
Superpixel generation for synthetic
aperture radar imagery using edge-
dominated local clustering

Hao Hu
Bin Liu
Zenghui Zhang
Weiwei Guo
Wenxian Yu

Hao Hu, Bin Liu, Zenghui Zhang, Weiwei Guo, Wenxian Yu, “Superpixel generation for synthetic
aperture radar imagery using edge-dominated local clustering,” J. Appl. Remote Sens. 12(4),
045006 (2018), doi: 10.1117/1.JRS.12.045006.



Superpixel generation for synthetic aperture radar
imagery using edge-dominated local clustering

Hao Hu, Bin Liu,* Zenghui Zhang, Weiwei Guo, and Wenxian Yu
Shanghai Jiao Tong University, Shanghai Key Laboratory of Intelligent Sensing and

Recognition, Shanghai, China

Abstract. Recently, superpixel-based methods have shown promising performance for syn-
thetic aperture radar (SAR) image interpretation. In these methods, the statistical model-based
local iterative clustering represents the mainstream of superpixel generation for SAR images.
However, errors in the model parameter estimation degrade the accuracy of the model-based
distance measure between a pixel and a cluster, which directly affects the performance of super-
pixel segmentation results. Further, the relative weight between statistical similarity and spatial
proximity should be carefully selected to control the balance between boundary adherence and
regularity of superpixels. An edge-dominated local clustering method is proposed to overcome
these limitations. Edge information is introduced not only to define the dissimilarity of a pixel
and a cluster but also to provide an adaptive grid with multiple layers for the initialization of
cluster centers. Experiments on simulated and real datasets show that, compared with the pre-
vious algorithms using the statistical model-based dissimilarity, the proposed method produces
superpixels, which have better edge adherence and stable performance. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.12.045006]

Keywords: superpixel generation; edge extraction; edge-dominated local clustering; synthetic
aperture radar image.

Paper 180477 received Jun. 5, 2018; accepted for publication Sep. 20, 2018; published online
Oct. 16, 2018.

1 Introduction

Due to the active coherent microwave imaging mechanism, synthetic aperture radar (SAR)
provides high-resolution images independent from daylight, cloud coverage, and weather
conditions.1 Nowadays, SAR images have become a regular and powerful information sources
for many applications, including environmental monitoring, terrain classification, etc. However,
the interpretation of SAR images is still a challenging task because of their special imaging
mechanism. In recent years, superpixel-based methods have attracted increasing attention for
SAR image understanding. The basic concept of superpixel was first presented by Ren and
Malik2 as the local coherent regions using an oversegmentation algorithm. As superpixels group
the pixels with similar characteristics into meaningful atomic regions, they can effectively cap-
ture image features and well adhere to object boundaries. Therefore, superpixels can achieve
a better perceptual representation of images than pixels, as well as reduce the complexity of sub-
sequent image processing tasks, such as segmentation, classification, object detection, and so on.

Until now, most of the superpixel generation methods for SAR images with promising per-
formance are specially tailored from the ones proposed in the computer vision community, such
as normalized cut,3 turbopixels,4 simple linear iterative clustering (SLIC),5 etc. Normalized cut is
the most classical algorithm;it treats image segmentation as a graph partitioning problem and
globally minimizes the segmentation cost. However, the high computational complexity has lim-
ited the wide applicability of this algorithm. Turbopixels is an effective method for generating
superpixels, and it has been applied for SAR image analysis in much research.6,7 It gradually
dilates regularly distributed seeds using geometric flows and poses strong constraints on the
uniformness and compactness of superpixels. Meanwhile, due to the stability and efficiency
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issues of the underlying level-set method, the generated superpixels present relatively lower
adherence to boundaries,8 and computational results show that it runs relatively slower on
real-world datasets than the other OðNÞ superpixel algorithms.5,9

