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Abstract. Stand density is one of the important forest structure parameters. QuickBird and
Worldview-2 high spatial resolution remote sensing images were compared. The Jiangle
state-owned forest farm in Fujian Province was the experimental area. A spectral local maximum
filtering method was used to extract the number of individual trees in a mountain forest.
Nonlinear quadratic polynomial regression models were established for the number of local
maximum points and the actual stand density. The near-infrared II waveband of Worldview-
2 imagery was used to extract the pure Chinese fir stands with an accuracy of 72.5%,
R2 ¼ 0.502, and RMSE ¼ 35.77 and the Masson pine stands with an accuracy of 78.35%,
R2 ¼ 0.754, RMSE ¼ 41.46, while the accuracy of all unclassified stands was only 0.2907.
The results showed that the classification of tree species can improve the accuracy of modeling.
The quadratic polynomial model using Worldview-2 image data achieved better results. Stand
density in the Jiangle state-owned forest farm was extracted using the NIR II band after fusion of
Worldview-2. A stand density planning map was constructed using the best models applied to the
different forest types. The method of combining high-spatial resolution imagery and sampling
plots to estimate stand density was proven to be feasible. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.14
.022214]
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1 Introduction

The accurate acquisition of forest structural parameters is an important task for forest resource
planning and investigation.1,2 As one of the important forest structure parameters, stand density
is closely related to the tree crown, tree height, diameter at breast height (DBH), wood properties,
biomass, and carbon stock of a plantation.3,4 At the same time, stand density is one of the most
important variables in forest management as it directly affects the distribution of ecological fac-
tors, such as light, heat, and water, in the plantation community and changes the species diversity
and structure within the stand.5,6 The composition and spatial distribution of the fine root bio-
mass are affected by the plant community composition and stand structure as well as the soil
physical and chemical properties and nutrient content.7 Therefore, the accurate estimation of
stand density is helpful for the scientific management and planning of forests. Remote sensing
is an important method of estimating forest density at the area and regional level (forest farm
level). Traditional sample plot survey methods rarely reflect the state and dynamic changes of the
diversity in large-scale forest structure in a timely and accurate manner.8 The acquisition of the
forest structure parameters mentioned above has some limitations, such as high labor intensity,
high cost of human and financial resources, and long investigation period.9 The remote sensing-
based method of forest density acquisition mainly requires assistance from sample plot survey
data, such as National Forestry Resource Inventory (NFRI) data, which can derive large area
forestry resource data.10 Therefore, exploring remote sensing-based methods can provide
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a reference for the future application and promotion of remote sensing. The method of extracting
stand density through remote sensing was studied to provide estimates at the forest farm level.11

Although moderate-resolution satellite imagery (e.g., Landsat) is reasonably sensitive to
variation between managed forest stands, it is not sensitive to canopy height variation within
the stands in comparison with aerial photography. Moderate-resolution image data (TM) are
extremely inferior to LiDAR data in their ability to capture variability in forest structure.12

Satellite image data are less sensitive to attributes related to canopy height (e.g., basal area)
than attributes related to canopy cover (e.g., tree density). This difference also illustrates the
value of the integration of multiple types of remote sensing data with field data to efficiently,
objectively, and accurately characterize forests to support forest science and management.6

Very high-spatial resolution (VHR) remote sensing imagery is usually considered a prom-
ising and alternative method for acquiring stand density because its spatial resolution is sufficient
for identifying individual treetops.13–15 Studies have shown that stand density can be represented
by the stem density or the number of trees.16,17 There are two kinds of methods to extract stand
density using VHR. The first method locates every tree in the plot, i.e., the tree level. The second
uses a statistical fitting method to predict the stand density with an unknown exact position of
each tree, i.e., the plot-level. In general, the second method with the use of VHR remote sensing
imagery has low precision for the number of trees that is estimated using spectral and texture
information from the imagery.18 Gougeon et al. used spectral imagery with a pixel size of
31 cm × 31 cm to identify individual trees in plantations of red pine (Pinus resinosa), red spruce
(Picea abies), white spruce (Picea glauca), and Norway spruce (P. abies). This method had
a stand density accuracy that ranged from 11% underestimation to 5% overestimation.19,20

McCombs et al.21 noted that previous studies using remote sensing data compared the field-mea-
sured stand density to derive stand density without ascertaining whether the identified trees
actually existed. LiDAR demonstrates a very promising capability for predicting forest stand
attributes.22 Some studies have shown that the accuracy of stand density estimation that uses
LiDAR data with topographic information is not high and needs to be improved.23,24 LiDAR
data have some shortcomings in the identification of dead trees because a standing dead tree
would not be indicated as a tree peak in the spectral data. LiDAR data do not have universal
coverage. Application to large areas is restricted due to the high cost.25

