0.985 0.983 0.983 0.984 0.984 0.986 0.986 0.987 0.985 0.976 0.966 0.942 0.864

Mean 0.986 0.986 0.984 0.984 0.985 0.985 0.987 0.987 0.988 0.986 0.978 0.968 0.944 0.868

CI lower bound 0.987 0.987 0.986 0.985 0.986 0.986 0.988 0.989 0.989 0.987 0.979 0.971 0.946 0.872
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Training and predicting on the same quality images produces
drastically better results compared with the previous scenario in
which themodel only has been trained on uncompressed data. The
outcome is remarkably improved for high compression ratios,
while it does not change for low compression ratios. As an exam-
ple of such an improvement, the performance of the model on
compressed images with factor of 164 is on par with results of
a previous experiment with factor of 24. This mainly happens
because the CNN parameters have been optimized by observing
the low-quality (distorted) training images. So it can be robust to
some extent to the presence compression artifacts.

Finally, we have empirically shown that training the net-
works on 48:1 compressed images increases the performance
for somewhat lower and higher compression ratios. These find-
ings can help for designing a more efficient CAD system,
mainly when a constraint exists for transmission and storage,
such as in a system with a cloud-based computation or telepa-
thology. Also we have shown that for a better training of the
CNN model, the availability of high-quality uncompressed
images is not a necessity.

Here we emphasize that our results presented in this study are
specific to the CAD system and application described in this
paper, and further work is needed to examine whether they gen-
eralize to other systems and applications.
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