On the contrary, SLIC5 has been widely used in SAR images because of its simple concept,
easy implementation, and high efficiency in practice. SLIC assigns each pixel to a cluster of the
nearest seed and iteratively updates the cluster center by computing a pixel-to-cluster distance
measure. However, in the original SLIC, this measure is obtained using five-dimensional (5-D)
Euclidean distance in labxy space,5 which cannot be applied directly on SAR images due to
the multiplicative speckle noise. Thus, some alternative distance measures have been proposed
in the last few years. For instance, Xiang et al.10 used a distance based on pixel intensity and
location similarity for SAR images that is derived from the Nakagami–Rayleigh distribution and
pixel intensity ratio. Zou et al.11 combined the generalized gamma distribution-based likelihood
value with spatial distance to represent the pixel-to-cluster similarity. Yu et al.12 proposed a
distance of two patches based on the likelihood ratio test statistic following the exponential
distribution and used it to measure the intensity dissimilarity of a pixel and a cluster center.
For polarimetric SAR (PolSAR) images, Feng et al.13 directly used a complex Wishart distri-
bution-based distance as a substitute for the feature-based distance in SLIC to generate super-
pixels. Song et al.14 defined a dissimilarity using the Bartlett distance, which is derived from
hypothesis tests on Wishart distribution. Qin et al.15 improved the cluster center initialization and
used the revised Wishart distance for local clustering. Xiang et al.16 defined a similarity measure
that contains multiple cues, including polarimetric, texture, and spatial information.

In summary, to relieve the speckle noise effect and make the SLIC method applicable for
SAR/PolSAR images, most of the existing research follows two ideas: (1) replacing the color-
based distance with statistical model based ones and making improvements and (2) combining
statistical models with other features to construct a compound distance, such as DT ¼ D1 þ
D2 þ : : : þDn. However, there is a problem with these two ideas. First, to calculate the afore-
mentioned pixel-to-cluster distance measures, the parameters of the statistical models should be
estimated accurately in each cluster. However, the initial clusters are sampled on a regular grid
and will continually change during the local iterative clustering, which means the assumption of
the independent and identically distribution (i.i.d.) in the clusters is usually violated, especially
in heterogeneous areas. In this situation, the estimated parameters are biased, so the accuracy
of distance measures will be degraded and the performance of superpixel generation will be
affected. Second, combining statistical models with other features can partly improve the accu-
racy of the pixel-to-cluster distance measure, but the direct adding of different distances still
lacks theoretical support. If there were remarkable differences in the range and distribution
of values of each distance, the addition of multiple distances derived from different features
would be unreliable in some cases.

In this paper, we explore the issue of distance measure from another point of view. Motivated
by Leung and Malik,17 edge information can be directly used to define the dissimilarity between
pairwise pixels in the natural images. Additionally, in SAR images, edges are not the simple
sharp changes in image brightness, but significantly reflect changes in the statistical properties
of each area in the images. In other words, edge information can be considered the abstraction of
the underlying statistical characteristics and a bridge to connect statistics and superpixels. Thus,
the edges are more perceptual and stable to represent dissimilarity between two pixels if there is
an edge located in the middle of them. Liu et al.18 computed the dissimilarity by the edge infor-
mation, which is extracted by a classical region-based detector for SAR images, but the detector
suffers from the scale dilemma and the orientation problem.19 Thus, the locations of edge points
are unreliable and the performance of superpixels is not satisfactory. To overcome the limitation,
we adopt an up-to-date detector to extract the edge information more precisely and define an
edge-dominant distance to replace the statistical model-based distance. Experimental results con-
firm that a reliable result of superpixels can be provided using only edge information and the
superpixels can well adhere to the real edges.

Another problem with the model-based SLIC methods is that it is often difficult to make an
appropriate selection of the relative weight between statistical similarity and spatial proximity.
The weight is important for offering a balance between boundary adherence, compactness, and
regularity of superpixels.5 However, it is usually set manually to a constant value by trial and
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error, which might still not be suitable for each iteration and is often too large to lead to under-
segmentations in some areas. To solve this problem, we built an initialization step for the cluster
centers with an edge-adaptive grid (EG). This grid has multiple layers that are generated based
on edge information and quadtree decomposition. Experiments show that it is able to reduce
the negative effect caused by a large value of the relative weight and make the performance of
superpixels less sensitive to the changes of weight.