In our study, we used the spatial information from the imagery to explore the ability of VHR
imagery to extract individual trees. Many studies have focused on individual tree crown extrac-
tion algorithms with the use of different data sources, especially VHR imagery such as that from
QuickBird, to extract individual tree crowns. Automatic detection of tree crowns from aerial
images is generally accomplished in two steps: (1) tree crown detection and (2) tree crown
delineation.26,27 Validation shows that direct depiction of tree crowns in aerial photographs with
VHR will lead to significant errors among tree crowns of different sizes because such overlap is
common in a real forest.13 Therefore, the detection of individual trees remains a challenge to
obtaining the stand density for a large area because of the complexity of the algorithm and forest
stand structure.28

In this study, two mainstream high spatial resolution data sources were used to extract stand
density. A method of extracting individual trees in an image using spectral local maximum (LM)
filtering was proposed; this method has certain feasibility and limitations.29 A regression model
of the number of LM values and the actual stand density was established to estimate the stand
density of the study area. The results can provide a reference for the healthy development of
plantations and provides a scientific basis for improving the level of management in plantations.

2 Materials and Method

2.1 Research Area and Data Acquisition

The study area was located in the central part of Jiangle County, Fujian Province (26° 25′-27° 04′N,
117° 05′-117° 40′ E, as shown in Fig. 1). It belongs to the middle subtropical climate and has
both marine and continental climate characteristics. The area’s annual average temperature is
18.7°C in winter and 18.6°C in summer, with a maximum annual temperature of 28.6°C.
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With an average annual frost-free period of 287 days, the study area is dominated by the moun-
tainous areas where the overall slope is ∼30 deg and the highest elevation does not exceed
1000 m. The main soil type in the area comprises red soil. The Jiangle state-owned forest farm,
which was the state-owned administration organization for timber production, has different
working areas, including Shuinan and Mingtoushan, covering an area of ∼23 km2.30 The
Jiangle state-owned forest farm issued permission for each location, and the field studies did
not involve endangered or protected species. Since long-term research and practices have taken
place in the study area, good ecological and economic benefits have been produced by a variety
of broad-leaved trees mixed with Pinus massoniana, such as Schima superba, Ziziphus spinose,
Quercus acutissima, etc.31 P. massoniana and China-fir (Cunninghamia lanceolata) are the most
commonly grown afforestation species in Jiangle County, Fujian Province.32

The Worldview-2 satellite was launched on October 6, 2009, into a solar synchronous orbit
with an orbit height of 770 km and swath width of 16.4 km at nadir. WorldView-2 imagery
covering the study sites were obtained on August 12, 2013, from DigitalGlobe. WorldView-
2 has eight spectral ranges, including 400 to 450 nm (B1-coastal), 450 to 510 nm (B2-blue),
510 to 581 nm (B3-green), 585 to 625 nm (B4-yellow), 630 to 690 nm (B5-red), 705 to 745 nm
(B6-red edge), 770 to 895 nm (B7-near-infrared-1), and 860 to 1040 nm (B8-near-infrared-2).33

The images were orthorectified and geometrically corrected by DigitalGlobe. Radiance images
were atmospherically corrected and transformed to canopy reflectance using the fast line-of-
sight atmospheric analysis of a spectral hypercubes algorithm built in ENVI 4.7 software
(Environment for Visualising Images: ENVI, 2009).34

QuickBird-2 was the third satellite to be successfully launched by DigitalGlobe, and it
reached orbit on October 18, 2001, via a Delta-2 rocket. This was the third in a series of
VHR commercial satellites launched by DigitalGlobe. The VHR of the QuickBird-2 satellite
in the panchromatic band and multispectral band is at the submeter level with a panchromatic
image resolution of 0.6 m and a multispectral image resolution of 2.4 m. With pushbroom
imaging, the maximum zenith angle of the satellite is 25 deg, the orbital height is 450 km,
and stereo imaging is carried out along the orbit transverse trajectory. The irradiation width
is 272 km around the orbit of the subsatellite point, and the band of the subsatellite mode is
16.5 km × 165 km; the single scene is 16.5 km × 16.5 km, the image width is 16.5 km, and
the quantization value is 11 bits.33,35 QuickBird-2 has four additional multispectral bands: blue
band (0.45 to 0.52 nm), green band (0.52 to 0.60 nm), red band (0.63 to 0.69 nm), and near-
infrared (NIR) band (0.76 to 0.90 nm).