The remainder of this paper is organized as follows. The proposed method is described in
Sec. 2. The experiments and the performance evaluations are presented in Sec. 3. The conclu-
sions are given in Sec. 4.

2 Superpixel Generation

2.1 Edge Extraction

In this paper, the edge information is extracted using the degenerate filter with the weight maxi-
mum likelihood estimation (DG-WMLE) proposed in Ref. 19. The DG-WMLE method can
address the scale dilemma in edge extraction and provide a better performance on the estimation
of the edge strength and the location of edge points, which is extremely important and necessary
for generating superpixels with a good boundary adherence. The key design of the DG-WMLE
method is a degenerate filter, as illustrated in Fig. 1. The edge strength of the center pixel is
estimated by the dissimilarity between the two pixels adjacent to the center pixel. And the cal-
culation of this dissimilarity needs the noise-free intensity of the two pixels. According to
Refs. 20 and 21, the noise-free value can be evaluated using the WMLE, which is

EQ-TARGET;temp:intralink-;e001;116;453μ̂ðxÞ ¼
P

x 0∈RSWðxÞωðx; x 0ÞIðx 0ÞP
x 0∈RSWðxÞ ωðx; x 0Þ ; (1)

where Iðx 0Þmeans the intensity value of the SAR image with noise. The WMLE estimation on x
uses all the values Iðx 0Þ in the search window RSWðxÞ, and the design of the window is inherited
from the classic region-based filter. The weight ω is derived from the probabilistic patch-based
dissimilarity using an exponential kernel20,21 and is calculated as follows:

Fig. 1 The degenerate filter design for edge extraction: ldf and wdf are the length and width of the
search window, respectively, ddf is the spacing between the two pixels for calculating the edge
strength at the center pixel, and θdf is the filter orientation. This figure is adopted from Ref. 19.
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EQ-TARGET;temp:intralink-;e002;116;735ωðx; x 0Þ ¼ exp

�
−
DPPBðPx; Px 0 Þ

h

�
; (2)

where DPPBðPx; Px 0 Þ denotes the patch-based dissimilarity measure of two patches Px and Px 0 ,
with x and x 0 as the centers, respectively, and h > 0 is the kernel parameter.19

Considering the design of the DG filter and the WMLE-based estimation method, if x and y
are the two adjacent pixels to the center pixel z, the corresponding indicator of the edge infor-
mation (i.e., the edge strength at the pixel z) at the current orientation of the filter θdf is calculated
with the use of the Bhattacharyya distance,22–24 and the edge strength at the pixel z is the maxi-
mum value among all the orientations, as shown in Eqs. (3) and (4):

EQ-TARGET;temp:intralink-;e003;116;616Eðz; θdfÞ ¼ DBðx; yÞ ¼ 2 ln
μ̂ðxÞ þ μ̂ðyÞ

2
− ln μ̂ðxÞ − ln μ̂ðyÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;577E�ðzÞ ¼ max
θdf

Eðz; θdfÞ: (4)

The relative parameters are set as suggested in Ref. 19. The orientations of the filter are
f0; π

4
; π
2
; 3π
4
g. The detailed information about the DG-WMLE edge extractor can be found

in Ref. 19.

2.2 Edge-Dominated Local Clustering

The SLIC5 is an effective and efficient method for superpixel generation. The basic idea of the
SLIC is a local k-means clustering method, including three steps: (1) initialization of cluster
centers by a regular grid (RG); (2) iterative local clustering based on a distance measure between
a pixel and a cluster center; and (3) postprocessing to remove isolated pixels and enforce the
connectivity of superpixels.

In general, the performance of the SLIC is greatly affected by the capability of the distance
measure. In the original SLIC, this measure is defined as the 5-D Euclidean distance combining
the color similarity and the spatial proximity.5 Since this distance cannot be directly applied for
SAR images with multiplicative speckle noise, several studies in recent years have deduced
suitable measures and introduced them into the SLIC, as discussed in Sec. 1. Motivated by the
work of Leung and Malik17 and Liu et al.,18 in this paper, we directly use the aforementioned
DG-WMLE edge information to measure the pairwise dissimilarity of two arbitrary pixels. As
shown in Fig. 2, the edge-based pairwise dissimilarity is perceptually meaningful, easy to under-
stand, and can ensure a good boundary adherence of superpixels.

Fig. 2 Illustration of the pairwise dissimilarity using edge information. (a) SAR image and (b) the
extraction result of DG-WMLE. Because of the high value of edge strength existing along the
line l2, the pixels p1 and p3 are suggested to be divided into different clusters. On the contrary,
the pixels p1 and p2 probably belong to the same cluster. This figure is adopted from Ref. 18.
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The dissimilarity of two pixels x and y is defined as follows:

EQ-TARGET;temp:intralink-;e005;116;723dEdgeðx; yÞ ¼ arg max
z∈l

E�ðzÞ; (5)

where E�ðzÞ denotes the edge strength at the pixel z and l is the line connecting x and y.
Similar to Ref. 5, the distance measure for edge-dominated local clustering (EDLC) is

defined as follows:

EQ-TARGET;temp:intralink-;e006;116;651dED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2Edge þm

�
dSp
S

�
2

s
; (6)

where the subscript ED stands for edge-dominated, dSp is the spatial distance of the pairwise
pixels, and S is the grid interval. m is a relative weight introduced to control the relative impor-
tance of the edge information against the spatial distance.

As mentioned in Sec. 1, the value of m should be carefully determined to offer a balance
between boundary adherence, compactness, and regularity of superpixels. A smaller m will
emphasize dEdge more and makes the generated superpixels adhere better to the real boundaries.
However, a largermwill emphasize dSp and makes the superpixels more compact and regular. As
shown in Figs. 3(b) and 3(c), an inappropriate choice of m leads to an unsatisfactory segmen-
tation result. More specifically, a large value of m around the edges will have a fatal impact on
the performance of segmentation.

Motivated by the idea of quadtree mesh generation,25 we provide an initialization strategy
with an EG instead of the RG to overcome this limitation. First, a RG is generated on the image
according to the expected number of superpixels. Next, an automatic thresholding26 is applied on
the extraction result of the DG-WMLE to get an edge map. Then, if the number of edge points in
any block of the RG exceeds a preset threshold, the block is recursively subdivided into four
smaller equal-sized parts. In this way, a multilayer grid adaptive to the edge information is

Fig. 3 Illustration of two different initializations of cluster centers and the corresponding superpixel
segmentation results. (a) initialized by a RG and (d) by an EG. (b) and (e) The results produced
using the distance measure in Eq. (6) with m ¼ 0.5, respectively. (c) and (f) The results with
m ¼ 1.5.
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generated, as displayed in Fig. 3(d). In Fig. 3, under the same value ofm and a similar amount of
initial clusters, it is shown that EG-based initialization has a larger grid interval S than RG.
In addition, more initial centers are generated close to the real edges, which makes the spatial
distance dSp between pixels and cluster centers around the edges decrease a lot. In both cases,
according to Eq. (6), the importance of spatial proximity will be weakened, i.e., the importance
of edge information will be emphasized. Thus, the boundary adherence of superpixels around the
real edges can be improved significantly, as shown in Figs. 3(e) and 3(f).

In summary, the procedure of EDLC for superpixel generation is presented as follows:

(1) Parameter setting—Set the number of blocks Nb in the top layer of EG, the number of
layers NL for EG, the relative weight m, and the maximum number of iterations Nitr.

(2) Initialization of cluster centers—Generate an EG based on the edge map obtained from
the DG-WMLE, and set the center of each block as an initial cluster center. To avoid
getting centers on pixels with strong edge strengths, move every center to the position
with the lowest edge strength in its 3 × 3 neighborhood.

(3) Local iterative clustering—For a cluster center C, compute the edge-dominated distance
dED between C and each pixel p in the region of 2S × 2S around C, according to Eq. (6).
Here, S is the grid interval of the top layer in EG. Then, assign p to the cluster with the
minimum dED, and save the cluster label for p. After all the cluster centers are processed,
update the locations of centers and calculate the residual error Er (L1 distance between
previous centers and recomputed centers). Repeat the assignment and updating until the
error Er converges or the number of iterations reaches Nitr. In our experiments, 20 iter-
ations are found to be enough, and this number is used as the stopping criterion in all
the tests.