Typical sample plots were set up in the study area through the random sampling method.
A total of 54 20 m × 20 m sample plots were collected in 2013 and 2014. Figure 2 shows the

Fig. 1 Geographical position of the study area.
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plot distribution. Information about the tree species, DBH, tree height, and crown width of trees
with DBH over 5 cm were recorded by the field investigation. The precise coordinates of the four
corners of the sample plot were recorded by total station and hand-held GPS. All plots (unclas-
sified plots) included 11 mixed forests, 10 Masson pine (P. massoniana) forests, 27 Chinese fir
(C. lanceolata) forests, and 6 broad-leaved forests. The P. massoniana and C. lanceolata forests
accounted for the largest proportion of forests in the forest farm. For all 54 plots, the minimum
stand density (trees per plot) was 13 (195 trees per ha), the maximum stand density was 265
(3975 trees per ha), the average stand density was 83.8 (1257 trees per ha), the sum of all trees in
all plots was 4439, and the standard deviation was 49.8. The crown information from all conif-
erous forests of P. massoniana and C. lanceolata were analyzed. The average crown size (north
and south) was 3.16 m, the crown width (east and west) was 3.06 m, the average minimum crown
width was 1.78 m, and the average maximum crown width was 8.74 m.

In addition to collecting sample plot data in the forest areas, this paper obtained auxiliary data
on the forest resources in forest areas by communicating with local forest farm management
departments, which mainly included two types of survey data: forest resource inventory data
and topographic maps. Since C. lanceolata and P. massoniana were the main distributed tree
species, the main forest types can be divided into pure Chinese fir forest, pure Masson pine
forest, Masson pine-Chinese fir mixed forest, and other broad-leaved or bamboo forest with
Chinese fir or Masson pine mixed forest. The range of pure Chinese fir forests and pure
Masson pine forests was determined according to the forest classification field in the forest re-
source inventory data. The raster topographic map was converted into binary images, and then
the binary topographic map was vectorized by ARCSCAN 10.1 to extract the contours. Then, the
contours were transformed into an irregular triangular network, and a digital elevation model
(DEM) was extracted.

2.2 Image Preprocessing

First, orthorectification based on the control points for the panchromatic image and the multi-
spectral image of Worldview-2 was carried out using a 1:10,000 topographic map. The root mean
square error (RMSE) of the Worldview-2 panchromatic image and multispectral image ortho-
photo correction was 0.99 and 0.7854, respectively. The specific method of stand density extrac-
tion can be referred to as the extraction process in the Jiufeng Forest Farm.29 The density of
the coniferous forest in the Jiangle Forest Farm was extracted using the Worldview-2 and
QuickBird-2 images. Matching different types of images was needed to ensure the geometric
accuracy of them. Because the topographic map has a long history and the feature points are not
prominent, it was difficult to select the orthorectification points. Therefore, it was necessary to
select some points that do not change with time as much as possible.

Fig. 2 Map of the sample plot distribution in the Fujian area.
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The QuickBird image from 2013 was calibrated based on the orthorectified Worldview-2
image. The registration process was mainly carried out in the geometric correction module
of the AutoSync Workstation using Erdas Imagine 2010 (Hexagon AB, Norcross, Georgia).
The AutoSync Workstation can automatically generate thousands of connection points for the
correction of images, provided that at least three points are selected manually. In this paper, 50
control points were generated for the geometric correction. It was found that the corrected
QuickBird image was still not well matched with the Worldview-2 image, and there were still
some deviations in some areas. It was necessary to adjust the image. It was preferable to use the
spline method to re-edit the image in ArcGIS to complete the image correction and to match the
two VHR images. The matching experiment process shows that the coverage area of the DEM
file used for orthorectification must cover the entire study area to ensure the smooth progress of
the calibration process. In addition, the high-precision DEM was the premise for the accurate
matching of the two VHR images. Finally, the RMSE of the QuickBird image orthophoto cor-
rection was 0.503.

2.3 Individual Tree Identification Method and Statistical Analysis

If the grayscale value of a pixel in the image slice is defined as elevation and the image is taken as
three dimensions, a tree crown will have a peak point, i.e., LM. LM reflectance was used to
represent spectral reflectance maximum points and to identify the center of individual tree
crowns. In other studies, LM filtering has been widely used as an alternative to peak extraction
methods, and this technique has been adopted to detect individual trees.36 The LM filtering
method can be used for different data sources, such as QuickBird panchromatic bands,
Worldview-2 panchromatic bands, or LiDAR data. In this paper, we used the LM filtering
method to detect each individual tree crown.