(4) Postprocessing—Due to lack of connectivity enforcement, there may be some broken
superpixels produced in the final clustering results. To correct for this, find the regions
with the size smaller than 10 pixels, and reassign each pixel of these regions into a large
neighboring superpixel with the minimum likelihood-based distance. After this process-
ing, small isolated regions are carefully removed and the boundaries of most of the other
superpixels remain the same.

An intuitive flowchart is shown in Fig. 4.

3 Experiments and Analyses

3.1 Datasets

In this section, we generate a simulated four-look SAR image based on the Monte Carlo
procedure27 to objectively evaluate the performance of the proposed method. The size of the
image is 300 × 300. The image contains five different regions, and the intensity of each region
follows the gamma distribution, as shown in Fig. 5(a). The actual intensity values without the
interference of noise in the five regions are set to 100, 400, 1600, 3600, and 8100, respectively.
The corresponding ground truth of edges is given in Fig. 5(b).

In addition, two TerraSAR-X StripMap images are used in our experiments, as shown in
Figs. 6(a) and 6(c). The first one is extracted from Dessau, Germany, covering several crop areas.
The second is from South Mississippi, USA, covering both water and vegetation areas. The size
of each is 300 × 300. The pixel spacings are 3 m in both directions, and the number of looks is
∼6. The ground truth of edges from manual delineation is shown in Figs. 6(b) and 6(d).

Fig. 4 The flowchart of EDLC.
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3.2 Performance Evaluation

To evaluate the performance of the proposed method quantitatively, two commonly used
metrics28 are applied in this section: boundary recall (BR) and under-segmentation error
(USE). BR is defined as the fraction of the ground truth edges correctly recovered with the
superpixel boundaries. In practice, BR measures the percentage of ground truth edges that fall
within superpixel boundaries with a tolerance distance ε ¼ 1. USE compares superpixel segment
areas to measure to what extent superpixels cover the ground truth segment border. If Gi is a
ground truth segment, Sk is a superpixel, and j · j indicates the size of the segment in pixels, USE
is computed by

EQ-TARGET;temp:intralink-;e007;116;133USE ¼
P

i

P
k minðjSk ∩ Gij; jSk − GijÞP

i
jGij

: (7)

Next, we compare the superpixel generation results of the EDLC with that of the other three
methods, i.e., three different measures to represent the dissimilarity between a pixel and a cluster:

Fig. 6 Two TerraSAR images for experiments: (a) from Dessau and (c) from South Mississippi.
The ground truth of edges from manual delineation is shown in panels (b) and (d).

Fig. 5 Simulated dataset. (a) A simulated SAR image with five regions following the gamma
distribution. (b) The corresponding ground truth of edges.
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(1) the original SLIC using the grayscale-based dissimilarity:5

EQ-TARGET;temp:intralink-;e008;116;723dori ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAj − AiÞ2

q
; (8)

where A denotes the amplitude for SAR images.
(2) the likelihood-based SLIC (LB-SLIC)11 with a likelihood value based dissimilarity:

EQ-TARGET;temp:intralink-;e009;116;660dLB ¼ expf−pðzjjiÞg; (9)

where zj denotes the intensity of a given pixel, pðzjiÞ is the conditional PDF of the i 0th
cluster Ci, which can be defined by the gamma distribution:

EQ-TARGET;temp:intralink-;e010;116;604pðzjμ; LÞ ¼
�
L
μ

�
L
zL−1

1

ΓðLÞ exp
�
−
Lz
μ

�
; (10)

where L is the number of looks and μ is the noise-free intensity value. For the i 0th cluster
Ci, the MLE of μ is as follows:

EQ-TARGET;temp:intralink-;e011;116;535μ̂ ¼ 1

N

X
k∈Ci

zk: (11)

(3) The modified SLIC using a patch-based dissimilarity (PB-SLIC):12

EQ-TARGET;temp:intralink-;e012;116;475dPBðPi; PjÞ ¼ 2M · log
ĪPijffiffiffiffiffiffiffiffiffiffiffiffi
ĪPi

ĪPj

q ; (12)

where Pi and Pj are two image patches with the center pixel i and j, ĪPi
denotes the

average intensity in the patch Pi, andM is the number of pixels in Pi or Pj. According to
Ref. 12, a 5 × 5 patch is found to be appropriate and is used in the following tests.