The spectral reflectance peak maximum points extracted by the LM algorithm were not all
derived from vegetation points. Points incorrectly located on a road were considered pseudo
crown points. Normalized difference vegetation index (NDVI) filtration removed these pseudo
crown points. A threshold NDVI value was set for removing the pseudo points. The tree crowns
in each plot were then identified by spatial association statistics in ArcGIS software. We also
tested the effect of different window sizes: 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11. Pixel was used
as the unit of window size here. An optimal window size was required for identification. Five
different ranges of NDVI were chosen, from 0.1 to 0.5. Points under the threshold value were
removed to refine the reflectance maximum points layer by referring to the NDVI layer. The
spectral reflectance maximum point layers were overlaid on the sample plots, and the number
of reflectance maximum points (N 0) was calculated inside each plot. To identify the optimal
combination of NDVI threshold and window size, we used Pearson correlation analysis to evalu-
ate each effect of different NDVI threshold ranges and window sizes. A correlation analysis was
then performed between the N 0 within the plot and the number of trees within the corresponding
plot (N). We took 54 sample plots to evaluate the stand density of all stands.

To ensure the accuracy of the modeling, P. massoniana and C. lanceolata mixed forests,
bamboo forests, and broad-leaved forests were excluded, leaving 12 pure forests of P. massoni-
ana and 27 sample plots of pure Chinese fir forest. Pearson’s correlation coefficient was used to
analyze the linear correlation between variables X and Y, which are often two continuous var-
iables. Pearson’s correlation coefficient, when applied to a sample, is commonly represented by
the letter r. Two-tailed t-tests were used to determine whether the correlation was statistically
significance, and p ¼ 0.05 was used as the threshold. The highest r value indicates the best
combination of NDVI threshold, window sizes, and the band. After selecting the best NDVI
threshold value, optimal window size and band, considering that there is only one explanatory
variable, a simple regression with one element was used to build the model. N 0 was treated as the
independent variable, and the true stand density N was treated as an dependent variable. A non-
linear regression model and a linear regression model were both tested. The Shapiro–Wilk test
was used to verify the distribution of the residuals, and a regression model was established
according to the assumption of a normal distribution of the residuals (predicted value minus
observed value). If the p-value was significantly >0.05, then the residuals were distributed nor-
mally. The produced models were evaluated for precision using the coefficient of determination
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(R2) and the RMSE. RMSE measures the differences between the values predicted by a model
and the values actually observed. The unit of RMSE is the same as the unit of stand density. We
used the leave-one-out cross-validation approach to calculate the cross-validated coefficient of
determination (r2cv) and root mean square error (RMSEcv) to validate the models in predicting
the forest stand density. The prediction value of the i’th observation was calculated using the
regression equation obtained by fitting the model leaving the i’th observation out.

According to tree species composition in each plot, all plots were divided into three types,
pure Chinese fir forest, pure P. massoniana forest, and unclassified forest. According to the
technical regulations of the National Forest Inventory in China, the definition of a pure forest
is one in which a single woodland species has more than 65% of total stock volume. The def-
inition of a mixed forest with coniferous and broadleaf trees is one in which no tree species
(Group) have more than 65% of the total volume. In our study, we increased the percentage
to maintain the consistency of tree species. If the percentage of Chinese fir exceeded 70%, the
plot was grouped as a pure Chinese fir plot. And if the percentage of pure P. massoniana trees
exceeded 70%, this plot was grouped as a pure P. massoniana plot. All of the plots were con-
sidered to be unclassified forest. Inventory data in the study area were used as the reference data.
The study area was divided into two compartments according to the inventory map as reference
data, the C. lanceolata stand area and the P. massoniana stand area. After the estimation models
were established, we used Create Fishnet tools in ArcGIS 10.1 to create the 20 m × 20 m grid.
The rectangles were evaluated using the Spatial Join tool of Analysis tool in ArcGIS 10.1 to
count the number of LM in the whole study area. Then, we changed the fishnet vector layer with
points counted into a raster layer. We used these models to estimate the stand density in the
whole area.

3 Results

3.1 Forest Density Extraction from Different Images

Pearson correlation analysis was used to evaluate the correlation between the stand density and
LM points and to evaluate the advantages and disadvantages of the different LM methods.

Fig. 3 Correlation coefficients of all unclassified stands between the stand densities derived
based on the different window sizes and NDVI thresholds and the actual stand density (NIR
bands).
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Figure 3 shows the results of all unclassified plots. Figure 4 shows the statistical results with only
the C. lanceolata plots, and Fig. 5 shows the statistical results with the only P. massoniana plots.
The results showed that the highest correlation coefficient of stand density was 0.50, which
corresponded to the settings with a 5 × 5 window and an NDVI ≥ 0.6. After the classification
of the forest types, the correlation coefficients improved significantly. The maximum value of the
correlation coefficients of the stand density of the Chinese fir stands was 0.54, corresponding to
a 7 × 7 window and an NDVI ≥ 0.6.

Fig. 4 Correlation coefficients for C. lanceolata between the stand density derived from the differ-
ent window sizes and NDVI thresholds and the actual stand density (NIR band).

Fig. 5 Correlation coefficients of P. massoniana between the stand density based on the different
window sizes and NDVI thresholds and the actual stand density (NIR band).

Wang et al.: Stand density extraction and analysis of plantations based on QuickBird and Worldview-2 images

Journal of Applied Remote Sensing 022214-7 Apr–Jun 2020 • Vol. 14(2)



From visual analysis, the LM filtering actually achieved the effect of blurring the images.
With the increase in the window size, the tree crown in the image became blurred, and the boun-
daries of the individual tree crowns became clear. For the Worldview-2 panchromatic image, the
spatial resolution for the 7 × 7 filter window size defaults to 7 × 0.5 m. A 7 × 7 filter window
size is disadvantageous for detecting trees with tree crown sizes smaller than 3.5 m because those
crowns were almost indistinguishable. It was easy to blur the difference in the shadow area with
the 3 × 3 window, which made the shadow position not obvious. From the visual point of view,
the filtering effect of the window size of 5 × 5 was the best; it not only highlighted the crown
contour of single trees but also retained the gap between the original tree and the filtered tree, and
the shadows were clearly visible. The original cluttered individual tree crowns were displayed as
granular by LM filtering and then were patchy after LM filtering, which was conducive to further
extraction of the tree crowns. The specific steps of the crown position extraction can be referred
to as the QuickBird stand density extraction method, which used the same operational process.29

Because the stand density extracted by the spectral LM filter method was not currently the true
stand density, it needed to be fitted with the actual stand density of the sample plots on the
ground.

The panchromatic band was taken as an example, and the fitting results of the actual stand
density and the number of LM points with five window sizes, 3 × 3, 5 × 5, 7 × 7, 9 × 9, and
11 × 11, were analyzed. Considering the limited space, some tables were not listed. The graph
showed that there was a certain linear relationship between two of them, and with an increasing
NDVI threshold, the correlation coefficient tended to change. Figure 6 shows the results of the
correlation analysis between the number of spectral LM points extracted from the panchromatic
band of the Worldview-2 image and the actual stand density, which corresponded to the whole
unclassified sample plot, the Chinese fir sample plot, and the Masson pine sample plot. The
results showed that the fitting results were low for all unclassified stand densities extracted
in the panchromatic bands of Worldview-2. The correlation coefficient of the best extraction
result was only 0.48 and corresponded to a 5 × 5 window and an NDVI ≥ 0.5. The correlation
coefficient of the best extraction result was 0.64 for the stand density of Chinese fir forest, which
corresponded to a 7 × 7 window and an NDVI ≥ 0.6. The stand density of P. massoniana was
extracted, and the correlation coefficient of the optimum extraction result was 0.62, which cor-
responded to a 5 × 5 window and an NDVI ≥ 0.5.

The orthorectified panchromatic images were processed by spectral LM filtering with win-
dow sizes of 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11. The multispectral image with a spatial res-
olution of 1.8 m was fused with a 0.5-m panchromatic image through the HPF method, and the
ability to improve stand density detection was analyzed in each band of the multispectral image
after improving the resolution. The detailed analysis results and processes are shown in Figs. 7
and 8.

The window sizes 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11 were used, and the NDVI was
calculated using the red and NIR bands. Then, the LM spectral points were extracted.
Principal component analysis (PCA) can integrate multiband information and retain image infor-
mation to a great extent. Therefore, it is necessary to explore and analyze the effect of extracting

Fig. 6 Correlation coefficients of the unclassified, C. lanceolata and P. massoniana between
the stand density based on the different window sizes and NDVI thresholds and the actual stand
density (panchromatic band).
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the stand density from the first principal component and to compare the results with those of
extracting stand density from multispectral images to select the optimal band for extracting
extract stand density. The first principal component was extracted with the spectral LM filtering
method. The results are shown in Table 1. The results showed that the first principal component
extracted the stand densities of all unclassified stands, and the coefficient of determination of the

Fig. 8 Correlation coefficient for the Chinese fir and P. massoniana stands between the stand
density based on the different window sizes and NDVI thresholds and actual stand density
(NIR 2 band).