To make a fair comparison, we first replace the dEdge in Eq. (6) with the above three dis-
similarities. Then, we perform the same local clustering and postprocessing procedures to get the
final results. To obtain superpixels with a good balance between boundary adherence and regu-
larity, the values of the weight m are all set carefully for all the three methods according to
Refs. 5, 11, and 12. The number of layers NL for EDLC is set as 3. The number of blocks
Nb in the top layer of EG in EDLC is also set suitably to get a number of the generated super-
pixels similar to that of the other three methods. The maximum number of iterations Nitr is set
as 20.

For the simulated data, the segmentation results of EDLC, LB-SLIC, PB-SLIC, and SLIC are
shown in Fig. 7 from left to right. The expected number of superpixels Nsp in LB-SLIC, PB-
SLIC, and SLIC is set as {100, 200, 300, 400, 500}, increasing from top to bottom. Additionally,
in the same lines of the figures, the number of generated superpixels in EDLC is close to the
other three methods. To provide superpixels with a better boundary adherence, m is set as {0.5,
0.6, 1.0, 0.5} for the four methods, respectively. The numerical evaluation for the superpixels
provided by these methods is shown in Fig. 8, using the aforementioned metrics BR and USE.

From Figs. 7 and 8, we notice that

(1) The original SLIC has the worst performance among these four methods. SLIC has
a good boundary adherence only at the borders between two regions with a low degree
of similarity, such as regions 1 and 4 and regions 1 and 5. Some irregular superpixels are
produced, and their boundaries poorly adhere to the real edges. The results show that the
grayscale distance is not quite applicable for the superpixel generation on the SAR
images with speckle noise.

(2) Although the BR values of LB-SLIC are close to EDLC, the regularity of superpixels in
LB-SLIC is much worse, especially in regions 3 and 4 of the image. The reason for this is
that the local clustering in LB-SLIC produces too much broken regions and orphaned
pixels, so after merging in postprocessing, the nearby superpixels will probably turn into
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Fig. 8 Performance evaluation of EDLC, LB-SLIC, PB-SLIC, and SLIC on the simulated SAR
image using (a) BR and (b) USE. In the legends, the numbers in brackets after the names of the
methods are the values of m.

Fig. 7 Superpixels generated by the four methods on the simulated SAR image: (a) EDLC,
(b) LB-SLIC, (c) PB-SLIC, and (d) SLIC. The number of superpixels is increasing from top to
bottom (100 to 500). The weight m is set as 0.5, 0.6, 1.0, and 0.5, respectively.
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irregular regions. Further, as shown in Fig. 7(b), some real boundaries (between the
regions 4 and 5 and the regions 3 and 4) are still not covered by the borders of superpixels
in spite of the increase of Nsp. This indicates a limitation in the performance of
LB-SLIC, which is discussed in Sec. 1.

(3) The performance of PB-SLIC is worse than EDLC and LB-SLIC. According to Eq. (12),
the average intensity of patches is used to calculate the dissimilarity of two central pixels.
Thus, the pixels near the edges of two regions, which have a low degree of similarity, will
indicate a high degree of similarity. As shown in Fig. 7(c), near the border between the
regions 1 and 4 and the regions 1 and 5, some superpixels overlap with different regions
at the same time. This overlapping clearly makes a poor adherence to the real boundaries
and degrades the performance of PB-SLIC.