Fig. 7 Correlation coefficients of all unclassified stands between the stand densities based on the
different window sizes and NDVI thresholds and the actual stand density: (a) PCA first band,
(b) fourth (yellow) band, (c) fifth (red) band, (d) sixth (red-edge) band, (e): NIR 1 band, and
(f) NIR 2 band.
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best extraction result was 0.2719, which corresponded to a 7 × 7window and an NDVI ≥ 0.5. In
the fourth band, the stand densities of all unclassified stands were extracted. The coefficient of
determination of the best extraction result was 0.2183, which corresponded to a 7 × 7 window
and an NDVI ≥ 0.5. In the fifth band, the stand densities of all unclassified stands were
extracted. The coefficient of determination of the best extraction result was 0.2095, which cor-
responded to a 7 × 7 window and an NDVI (≥0.5). In the sixth band, the stand densities of all
unclassified stands were extracted, and the coefficient of determination of the best extraction
result was 0.2598, which corresponded to a 5 × 5 window and an NDVI ≥ 0.5. In the seventh
band, the stand densities of all unclassified stands were extracted, and the coefficient of deter-
mination of the best extraction result was 0.2731, which corresponded to a 5 × 5 window and an
NDVI ≥ 0.5. In the eighth band, the stand densities of all unclassified stands were extracted. The
coefficient of determination of the best extraction result was 0.2907, which corresponded to a
7 × 7 window and an NDVI ≥ 0.5. The results show that regardless of which band or NDVI
threshold was used to extract the stand density, there were one or two fixed filtering windows
that achieved the best fit. For the first principal component, regardless of the NDVI thresholds
used, the 7 × 7 window could always maximize the coefficient of determination.

3.2 Stand Density Extraction Result from Worldview-2 Image

Table 1 shows the best combination for stand density extraction for each band with the highest
coefficient of determination selected from Figs. 4 to 9. Both the QuickBird NIR band and
Worldview-2 bands could achieve good results. The highest determinant coefficient was
0.2907 in the eighth band of Worldview-2. Table 1 compares the results of the stand density
extraction using a 7 × 7 window and NDVI ¼ 0.5 threshold combination for each band.

For the example of the Worldview-2 panchromatic band of Fujian from 2013, refer to Fig. 9.
With the increasing NDVI threshold, the correlation of the LM stand density showed an increas-
ing trend. When the NDVI value reached 0.5, the determination coefficient reached a maximum;
when the maximum filter of the 5 × 5 window was used, the determination coefficient reached a
maximum of R2 ¼ 0.2351, and the best fitting result was obtained. The maximum filtering size
of 7 × 7 was generally more stable, while the window size of 3 × 3 was the least stable. The
maximum determinant coefficient for the window size of 3 × 3 appeared to be the highest R2

value of 0.1427 at the threshold level of 0.5.
Comparing the results from the different data sources, the best result was R2 ¼ 0.2907,

which has the highest correlation in all bands, using the eighth band of Worldview-2, the window
size of 7 × 7, and the NDVI of 0.5 to estimate the stand density. Therefore, we decided to use the

Table 1 Results of the comparison of the stand density extractions with variable filtering windows
and NDVI thresholds.

Data Year Band All unclassified forestry
Coefficient of
determination

QuickBird 2013 NIR 5 × 5 windows, NDVI ≥ 0.6 0.2524*

Worldview-2 2013 B4-yellow 7 × 7 windows, NDVI ≥ 0.5 0.2183*

B5-red 7 × 7 windows, NDVI ≥ 0.5 0.2095*

B6-red edge 5 × 5 windows, NDVI ≥ 0.5 0.2598*

B7-NIR-1 5 × 5 windows, NDVI ≥ 0.5 0.2731*

B8-NIR-2 7 × 7 windows, NDVI ≥ 0.5 0.2907*

Principle component analysis first 7 × 7 windows, NDVI ≥ 0.5 0.2719*

Panchromatic band 5 × 5 windows, NDVI ≥ 0.5 0.2351**

*Fitting results that are significant at the 0.001 level.
**Significance at the 0.05 level.
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eighth band of the Worldview-2 to model and retrieve the stand density. All samples were clas-
sified preliminarily according to the tree species composition. That is, all plots were divided into
pure Chinese fir forest and pure Masson pine forest. Figures 10 and 11 show the scatter plot of
the linear fitting between the estimated stand density and the actual stand density of Chinese fir
or Masson pine forests, respectively, based on the eighth band division.

Through the comparison of Tables 2 and 3, it was found that the quadratic polynomial regres-
sion model with the independent variable and dependent variable was preferable with nonlinear
fitting than with the linear regression model. The quadratic polynomial regression model had a
higher determination coefficient value and lower RMSE. The regression models for the sample
plots of Chinese fir and Masson pine forests were significant at the level of p ¼ 0.01. Through
the observation of Fig. 9, the nonlinear regression model was compared with the linear regres-
sion model, and it was found that the nonlinear regression model could better reflect the change
trend in the number of LM spectral points and the actual stand density, whether in the Chinese fir
or Masson pine sample plots. Therefore, this paper used the established nonlinear regression
model to estimate the stand density. Figures 11 and 12 show the results of the model validation,
mainly using the predicted and true values for fitting. Table 2 shows the results of the linear
regression model. The precision of the estimation model of the Chinese fir stand density based
on the eighth band of Worldview-2 was 72.5%. Comparing the actual value with the predicted

Fig. 10 Model validation for the C. lanceolate forest.

Fig. 9 Fitting results for C. lanceolata and P. massoniana.
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value, we found that the precision of the estimation model of the P. massoniana stand density
was 78.35%.

A total of 39 coniferous forest plots contributed to the statistics of the unclassified stands.
Among these 39 plots, there were 10 pure Masson pine forests and 27 pure Chinese fir forest
plots. Two mixed forests of Chinese fir and Phyllostachys pubescens and P. pubescens forests
and broad-leaved forests were removed from the dataset. The suitable window size for LM filter-
ing and the NDVI threshold value for filtering were analyzed. A gridded single-band image of
Worldview-2 was created. An initial stand density raster map was obtained using the eighth band
of Worldview-2, and the combination of the 7 × 7 window size and an NDVI ≥ 0.6 was used to
extract the spectral LM points.

With the help of National Forest Resources Inventory data, the data could be superimposed
on the VHR remote sensing image after orthorectification pretreatment. The range of the forest
classification types could be determined by the tree composition field in the NFRI data. Thus, the
final stand density estimation map could be created using the panchromatic image as the back-
ground. The final stand density estimation results are shown in Fig. 12.

Table 2 Liner regression model between the stand density based on a 7 × 7 window size and
an NDVI ≥ 0.6 threshold and the actual stand density (NIR-2 band).

Forest type Model
Multiple

R-squared P-value F -statistic DF RMSE

Pure Chinese fir forest y ¼ 2.6741x þ 8.0337 0.3904 0.0004936* 16.01 25 39.57

Pure P. massoniana forest y ¼ 2.3907x þ 6.15 0.4486 0.01719** 8.134 10 41.46

*Significance at the 0.001 level.
**Significance at the 0.05 level.

Table 3 Nonlinear regression model between the stand density based on a 7 × 7window size and
an NDVI ≥ 0.6 threshold and the actual stand density (NIR-2 band).

Forest type Formula
Multiple

R-squared P-value F -statistic DF RMSE

Pure Chinese
fir forest

y ¼ −4E − 05x2 þ 0.1559x þ 15.977 0.502 0.0002328* 12.09 2 and 24 35.77

Pure
P. massoniana
forest

y ¼ 0.1301x2 − 3.436x þ 38.633 0.754 0.007379** 10.73 2 and 7 29.05

*Fitting results that are significant at the 0.001 level.
**Significance at the 0.05 level.

Fig. 11 Model validation for the P. massoniana forest.
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4 Discussion

Further analysis of the spectral LM filtering method applied to VHR remote sensing images in
the same research area could infer some helpful conclusions. We compared the results from
Table 1 with the results in the literature that used similar technological processes.29 Two
QuickBird images were used to extract the stand density in deciduous forest and coniferous
forest in Beijing, China. First of all, from both analysis results, it is found that the selection
of the window sizes and the NDVI thresholds had certain consistency and regularity regardless
of QuickBird or Worldview-2 images. The window size selected in the Jiangle area was larger
than the window size in Jiufeng area, and the probability of selecting a 7 × 7 window was obvi-
ously higher than that in the Jiufeng research area.

In a comparison of Table 1 and similar results in the literature,29 the ratio of selected 5 × 5

window and 7 × 7 window sizes in Jiangle accounted for more than half of the total, while the
ratio of selected 5 × 5window and 7 × 7window sizes in the Jiufeng area were less. The value of
NDVI threshold selected in the Jiangle area (0.5 was chosen as the processing threshold) was
higher than those selected in the Jiufeng area (0.3 was chosen as the processing threshold). By
analyzing and comparing the results of the stand density extraction from the multispectral band
and panchromatic band of Worldview-2 and QuickBird imagery, we can see that the NIR band
using the LM method obtained the highest determination coefficient of 0.2907.