(4) The proposed EDLC method yields a noticeable improvement on the performance. The
superpixels provided by EDLC obtain a higher value of BR and a lower USE than the
other three methods. Although the value ofm is increased from 0.5 to 1.0 and the number
of generated superpixels rises from 100 to 500, both of them have a smaller impact on the

Fig. 9 Superpixels generated by the four methods on the real image 1: (a) EDLC, (b) LB-SLIC,
(c) PB-SLIC, and (d) SLIC. The number of superpixels isincreasing from top to bottom (200 to 600).
The weight m is set as 0.5, 0.6, 1.0, and 0.3, respectively.
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performance of EDLC. As shown in Fig. 7(a), the compactness and regularity of super-
pixels is also ensured.

For the two real images, the segmentation results of the four methods are shown in Figs. 9 and
10 from left to right. The expected number of superpixels Nsp in LB-SLIC, PB-SLIC, and SLIC
is set as {200, 300, 400, 500, 600}, increasing from top to bottom. And the number of generated
superpixels in EDLC is close to the other three methods in the same lines. m is set as {0.5, 0.6,
1.0, 0.3} for the four methods, respectively. The numerical evaluation for the superpixels pro-
vided by these methods is shown in Figs. 11 and 12. From these figures, the proposed EDLC still
provides better results than the other three methods, considering both BR and USE. Although
with a low value of m, LB-SLIC or PB-SLIC can obtain a good boundary adherence, which is
close to or even a little bit better than EDLC, their performance of USE is worse. There are also
many irregular superpixels generated both near the real boundaries and inside the homogenous
areas. Furthermore, a lot of broken regions are produced during the local clustering, so the

Fig. 10 Superpixels generated by the four methods on the real image 2: (a) EDLC, (b) LB-SLIC,
(c) PB-SLIC, and (d) SLIC. The number of superpixels is increasing from top to bottom (200 to
600). The weight m is set as 0.5, 0.6, 1.0, and 0.3, respectively.
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number of superpixels in the final results is much more than the preset value of Nsp. In general,
the visual presentation of LB-SLIC and PB-SLIC is poorer because of these negative attributes.

3.3 Parameter Analysis

According to Sec. 2.2, two parameters need to be determined before EDLC: the weightm and the
number of layersNL. As shown in Fig. 3, bothm andNL have a great influence on the superpixel

Fig. 11 Performance evaluation of EDLC, LB-SLIC, PB-SLIC, and SLIC on the real image 1
using (a) BR and (b) USE. In the legends, the numbers in brackets are the values of m.

Fig. 12 Performance evaluation of EDLC, LB-SLIC, PB-SLIC, and SLIC on the real image 2
using (a) BR and (b) USE. In the legends, the numbers in brackets are the values of m.

Fig. 13 Performance evaluation of EDLC using (a) BR and (b) USE under different parameters.
Here, “EG3” denotes NL ¼ 3, “EG2” denotes NL ¼ 2. When NL ¼ 1, EG equals to RG. In the
legends, the numbers in brackets are the values of m.
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segmentation results. To evaluate the impact of the two parameters, we set NL ¼ f1;2; 3g and
m ¼ f0.5; 0.8; 1.0g; then, we applied the EDLC to the simulated image. The performance on the
condition of different parameters is shown in Fig. 13. From the figures, it is noticed that, with the
increase of layers, the boundary adherence of EDLC is improved remarkably. In addition, the BR
and USE curves under different values of m become much closer to each other. This represents
that, by the initialization of EG, the performance of EDLC is less sensitive to the change of m
than using RG. Thus, we used NL ¼ 3 in all the experiments, and setm in the range ½0.5; 1.0� for
EDLC. If the proposed method is applied for a larger dataset, more layers are recommended.
However, the size of blocks in the bottom of EG is not suggested to be smaller than 5 × 5.

4 Conclusions

In this paper, we propose an edge-dominated local clustering method to generate superpixels for
SAR images. Edge information is introduced not only to define the dissimilarity of a pixel and a
cluster but also to produce an adaptive grid for the initializations of cluster centers. Experiments
on the simulated and real SAR images show that the proposed method provides an improved
performance of boundary adherence and visual presentation, compared with the other methods
using statistical model-based dissimilarities. In the future, we will extend the edge-dominated
dissimilarity into multitemporal data and provide a segmentation result suitable for all the tem-
porals. In this case, superpixels will become a basic element for multitemporal analysis.
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