Research results in both the Jiufeng and Jiangle areas proved that the NIR band was indeed
the best extraction spectral band compared with the panchromatic band. For the panchromatic
band of Worldview-2, the 5 × 5 and 7 × 7 window sizes corresponded to an average 3 × 3 m

canopy size. That window size value was coincidentally close to the average canopy size of the
sample plot (see descriptive statistics in Sec. 2.1). This indicates that the window size used in the
models was directly related to the actual ground canopy size. Actually, the window size should
be close to the true size of the crown to achieve higher accuracy in the literature.37

QuickBird images and Worldview-2 images were used to extract the stand densities of differ-
ent study areas through the use of LM filtering. The comparison from both study result shows
that using a QuickBird image in the Jiufeng research area in Beijing, China, is better than using
a QuickBird and Worldview 2 image in the Jiangle study area in Fujian, China.

Fig. 12 P. massoniana and C. lanceolate stand density extraction result.
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Especially for the coniferous forest, the coefficient of determination between the number of
LM spectral points in the sample plot and the actual stand density of coniferous forest reached
R2 ¼ 0.79 (P < 0.001), while the coefficient of determination between the number of spectral
LM points obtained by Worldview-2 and the actual stand density of the sample plots was rel-
atively lower, such as the stand density extracted for the unclassified forest by worldview-2 NIR
band with the coefficient of determination only 0.2907. However, according to the composition
ratios of the tree species, all sample plots could be divided into different forest types, and then the
quadratic polynomial regression models of the different forest types could achieve higher fitting
accuracy, as previously shown in Refs. 38 and 39. The stand density extraction method based on
a spectral LM filter could extract the coniferous forest densities very well. This method achieved
good results.

Interpreting the results was quite different for different sensor types used in the different
research areas. There were three main reasons for this uncertainty. (1) Sample location accuracy.
The accuracy of sample location had a very large influence on the result. Because VHR images
had high spatial resolutions, the small displacements of the sample plots may have cause con-
siderable drift, and those mistakes may have affected the extraction accuracy. The accuracy of
orthorectification is another factor which will further affect the sample location. A 1: 2000 scale
topographic map was adopted in the Jiufeng Forest Farm, while a 1:10,000 scale topographic
map was used in the Jiangle Forest Farm. (2) From statistic results of both research areas, the
actual stand density of the Jiangle Forest Farm in Fujian Province was higher than that of the
Jiufeng Forest Farm in Beijing, as shown in the literature.29 With actual stand density increasing,
spectral LM points to estimate stand density became less effective. Relevant literatures also
pointed out that a high stand density is vulnerable to saturation of number of spectral LM points.
Viewing from the fitting process, when the stand density of sample plots reached a certain level,
the number of LM spectral points did not increase with increasing stand density. As shown in
Fig. 9, when the actual stand density reached 300 trees per plot, increasing the number of LM
spectral points obtained through statistical analysis was difficult, which indicated that the num-
ber of LM spectral points tends to saturate with the increase of stand density. (3) Satellite altitude
angle, azimuth angle, solar altitude angle, azimuth angle, and other external factors during
imaging could result in uncertainty in the analysis. Although high accuracy was obtained from
the results, the confidence of the results needs to be further verified due to the small number of P.
massoniana plots. Additional samples need to be obtained for verification in the future, and
the accuracy of estimation needs to be improved. LiDAR data and aerial image data with high
spatial resolution and the integration of multisource data are worthy of additional attempts in the
future.

5 Conclusion

In this study, the stand densities in the Jiangle research area in Fujian Province were extracted
using Worldview-2 and QuickBird VHR remote sensing images. The following conclusions can
be drawn: the NIR band after fusion with higher spatial resolution had more potential to extract
the stand densities than the panchromatic band. The sample sites involved in the modeling were
divided into different types according to the tree species composition ratios. The plots were
divided into Masson pine sample plots and Chinese fir sample plots for statistics, which can
significantly improve the extraction accuracy of stand density. The regression models for the
number of LM points and the actual stand density were established. The regression models were
fitted by linear fitting and quadratic polynomial fitting. The quadratic polynomial model
achieved better results. The extraction model of the Chinese fir forest based on Worldview-2
NIR band was y ¼ −4E − 05x2 þ 0.1559xþ 15.977 with R2 ¼ 0.502, RMSE ¼ 35.77, and
extraction accuracy of 72.5%. The extraction model of Masson pine forest was y ¼ 0.1301x2 −
3.436xþ 38.633 with R2 ¼ 0.754, RMSE ¼ 29.05, and extraction accuracy of 78.35%. Finally,
the models were applied to the areas of P. massoniana and the Chinese fir forest area, which
were determined by the NFRI data, and a stand density distribution map of the study area was
generated.
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